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Abstract
Conventional processors use a fully-associative — addr
store queue (SQ) to implement store-load forwarding.—
Associative search latency does not scale well to capact
ities and bandwidths required by wide-issue, large win- .
dow processors. In this work, we improve SQ scalability 3 | 5 I
by implementing store-load forwarding using specula- —
tive indexed access rather than associative search. Ouf CAM
design uses prediction to identify the single SQ entry|
from which each dynamic load is most likely to forward. —'  data
When a load executes, it either obtains its value from the a)
predicted SQ entry (if the address of the entry matches
the load address) or the data cache (otherwise). A for-  Figure 1. Store queues(a) associative, (b) indexed.
warding mis-prediction—detected by pre-commit fil-
tered load re-execution—results in a pipeline flush. SQ  We introduce a scalable SQ design that implements
index prediction is generally accurate, but for some store-load forwarding without associative search. As
loads it cannot reliably identify a single SQ entry. To each dynamic load is renamed, we use store-load depen-
avoid flushes on these difficult loads while keeping thedence prediction [3, 9, 22] to predict the single in-flight
single-SQ-access-per-load invariant, a second predictoistore from which that load is most likely to forward. As
delays difficult loads until all but the youngest of their illustrated in Figure 1(b), when a load executes, it
“candidate” stores have committed. Our predictors are accesses the SQ only at this predicted index, not asso-
inspired by store-load dependence predictors for loadciatively. If the entry contains a matching address, the
scheduling (Store Sets and the Exclusive Collision Preload reads the corresponding data value. Otherwise, it
dictor) and unify load scheduling and forwarding. uses the value from the cache. Because indexed for-
Experiments on the SPEC2000 and MediaBenchwarding is speculative, we use filtered in-order load re-
benchmarks show that on an 8-way issue processor witexecution prior to commit [2, 16] to catch mis-predic-
a 512-entry reorder buffer, our technique performs tions (which trigger pipeline flushes) and train the store-
within 3.3% of an ideal associative SQ (same latency adoad dependence predictor.
the data cache) and either matches or exceeds the per- To predict forwarding SQ entries, we use a two-table
formance of a realistic associative SQ (slower than datapredictor that is an adaptation of Store Sets [3]. The first

predicted SQ entry

SQ load
SQ head
g

o

age logic

cache) on 31 of 47 programs. table maps each dynamic load to a small set of static
stores from which it has forwarded in the past; the sec-
1. Introduction ond table maps each of these static stores (PCs) to the

Store-load forwarding is a critical aspect of dynami- SQ index of its youngest in-flight instance. The predic-
cally scheduled execution. Conventional processord0r Selects the youngest of these indices. Our experi-
implement store-load forwarding by buffering the Ments show that this predictor mis-forwards (i.e., misses
addresses and data values of all in-flight stores in an actual forwarding and incurs a flush) only 0.18% of
age-ordered store queue (SQ) load accesses the data dynamic loads (less than 2 in 1000). _
cache and in parallel associatively searches the SQ for For a few loads—especially in large windows which
older stores with matching addresses. The load obtaingUPport more (and more complex) forwarding pat-
its value from the youngest such store (if any) or fromt€rns—the forwarding predictor cannot reliably choose
the data cache, as illustrated in Figure 1(a). a single candidate forwarding store. To minimize flush-

Associative structures can be made fast, but often @9 While maintaining the single-SQ-access-per-load
the cost of substantial additional energy, area, and/opimplification, we delay difficult loads until all but the
design effort. Furthermore, these implementation disadyoungest of their candidate forwarding stores have com-
vantages compound super-linearly—especially formitted. We use a distance-based dependence predictor,
orderedassociative structures like the SQ—as structureSimilar to the Exclusive Collision predictor [22], to map
size or bandwidth scales up. As SQ access is on the loa@ch static load to a maximum number of older stores
execution critical path, fully-associative search of athat can safely be in-flight for the load to forward cor-
large SQ can result in load latency that is longer tharf€ctly. This delay mechanism reduces mis-forwarding to
data cache access latency, which in turn complicate8-03% at the cost of delaying the execution of 2.3% of
scheduling and introduces replay overheads [8]. loads by an average of 53 cycles each.



Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

We are not the first researchers to propose alternaprogram order. When a load executes, it writes its
tive SQ designs to scale store-load forwarding to largeaddress into the LQ. When a store executes, it associa-
window sizes and wider issue [1, 5, 13, 15, 17, 20]. Ourtively searches the LQ for younger loads that read the
approach differs from these previous proposals as itaddress it wrote. A match indicates an ordering viola-
completely eliminates associative search while main-tion and triggers a pipeline flush.
taining the simplicity of a non-segmented, age-ordered To avoid expensive associative search, memory
SQ organization. Our design unifies load schedulingordering violations can alternatively be detected by in-
and store-load forwarding in a single mechanism andorder load re-execution prior to commit [2, 6]. This
transfers the complexity of that mechanism from the approach detects a violation when a load'’s re-executed
latency critical execution core to the more latency toler- value does not equal its (initial) executed value. To
ant front end. When combined with recent proposals forreduce data cache traffic, only those loads that execute
non-associative load queues [2, 16], our design yieldsn the presence of older stores with unknown addresses
an in-flight data memory system that is completely free are re-executed. For SPECint, this is about 9% of loads.
of associative search and eliminates one of the structural Store Vulnerability Window (SVW) [16] further
barriers to wide-issue large-window processors. reduces the re-execution rate. With SVW, a load re-exe-

cutes only if it issued in the presence an older store with
2. Baseline Microarchitecture: Background  an unknown addresand that store wrote to the load's

This section describes four aspects of out-of-orderaddress. SVW assigns each store a monotonically
load and store execution in modern processors: (1) comincreasing sequence number (the Store Sequence Num-
mitting stores to the data cache in program order, (2)Per or SSN). An address-indexed table called the Store
forwarding values to loads from the youngest older in- Sequence Bloom Filter (SSBF) tracks the SSN of the
flight stores that wrote to the address, (3) detectingmost recent committed store to a given address. When a
memory-ordering violations by determining when a load executes, the SSN of the youngest older store to
load executed too early relative to its producing store,which it is not vulnerable—the SSN of the forwarding
and (4) reducing the frequency of memory-ordering vio- store or the SSN of the youngest committed store—is
lations. The first two functions are performed by a storerecorded in its LQ entry. Prior to re-execution, the load
queue (SQ), the third by a load queue (LQ), and theuses its aiddress to probe th_e SSBF. It re-executes qnly if
fourth by a load scheduling predictor. Although this the SSNin the SSBF entry is greater than the SSN in its
paper focuses on the SQ, our design uses and dovetai@vn LQ entry, i.e., if its address collides with that of a
with previousiy proposed Scheduiing and ordering tech-store to which it is vulnerable. With SVW, the SPECint
niques. This section reviews these techniques, focusinge-execution rate falls to 1%.
on those we incorporate into our microarchitecture. Reducing memory-ordering violations. Modern

Store commit and store-load forwarding.Conven- ~ processors reduce memory-ordering violations by
tional processors implement in-order store commit andrecording the identities of offending loads and delaying
store load forwarding with an age_ordered,% array the execution of future instances of those loads enough
that contains one entry for each in-flight store in pro- to avoid violations (and ideally without introducing
gram (age) order. Each SQ entry encodes the store’sinnecessary delay). Simple store-blind predictors [7]
physical address, data size, ready bits, and value. Théelay suspect loads undll older stores execute. More
SQ supports three operations: indexed writes for storesophisticated store-load pair predictors [3, 9, 22] force
execution, indexed reads for store commit, and fully- the load to wait for a particular store to execute.
associative search-and-read operations for load execu- In a processor with a traditional LQ, which detects
tion. If a load forwards (i.e., receives its value from an memory-ordering violations during store execution, the
in-fiight store via the SQ), it must do so from the young- PCS of both t_he stor_e and the Ioad involved in the_ viola-
est in-flight store older than itself that has a matchingtion are readily available to train a store-load pair pre-
address. To quickly find all matching store addressegdictor. However, pre-commit re-execution does not
(there may be several), the address portion of the SQ ig@utomatically identify which store caused the violation
implemented as a CAM (content addressable memory)[2]- This limitation is overcome by the Store PC Table
A priority encoding age |ogic follows the CAM and (SPCT), a small, address-indexed table (S|m|Iar to the
selects the youngest matching store that is also olde®SBF) that holds the PC of the last committed store to
than the load. The associative search logic (the CAMWrite to each address [16]. S
and priority encoder) is the slow and non-scalable com- ~ Baseline microarchitecture.Our baseline microar-
ponent of the SQ, and is the one our design eliminates.chitecture uses SVW-filtered load re-execution [16] and

Detecting memory-ordering violations. A mem- @ load scheduling predictor inspired by Store Sets [3].
ory-ordering violation occurs when a load executed too This sophisticated predictor allows our baseline to use
early (i.e., before the store upon which the load dependg@ddress-less scheduling [11] and avoid splitting stores
executed). Modern processors detect memory-orderinginto address and data operations. Figure 2 shows the
violations using a load queue (LQ). Similar to an SQ, aload-store unit of this microarchitecture. Notice the

traditional LQ is a CAM that contains load addresses inabsence of the LQ address CAM and the modifications
to support SVW-filtered re-execution in gray.
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ducing stores to commit to the cache). Notice that in

mark store for store sets addition to coordinating forwarding, use of these two
ROB[ T [ TpcC SPCT predictions subsume traditional load scheduling. During
I load execution, the load accesses the data cache in paral-
mark load for store sets lel with reading the single SQ entry determined by the
—Lssemt J——— predicted forwarding index. If (1) the address of the pre-
SQ| val[— dicted SQ entry matches the load address and (2) the
L g/‘ier ¢—=SSBF <o load width is less than or equal to the store width, the
T ¥ load uses the data value from the SQ. Otherwise, the
T reqfile > load receives its value from the cache. We use SVW-fil-
<—W+—L¢ i tered load re-execution (described in Section 2) to detect
LD . ID_$ forwarding mis_-predictions_ (which trigger pipeline
< FouTer flushes)_ and train both predictors.
L SQ indices and SSNsIndexed SQ access requires
Q a‘ﬂ_@ an SQ index (position). However, SQ indices do not
fush YW ] contain information about committed stores and require
! somewhat complex wrap-around logic. To simplify sev-
——— address = data > control eral prediction, scheduling, and re-execution functions
Figure 2. Baseline load-store unit. This design and to uniquely identify recent store instances (both in-

enforces memory ordering using SVW-filtered re-  flight and committed), we name stores using their Store
execution (note the absence of an LQ address CAM)  Sequence Numbers (SSNs) as defined by SVW [16]. A

gg'r’t‘%rtlgrﬁg ?/Ztlieof‘i (—:?ltc;léc(tllujgrﬁtsggﬁ iﬁ%(lje:ﬁéﬁ)t(%%ustilgn given store is in-flight if its SSN is greater than the glo-

re-execution. The LQ SVW fields and SSBF (medium bal counter SSNyt The SQ ind_ex of an in-flight store _is
gray) implement the SVW filter. The SPCT (dark derived from the low-order bits of its SSN (assuming

gray) helps train store-load pair predictors. SQ size is a power of two). As such, we refer to the for-
. warding index as SSfjjqand the delay index as Sg
3. Indexed Store-Load Forwarding Wrap-around ofN-bit SSNs is handled by draining the

Our design improves SQ scalability by replacing pipeline and clearing all structures that hold SSNs when
fully-associative search traditionally used to implementa store with SSN=0 is renamed (once evétgtores).
store-load forwarding with indexed (i.e., direct) SQ . )
access. As illustrated in Figure 1(b), this approach3-2. Forwarding Index Predictor
reduces the load-forwarding critical path by replacing  The goal of a forwarding index predictor is to deter-
the address CAM and age logic with a simple decoder. mine the store instance (identified by its SSN) that is

Indexed SQ access uses two predictors. To avoidnost likely to forward to a given load instance. In our
search, we use @rwarding index predictorto predict ~ scheme, forwarding takes place only if the load’s
the SQ index from which a load is most likely to for- address matches that of the predicted store. Only missed
ward. No forwarding predictor is perfectly accurate. To forwarding instances (i.e., loads that should obtain val-
reduce the frequency of forwarding mis-predictions, weues from an in-flight store that we fail to predict) are
use adelay index predictorto delay the execution of considered incorrect. Predicted forwardings that result
troublesome loads until all non-predicted stores likely toin the load properly obtaining its value from the cache
forward to this load have committed, allowing the load are still considered correct. We call the first casais-
to obtain the correct value from either the cache or thforwarding and the second @on-forwarding. By toler-
single predicted SQ entry. Before describing our specifi@ting non-forwarding, we relax the precision require-
design of these two predictors (in Section 3.2 andments of the forwarding predictor.

Section 3.3, respectively), we first describe the mecha- Our forwarding predictor consists of two tables. The
nism that uses the predictions to perform store-load forForwarding Store Predictor (FSP)naps each load PC

warding and load scheduling. to a small set of store PCs from which the load recently
_ _ forwarded. The FSP is a PC-indexed, set-associative
3.1. Indexed Forwarding Mechanism table. Each entry contains a valid bit, a partial tag, a par-

The processor generates a forwarding index predictial store PC, and a short saturating counter. The asso-
tion and a delay index prediction for each dynamic loadciativity of the FSP determines both how many loads
during the decode/rename pipeline stages. Both predigan share a set and how many store dependences a sin-
tions either identify a particular in-flight store instance gle load can represent. Our experiments show that 2-
or predict that no in-flight store instance is relevant. Theway set-associativity is adequate. Thre Alias Table
load executes when (1) its input registers are ready, (2{SAT) maps each store PC to the SSN of the youngest
the store corresponding to its forwarding index bas-  in-flight instance of that store. The SAT is untagged and
cuted(to enforce the likely memory dependence), andeach entry contains only a single SSN.

(3) the store corresponding to its delay index bam- Chained FSP/SAT access is used to attach to each
mitted (to force ambiguous but potentially value-pro- dynamic load the SSN of the most likely-to-forward

3
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dynamic store (this is the load’'s SgJy). The decode each store, our mechanism cannot capture tut
stage uses the load PC to access the FSP and produceveost-recent forwardingoehavior. All the same, there is
small set of store PCs (limited by FSP associativity). no point in delaying the load on a store instance on
The rename stage accesses the SAT (in parallel for eactvhich it is known not to depend (e.g., the load for itera-
of the store PCs returned by the FSP) to generate a seion i=5 depends on stor¥[3] , but there is no point
of SSNs. The youngest (largest) of these SSNs is choseim delaying it on stor&X[4] even though that is the only
as the load’s predicted S{Jy. store the SAT can predict). Section 3.3 describes how
SAT update. The SSN of each store is inserted into the delay predictor prevents pipeline flushes for loads
the SAT at rename. Like a register alias table (RAT), thethat exhibit not-most-recent forwarding behavior.
SAT is repaired on pipeline flushes, although a SAT  Example operation. Figure 3 shows our indexed
requires repair only for performance, not for correct- SQ in operation for a 2-entry FSP, a 2-entry SAT, and a
ness. The mechanisms for repairing the SAT—Ilogging4-entry SQ. For simplicity of the example, each FSP
over-written entries or checkpointing—are analogs of entry has a single store (i.e., the FSP is direct-mapped).
the mechanisms that repair a RAT. The main participants are dynamic instances of static
FSP training. The FSP is trained at load commit stores Y and Z and static load W. The left hand side of
with the help of the SPCT and SSBF [16]. The SPCT the figure shows a predictor training sequence involving
maps each (partial) address to the PC of the last store tone execution of these three instructions; the right hand
write to the address, allowing each committing load to side shows a successful indexed forwarding that uses
determine the PC of the store it should have forwardedthe dependence information learned during the first exe-
from, if any. The SSBF maps each (partial) address tocution. Each sequence consists of five snapshots which
the SSN of the last store to write to it, allowing the load show the relevant events in the lives of the participants.
to determine the distance (in dynamic stores) to this for-Each snapshot shows the contents of five structures: (1)
warding store. Distance information is useful because ahe FSP, (2) the SAT, (3) an SQ which is marked by
distance greater than the size of the SQ means that nbead and tail pointers (thick lines) and in which each
forwarding could have actually occurred. Both the entry contains a store PC (Y or Z), a data address (A or
SSBF and SPCT are implemented at a granularity of 1B), a value (single digit), and an implicit SSN (double
byte, with wide stores making multiple writes and wide digit number above the entry), (4) the data cache (D$),
loads making multiple reads. This organization is and (5) the SPCT, both of which are indexed by data

needed to capture forwarding of multiple data sizes, andaddress (A or B). We first examine the training
can be implemented efficiently by banking each struc-sequence:

ture 8-ways (assuming a maximum data size of 8 bytes)1.

If making predictions for non-forwarding loads had
no negative effects, the FSP could be trained (up) only
by mis-forwarding loads. However, a load must wait
until its predicted forwarding store has executed, even in
non-forwarding cases. If a load forwards from a store 12.
out of 1000 times, it is better not to learn (or to unlearn)
the forwarding behavior and incur a single flush rather
than to unnecessarily delay the other 999 instances. FoB.
this reason, the FSP is potentially trained (either posi-
tively or negatively) by every committing load. The
counter in each entry weighs positive training against
negative (our default ratio is 8:1).

Generally speaking, we learn store-load depen-
dences on correct forwarding (to reinforce dependences
known to be useful) and on mis-forwardings in which 4.
we fail to predict not only the forwarding index, but also
the forwarding store PC (to create new, potentially-use-
ful dependences). We unlearn dependences when thg.
load and most recent store to its address are dynamically
far enough apart (i.e., further than SQ size) that no
actual forwarding can take place (to unlearn entries that
result in too many non-forwardings). We also unlearn
dependences if we successfully predict the forwarding
store’s PC, but not its dynamic instance. This happens

Store Z renames;enqueues on the SQ, receives the
next sequential SSN (18) and notes in the SAT that
the youngest instance of store Z has SSNLk&d

W decodesand accesses the FSP, but finds no for-
warding store.

Store Z (SSN 18) executeand writes its address/
value (B/6) to the SQLoad W renamesbut has no
store PC with which to access the SAT.

Store Y (older than Z) commits and writes its
value (5) and PC (Y) to the D$ and SPCT, respec-
tively, in the slots corresponding to its address (A).
Load W calculates its address (B) and executes.
Because it was not predicted to forward, it reads the
value (0) from the D$. This is a mis-forwarding; it
should actually read its value from store Z (SSN 18).
Store Z commitsand writes its value (6) and PC (2)
to the D$ and SPCT, respectively, in the slots corre-
sponding to its address (B).

Load W re-executesand discovers a discrepancy
between the value it originally loaded (0) and the
correct value it re-loaded (6). The load triggers a
flush, learns the identity of the store it should have
forwarded from (Z) by accessing the SPCT using its
address (B), and enters that store into its FSP entry.
The sequence on the right of the figure follows the

when a load forwards from what is not the most recentsame events in a future execution of these three instruc-
instance of a store (e.g., a load forwards across multipleions. The difference in this sequence is that the for-

loop iterations as in the loop bodkfi]=A*X[i-2] ).

warding relationship between store Z and load W has

Because our SAT tracks only the most recent instance obeen previously established in the FSP.

4
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Time 1 FSP SAT SQ D$ spcT | Timel FSP  SAT SQ D$  SPCT
WX Yz 1817 AB AB WX Yz 333 AB AB
L[ | [a7fas] | Jz[¥] | [ofo] [ [ ] [z] | [a3fs4] [ Jz|¥] | [5]6] [¥[2]
decw:1dB  PCqeFSPW=0 | [ [af decw:ldA  PCheFSPWZ | 8]
renZ:st6,B  SAT[Z]=SSN=18 ! 5! renZ:st8, A SAT[Z]=SSN=34 ! 4!
Time 2 WX Yz 1817 AB AB | Time2 WX YZ 3433 AB AB
L[ | [arfas] | Jz|¥] | [ofo] [ [ ] [z] | [ssfea] [ Qz|¥] | [5]6] [Y[2]
renW:ldB  SSNySATIO] | 8] Al renW: Id A, SSNySATIZI=34| [a|B]
exc Z:st6, B update SQ !6 5! exc Z:st8, A update SQ !8 4!
Time 3 WX Yz 1817 AB AB | Time3 WX YZ 3433 AB AB
L [ | [arfas] | Bzfv] | [s]o] [¥[ | [z] | [s3fea] | Qzfv| | [5]4] [Y]¥]
excW:IdB,0 SSNy,.=0, read D§ fBJA excW:IdA 8 readsQ44] | fa]B
cmtY:st5 A update D$, SPCT !6!5 cmtY:st4, B update D$, SPCT !8!4
Time 4 WX YZ 18 AB AB | Time4d WX YZ 34 AB AB
[ [ ] [arfsg] | |z [5]6] [¥]z] [z] | [s3fz4] | |2 [8]4] [z]Y]
cmtZ:st6,B update DS, SPCT | B emtZ:st8,A update D, SPCT | A
E E
Time 5 WX Yz o AB AB | Times6 WX YZ o AB AB
[z] | [a7[28] | | [5[6] [v]z] [z] | [a3[z4] | | [8]4] [z]Y]
rexW:1d B, 0 re-exec, violation I cmtW:ld A, 8 re-exec, OK I
flush, train FSP[W]=SPCT[B] | |

Figure 3. Working example. LEFT: forwarding predictor training sequenédGHT: speculative forwarding sequence.

1. Store Z renames,enqueues on the SQ, is assigned 3.3. Delay Index Predictor

the next SSN (34) and notes it in its SAT entry.  The goal of delay index prediction is to reduce mis-
Load W decodes,accesses the FSP, and this time forwarding flushes by delaying execution of difficult-to-
finds that it may forward from store Z. forward-predict loads. For each difficult load, we pre-
2. Store Z executesand writes its address/value (A/8) dict a delay index (SSh}); the load does not execute
to the SQ.Load W renames accesses the SAT yntil the corresponding Store commits. An ideal predic-
using its predicted forwarding store PC (Z) and finds tor delays as few loads as possible for as few cycles as
that its likely forwarding SQ entry corresponds to possible to avoid mis-forwarding.
SSN 34 (SSh,q = 34). Our delay predictor consists of one table. Thelay
3. Store Y commits and updates the D$, SPCT, and Distance Predictor (DDP)naps each static load to the
SAT. Load W calculates its address (A) and exe-  distance (in dynamic stores) between the load and the
cutes. It indexes the SQ at index (34 mod 4) and closest older store that causes its mis-forwardings. The
finds a matching address (A). It therefore reads theppDP is a tagged, PC-indexed table. Each entry has a
value from the same SQ entry (8). valid bit, a partial tag, a saturating counter. and two dis-
4. Store Z commits updating the D$ (8) and SPCT tance fields. The counter determiriga load should be
(2) atits address (A). ~ delayed. The distance fields are represented using
5. Load W re-executes discovers that the value it [ﬂogz(SQSQEMbltS because any de|ay distance |arger
originally forwarded (8) is correct, and commits.  than the size of the SQ is effectively no delay at all. As
Similarity to Store Sets. The organization of our described below, the second distance field facilitates
predictor is similar to (and inspired by) a Store Sets pre-delay distance down-training.
dictor, which predicts store-load pair dependences for At decode, each load accesses the DDP to obtain a
load-scheduling purposes [3]. Our FSP is the analog ofdelay distance By At rename, SSJ, is computed as
Store Set ID Table (SSIT), but whereas the FSP mapshe SSN of the most recently renamed store (S9N
load PCs to store PCs directly, the SSIT maps both loadninus the distance field (). If the load has no DDP
and store PCs to Store Set IDs. Our SAT is the analog O%ntry or the entry’s counter is below threshold, the pre-
the Last Fetched Store Table (LFST). dicted SSN)y is 0, indicating no effective delay.
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DDP training. Like the FSP, the DDP is trained by X[3] commits. This example also motivates why we
all committing loads and supports both positive and use distances (rather than the SAT) to compute delays.
negative training. Generally speaking, we learn delay onThe SAT can identify only the most recent instance of
a wrong forwarding prediction and unlearn it on correct each store; a distance can identify any store instance.
forwardings (if we can correctly predict the forwarding Similarity to Exclusive Collision Predictor. Our
behavior of a load, there is no need to delay it until the delay distance predictor is similar to the Exclusive Col-
forwarding store commits). Note, a wrong forwarding lision predictor [22] and both are used for load schedul-
prediction does not necessarily mean a mis-forwarding.ing. The Exclusive Collision predictor was used with an
A load with an incorrect forwarding prediction can still associative SQ to delay all loads until some (potentially
obtain its correct value from the cache. This happensempty) range of older stores hasecutedOur predictor
when the actual forwarding store has already commit-is used with an indexed SQ to delawly difficult loads
ted, either naturally or via a forced delay. until some range of older stores ltasnmitted

On any wrong forwarding prediction, the DDP
increments the delay counter and learns a delay distancd-4. Summary
equal to the difference of SGN; and the SSN of the Table 1 summarizes actions for loads and stores at
actual forwarding store (retrieved from the SSBF). To each pipeline stage for three SQ configurations. The
conservatively preserve information about previousfirst uses an associative SQ, Store Sets scheduling, and
delays, a delay distance is learned only if it is smaller SVW-filtered load re-execution (whose actions are in
than the current known delay. On a correct forwarding bold). This configuration represents research proposals
prediction, the DDP decrements the delay counter. Tothat preceded this paper.
allow unlearning of delay distances (in addition to The second configuration is our baseline. It uses an
binary delay-or-not decisions), the predictor entry usesassociative SQ, but a Store Sets scheduler reformulated
a second “future” distance field. Both distance fields areusing PCs/SSNs rather than SSIDs/INUMs (equivalent
trained in parallel. Every 8 load instances the “current” of SQ indices). The important differences between the
field is set to the future field and the future field is reset. original Store Sets and our formulation are: (1) Store
This mechanism allows loads to avoids monotonic con-Sets can represent a arbitrary number of store depen-
vergence to overly conservative delay distances. dences per load whereas we are limited by FSP associa-

The cooperation between forwarding and delay tivity; (2) Store Sets serializes the execution of all
index prediction is illustrated by the example that for- dynamic loads and stores within a set whereas we only
warding prediction itself cannot handle, not-most-recentserialize a load with a single dynamic store.
forwarding (e.g., as in the loag[i]=A*X[i-2] ). We The final configuration is our proposed speculative
have already seen that the forwarding predictor will not indexed SQ. The modifications over a configuration that
learn to forward load=5 . However, because the for- uses re-execution and reformulated Store Sets are lim-
warding prediction will always be wrong, the delay pre- ited. The notable differences are the indexed SQ access
dictor will properly learn to delay the load until store at execute (of course) and the delay machinery.

Table 1. Pipeline action diagram.Store-load forwarding relevant actions (for both loads and stores) for three store queue
designs. Id.A and st.A refer to the addresses of the load and store, respectively.

DECODE RENAME WAIT UNTIL EXECUTE SVW / RE-EXECUTE / COMMIT

Associative store queue with original Store Sets schedulin@dkid filtered load re-execution

1d.SSID=SSIT[Id.PC] (ld.INUM=LFST[ld.SSID] | SQ[ld.INUM] issue |search SQ[ld.A] SSBF[Id.A] > 1d.SVW ? re-execute
1d.SVW = forward? |re-execute, violation? flush
St.SSN : SSN¢ SSIT[Id.PC, SPCTI[ld.A]]=Id.SSID

st.SSID=SSIT[st.PC] |LFST[st.SSID]=INUM++ SSBF[st.A]=SSN,¢++, SPCT[st.A]=st.PC
Associative store queue withformulated Store Sets schedulingnd SVV “filtered load re-execution

Id.PCsyg=FSP[ld.PC] Id.SSNy,¢=SATI[ld.PCfydl SQ[ld.SSNyydl issuelsearch SQ[ld.A] SSBF[Id.A] > Id.SVW ? re-execute
Id.SVW = forward? |re-execute, violation? fluskecover SAT
St.SSN : SSNnt FSP[ld.PC]=SPCT[ld.A]

SAT[st.PC]=SSNgnt++ SSBF[st.A]=SSNy++, SPCTI[st.A]=st.PC
Indexed store queuewith reformulated Store Sets scheduling and SVW-filtered load re-execution

Id.PGyg=FSP[ld.PC] 1d.SSNyw=SAT[Id.PGyydl SQ[ld.SSNydl issue|index SQ[Id.SSN,,q] | SSBF([ld.A] > Id.SVW ? re-execute
1d.Dg,=DDP[Id.PC]  |Id.SSNy.=SSNw—Id.Dy, |10.SSNyy < SSNyyt [10-SVW = forward? | re-execute, violation? flush, recover SAT
4 Noy=SSNeric-Daty Y St.SSN : SSNy; [1d-PCpug != SPCT[Id.A]
FSP[Id.PC]=SPCT[ld.A]
|d.SSNyq = SSBF[ld.A] ?

DDPJld.PCIMin=SSN;n—SSBF[ld.A]

SAT[St.PC]=SSNy++ SSBF[st.A]=SSNmit+, SPCT[st.A]=st.PC
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4. Experimental Evaluation SAT repair) and 2 write ports (1 for each of 2 stores

An ideal SQ has access bandwidth and latency equafénamed per cycle). It supports 4 checkpoints.
to those of the data cache. Our speculative indexed SQ The sizes of these structures can be calculated from
will never outperform an ideal associative SQ in terms the SSN width (2B), the SQ size, and the SAT size (256-
of IPC. Our goal is to show our indexed SQ performs entries). The SSBF and SAT hold SSNs, so their capaci-
nearly as well as an ideal associative SQ—and competilies are 4KB and 512B, respectively. Each DDP entry
tively with a realistic (slow) associative SQ—while holds two delay distances (each bounded by SQ size)
maintaining the implementation advantages we and a 4-bit counter, for a total of 2B. Assuming 1B tags,

described earlier. a 4K-entry DDP represents 1'2KB of storage. Because
the SAT is untagged and is indexed using only 8-bits
4.1. Methodology (1B), the FSP and SPCT may represent store PCs using

We evaluate the indexed SQ using timing simulation only 1B. Assuming 1B tags and 4-bit counters for the
on the SPEC2000 (our simulator cannot properly exe-FSP, these would be 10KB and 2KB, respectively.
cute fma3d and MediaBench programs. We run the o .
SPEC programs on their training inputs using 2% peri-4'2' Quant_ltauve Store_ _Que_ue Comparison
odic sampling with 8% cache/branch predictor warm- _ 10 quantify the scalability differences between asso-
up. Each sample contains 10M instructions. We run theciative and indexed SQ designs, we use CACTI 3.2

MediaBench programs unsampled on their provided[18l—modified to simulate memories of arbitrary con-
inputs. All programs execute to completion. figurations—to calculate the load latencies and energies

General processor configuration.Our simulator of SQs with different capacities and load bandwidths.

executes the Alpha AXP user-level ISA. We model a For all calculations, we use 90nm technology, a 1.1V
dynamically scheduled processor with a 512-entry reor-SUPPly voltage, and a 3GHz clock. Although the abso-
der buffer, 300-entry issue queue, 128-entry load queue',Ute numbers may not be accurate, we expect the trends
and 64-entry store queue. The pipeline has 19 stages (¥ be representative. .
fetch, 2 decode, 2 rename, 2 schedule, 3 register read, 1 Configuration. To avoid aliasing, SQs hold physical
execute, 1 writeback, 1 SVW., 3 re-execute, and 1 com-addresses. To sidestep the latency of address translation
mit). Our processor can fetch up to 12 instructions perin SQ access, modern designs use the analog of a virtu-
cycle, past a single taken branch. It predicts branche&!ly-indexed/physically-tagged cache and access the SQ
using a 4K-entry hybrid gShare/bimodal predictor, a CAM only with the untranslated Ipvy-order a_ddress bits
2K-entry, 4-way set-associative BTB, and a 32-entry (|:e., the page oﬁset). The remaining physical address
RAS. Our processor can decode, rename, issue, anfits are recorded in the SQ RAM and are used to per-
commit 8 instructions per cycle. The issue mix is 6 inte- form a cache-style full address match on the selected
ger, 4 FP, 1 branch, 2 store, and 2 loads per cycle. Th&ntry after TLB access. This approach has the side ben-
load scheduler is address-less and uses a 1K-entry modfit of reducing CAM width and latency. We assume
ified Store Sets predictor. The scheduler models selecthat 64-bit data, 40-bit physical addresses, and 4KB
tive replay [8] for instructions dependent on loads that Pages. For the associative SQ the partial-address CAM
miss in the cache or that forward from an SQ whoseiS 12 bits wide and the RAM is 96 bits wide (64 data +
access latency is longer than cache latency. The primary8 rémaining address + 4 size/ready). Indexed SQ RAM
caches are 64KB, 2-way set-associative, and 3-cycleééntries are 108 bits wide; there is no indexed SQ CAM.
access. The L2 is 1MB, 8-way set-associative, and 10 Latency. Table 2 shows the load latencies for SQs,
cycle access. The TLBs are 128-entry, 4-way set—assoda_ta cache banks, and a TLB. All SQs_have one indexed
ciative. Memory latency is 150 cycles. The L2 and Write port for store execution gnd one .|ndexed read port
memory buses are 16B wide, the latter is clocked at 1/4for store commit. An associative SQ with two load ports
processor frequency. (for an 8-way issue, 512-entry re-order buffer proces-
SQ relevant structures.Our processor uses SVW- SOr) has a load latency of 1.38ns (5 cycles at 3GHz); this
filtered re-execution to verify speculation associated®Stimate does not include the age logic. A comparable
with both memory ordering and forwarding (our base- indexed SQ has a latency of only 0.60ns (2 cycles).
line processor uses it to verify only memory ordering). Indexed SQ latency can be reduced by banking; the age
The SVW mechanism uses 16-bit SSNs, a 2K-entry 1-logic makes banking an associative SQ more difficult.
byte granularity SSBF with 2 read and 2 write ports, and _ 1he most significant aspect of SQ latency is its rela-
a similarly configured SPCT. The FSP and DDP are 4K_t|onsh|p to data cache latency. Our Iatency estimate fora
entry 2-way set-associative with 2 read and 2 write 2-Way interleaved 64KB data cache (i.e., for a single
ports.Indexed forwarding requires a larger FSR4K-  32KB bank) is 1.00ns (3 cycles). To maximize perfor-
entry rather than 1K) because it requires all in-flight Mance, processors speculatively schedule load-depen-
store-load dependences, not only ones that execute ouflent instructions assuming data cache access latency for
of-order. The SAT has 256 entries. The SAT has 6 readn€ load. If SQ latency is equal to or less than cache
ports (2 for each of two loads renamed per cycle, 1 forlatency—as for the indexed SQ—the scheduler can

each of 2 stores renamed per cycle to allow logging for@ssume data cache latency for SQ-forwarded loads
(which are the minority), effectively ignoring the for-
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1 Load Port 2 Load Ports Fwd Fwd+Dly
Assoc.| Index| Assoc.| Index mis- mis-

SQ [16-entry 0.98 (3)| 0.51(2] 1.01(3] 0.53(p %load [forward [forward | %load |avg. delay
32-entry 1.12(4) 053(3 1.14(4) 0.55@) forward | /1000 | /1000 | delay | cycles
64-entry 1.34(4)| 057 (2] 1.38 (5)| 0.60 (2 adpcm.d 0.0l 0. 0.0 00 76
128-entry 151(3) 067(@ 155(9 0.71) [adpcm.e 0.0 0. 0. op 6l8
256-entry 1.73(6) 070(F 1.79(4) 0.75R) [epice 8.6 0. 0.2 ojt 3115

D$ | 8KB, 2-way 0.84 (3) 0.92 (3) epic.d 19.2 0. 0.1 op 11o

bank[32KB, 2-way 1.00 (3) 1.15 (4) g721.d 7.4 0. 0.0 0p 197

[TLB [32-entry, 4-way 0.64 (2) 0.70 (3) | g72le 10.9 1] 0.0 oB a4

Table 2. Store queue latencies in 90nm process gs.d 26.9 34 01 65 299
and equivalent cycles on a 3GHz processor. gsm.d 3.0 14 0.4 2p 98
gsm.e 7.2 2.2 0.1 38 230

ward/no-forward distinction. If SQ latency is longer [ipeg.d 1.7 0. ok 20 355

than cache latency—as for a large associative SQ—thgpege 14.3 1] 1p 0B 242

scheduler has several options. First, it could treat alfmesam 43.4 1. 0.0 0l6 3do

loads as having SQ latency. Because loads that do nffesa.o 30.2 0.1 0P ol 250

forward dominate, this approach is not attractive. Alterdmesat 359 12. 08 5)3 746

natively, it could speculatively treat all loads as havingfmpegz.d 25 7 0. 0.0 ok 1d7

cache latency, then handle forwarding like a cache mianpegz,e 4.8 0.4 0.2 oL 31ls
and replay dependent instructions. This approach incuvﬁ,egwit,d 8.4 2 ok 16 ds

expensive replays and suffers as windows grow and foffpegwite 9. 3] 05 1B 23

warding becomes more prevalent. Finally, the schedulqiﬁediT\,;J 17, T, 0.1 5.1 32_3

could hybridize these two approaches and predict (e.glbzipz 11, 1.4 04 18 3609

using the store-load pair predictor) whether a given loadcrafty 7.0 14 0.8 ih 313

will forward. This form of “forwarding prediction” was [eon.c 284 5. 0.8 sk 210

implicitly used in a segmented SQ [13], we believe thaffeonk 21.0 7 06 sh d7

our use of it in the context of a conventional SQ is novelJeonr 249 71 0.6 95 233

We model both the second and third approaches. 9ap oG 04 o1 05 Xl )
Energy. Although not shown in the table, our energy [gcc 9.9 0d 07 a7 2110

calculations show that for 64 entries and 2 load portsfgzip 19.4 1.4 0.2 16 344

the per-access energy of an indexed SQ is about 30¥act 26 1.3 ok 1h o3

lower than that of an associative SQ. The difference i§parser 14.0 ik 0p 18 cds

this “low” because the energy-hungry CAM is only 12- [nerd 10.4 04 oL 0l 19

bits wide. Regardless, a 30% advantage combined witfper s 121 0.9 0.0 0B 1112

more natural support for energy-saving organization$wolt 9.7 2.4 1. 1p 1d5

like interleaving suggests the potential for significantfyortex 24.5 3.7 02 28 2d4

SQ energy savings. However, our experiments indicatfprp 84 1.4 05 1b I [3

that associative SQ energy accounts for an average $fprr 18. 0d R} 06 647

1.5% of total processor energy for our configuration. Sqmt,avg 13, 1.8 0.3 1,5L 53,?

although converting the SQ from associative to indexeqammp 13, 3, 0P 10 a4

saves SQ energy, total energy consumption largely mirgappiu 131 1.4 0.0 ol K [3

rors execution time. For this reason, we do not furthefaps; 6.9 0] 05 2b 2346

guantify the energy impact of our technique. art 2.0 0. 0. 0b z20d4

. .. equake 4.2 0. 0.4 0.8 795

4.3. Forwarding and Delay Prediction facerec 50 0&' o0 ol s
Accurate SQ index prediction is at the heart of ourfgaigel 1.7 0K | 0.1 oB 5114
proposed design. To avoid introducing performancqgiucas 0.0 0. 0. op 340
degradation, the mis-forwarding rate must be low. mesa 254 3. 0.1 5Jo 944
The first (shaded) column of Table 3 shows the loaqmgrid 5.5 1.] 0. 03] 194
forwarding rate (percentage of dynamic loads that for{sixirack 33.9 9.1 2.4 88 392
ward). Across all benchmark suites, the load forwardingswim 3.2 0.1 0.0 o 1094

rate is 12.9%, although individual benchmarksrgex wupwise 18.4 2.1 0.9 11J8 549

mesasixtrack gs mpeg2 forward at much higher rates. [FP.avg 11. 9 0.3 3.2 100.

The complement of the forwarding rate (i.e., the per{Allavg 12.3 1.8 0.34 2.34 533

centage of loads that rightfully get their values from the™ Taple 3. Store queue index prediction diagnostics.
cache) is the lower-bound accuracy for our forwarding | oad forwarding rates, raw prediction accuracy, and
index predictor. Because we match addresses prior t0 jmproved accuracy using delay prediction.
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Figure 4. Performance.Execution times relative to an ideal, 3-cycle associative store queue with oracle load scheduling.

forwarding, we cannot possibly mis-forward theseand oracle scheduling. The IPC of this idealized config-
loads. Fortunately, our predictor is much more accurateiration is printed above the benchmark name. Because
than this lower bound. we use relative execution times, shorter bars are better
Table 3 also shows dynamic load mis-forwardings(as they represent lower overhead versus our idealized
per 1000 loads. Th&wd configuration represents raw baseline). When reporting average relative performance,
accuracy with no delay prediction. Tavd+Dly con-  we use the geometric mean.
figuration adds delay prediction, and also lists the per- Associative-3(first bar from left) is an associative
centage of loads delayed and the average number 8Q with ideal 3-cycle latency, and our formulation of
delay cycles per delayed load. Without delays, our for-Store Sets scheduling. Load scheduling overheads cause
warding predictor only mis-forwards on average 1.8only a 1.4% slowdown over idealized load scheduling.
times per 1000 loads. Put another way, it induces pipeThe overhead is less than 1% for most benchmarks, and
line flushes less frequently than control speculationonly sixtrackandgsm.ehave more than a 5% overhead.
driven by a typical branch predictor. Adding delay pre- Both suffer from one of the limitations of our particular
diction reduces the mis-forwarding rate to 0.3 loads peiStore Sets formulation: the inability to represent more
1000 at the cost of on average delaying about 2% ofhan 2 (FSP associativity) store dependences per load.
dynamic loads. More importantly, our delay predictor However, our experiments show that in many other
substantially reduces flushing for benchmarks with highcases our formulation slightly outperforms the original.
mis-forwarding rates (e.geon sixtrack and mesa.tex- Associative-§second bar) is an associative SQ with

gen. For example, formesa.texgermis-forwarding
drops from 12.3 to 0.8 per 1000 loads.

4.4. Performance

a 5-cycle access latency and (modified) Store Sets
scheduling. Two sub-configurations are shown as a
stack. In the first (striped, top portion of the stack), the
scheduler optimistically assumes a 3-cycle load latency;

Figure 4 shows execution times of five different SQ forwarding triggers dependent instruction replays. In the

config_urations rel_ative to an ideal baseline: a 64-entrysecond, the scheduler uses Store Sets to predict which
associative SQ with 3-cycle access (same as data cachigads will forward and avoid some dependent-instruc-

9
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tion replays. The performance penalty (over a 3-cycle .
SQ with realistic scheduling) of a 5-cycle design is 1.7% o ' FSP/DDP Capacity
on average. Forwarding prediction reduces this penalty=
to about 1.3%, but it actually decreases performance fors 1.10
programs with individual loads that forward with low
but non-zero frequencies (e.gpr.routd. In the ensuing
discussion, we compare to the 5-cycle associative SQz
that exploits forwarding prediction.
Indexed-3-fwdis our new 3-cycle indexed SQ with- ;55
out delay prediction. Even without delay, indexed for- .
warding incurs an average slowdown of only 5% relative o - . FSP Associativity
to a 3-cycle SQ with realistic scheduling, and it is only £
3.6% slower than a 5-cycle associative SQ. However,§ 1.10
without delay prediction, some programs with signifi-
cant rates of not-most-recent forwarding (ergesa.tex- e
gen bzip2 ammp equake and wupwise)exhibit large 105
slowdowns. }IIIL
Delay prediction helps address the not-most-recent gl J}I[L , _
forwarding pathology. Indexed-3-fwd+dly is our pegd mesat mpegzd eanc vortec VPrT st equke wupwise

512

1.05

Rel a@e Execut

jpeg.d mesat mpeg2.d ‘eonc  vortex vprr  apsi  equake wupwise

10l

Relative Execut

o 0

indexed SQ with delay prediction. With delay, indexed _ , ;5 3 o
forwarding is 3.3% slower than an idealized 3-cycle SQ.E DDP training ratio
and only 0.6% slower than the 5-cycle associative SQ.5 | 3

The performance advantage of the 5-cycle associatives
SQ is concentrated in 16 benchmarks. The indexed S
outperforms the associative SQ on 19 of 47 benchmarksg
On 12 others—generally programs with little forward- 2 E[[[ﬂ

ing—the two have similar performance. Despite the & 1.00 D T pegp T eonc — Vortex VBT —— aps  equake wupwise
addition of delay, the 5-cycle associative SQ remains— Figure 5. Performance sensitivity. Normalized
superior for programs with high not-most-recent for-  runtime for the store queue with different forwarding
warding rates (e.g.bzip2 mesa.texgen, equake, wup- and delay prediction configurations. In all graphs, the
wise. This is not surprising because delay prediction ~ Plack baris our default configuration.

does not completely eliminate the performance penalt e
of not—most—repcent)q‘orwarding; it sri)mply conver'?s they 5. Perforr_ne_tnce Sensitivity _

flushing penalty to a less severe delay penalty. This is Any prediction-based scheme has a wide range of
sufficient to narrow the performance gap, often substanPossible predictor conflguratlo.n.s.. In this subsection, we
tially. It is typically not sufficient to overcome the natu- explore the performance sensitivity of our proposed SQ

ral advantage of associative search, which can actuall{ three predictor design dimensions. We perform this
perform not-most-recent forwarding. analysis using three benchmarks from each suite.

In addition to reducing performance overhead for FSP/DDP capacity. The top graph of Figure 5

not-most-recent forwarding, delay prediction also helpsShows the effect of varying the capacities of 2-way set-
with FSP conflict misses. This is the effectéonand ~ associative FSPs and DDPs (in conjunction), from 512
vortex Without delay, loads that forward from a large t© 8K entries by factors of two. Our default 4K-entry

number of static stores thrash in the FSP and flush fre¢onfiguration is in black. As expected, smaller tables

quently. With delay, these loads still thrash, but they aréfade some performance in exchange for reduced imple-
also delayed long enough to avoid flushing. mentation cost. Even a 1K-entry FSP often performs as

Interestingly, delay prediction actualjegradeshe well as a much Iarge_r table; our default 4K-entry FSP is
performance of 6 of the 47 benchmarks. Programs likéCtually over-provisioned for most programs. Perfor-
jpeg.decode gcc gzip and mesa prefer to forward ~Mmance begins to degrade at 512 FSP entries, especially
aggressively with no delay. This result helps to put delayfo" Programs with large static load-store dependence
prediction in proper context. Delay is not a universally footprints - (unlike scheduling, indexed forwarding
beneficial mechanism. It targets and suppresses the peigduiresall in-flight store-load dependences to be repre-
formance loss associated with certain indexed accesi€nted). Thenesa.texgeresult displays an anomaly in
pathologies like not-most-recent forwarding and FSPOUr mechanism. Up to 2K-entries, the benefits of
conflicts. In the process, it introduces delays into well-increased FSP capacity dominate. However, after 2K-
behaved indexed forwarding. On average, the beneficidintries increased DDP capacity leads to over-delaying.

outweighs the harmful, yielding an overall performance = FSP associativity. The middle graph in Figure 5
improvement. shows the effects of varying associativity for a 4K-entry

FSP; DDP associativity is fixed at 2. The bars corre-
spond to associativities of 1, our default 2, 4, 8, and 32.

1.0

1.05

10
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Reducing associativity to 1 increases overheads dramatogether and accessing them in a pipelined fashion. The
ically. Many benchmarks have at least a few loads thatdisadvantage of this scheme is that it introduces vari-
forward from more than one static store. In contrast, fewability in load latency, complicating the scheduler.
benchmarks benefit from higher associativities. Roth [15] and Baugh and Zilles [1] propose to scale
Note, although we vary FSP associativity, we main- SQ size and bandwidth by dividing the store-commit/
tain the invariant of accessing the SQ at most once pestore-load forwarding functions of a conventional SQ
load. Breaking this invariant has the potential to over- between two queues. A large commit SQ contains all
come our not-most-recent forwarding shortcoming, butstores but is not associatively searched. Forwarding is
will also complicate our design and partially negate the implemented using a small associative SQ that contains
transition from associative search to indexed lookup. only stores whose previous instances forwarded to loads
DDP training ratio. The final graph in Figure 5 and is accessed only by loads whose previous instances
measures sensitivity to the DDP training ratio. In the required forwarding. Re-execution or some other form
first bar from the left, delay is trained with a posi- of high-bandwidth verification detects loads and stores
tive:negative ratio of 0:1; in other words it is never that were falsely excluded from the forwarding SQ and
trained and effectively degenerates to the “rakid trains the store-membership/load-access predictor. This
configuration. Successive ratios are 1:1 (delay and naesign generally performs well, but suffers on programs
delay are equally weighted), 2:1, our default 4:1, 8:1 where a large fraction of dynamic stores forward to
and 1:0 (delay is never “un-learned”). Although many future loads. For these, a small set-associative “best-
benchmarks are insensitive to the DDP training ratio, effort” forwarding structure can off-load some of the
some benchmarks (e.geg.decodeprefer lower ratios  forwarding from the associative SQ.
(i.e., to flush rather than delay) while others (eepn.q These techniques improve SQ scalability but main-
prefer high ratios (i.e., to delay rather than flush). Fortain the basic associative search functionality. Our
most benchmarks, our default 4:1 ratio provides a gooddesign is the first of which we are aware that completely

compromise between over- and under- delay. eliminates associative search in an age-ordered SQ.
Address-indexed SQsA more inherently scalable
5. Related Work alternative to an age-ordered SQ design is an address-

We have already discussed work related to loadindexed design as proposed by Torres et al. [20]. In
scheduling [3, 7, 9, 12, 22] and filtered re-execution [2, addltlc_m to replacing fuIIy—assoma@lve search with set-
6, 16] in our background section and in the exposition associative search, an address-indexed SQ supports
of our technique_ In this section we focus on CompetinglnteI"eaVIng that matches that of the data cache. How-
designs for scalable SQs. ever, there are many disadvantages to an address-

Age-ordered SQs.One class of designs maintains indexed SQ [17]: it suffers from address conflicts, its
the age-ordered SQ structure but uses partitioning, fil-contents are difficult to maintain precisely in the pres-
tering, and hierarchy to improve its bandwidth and ence of control and data mis-speculations, and it does
capacity scalability. Sethumadhavan et al. [17] scale SQnot naturally support multiple in-flight versions of the
access bandwidth by guarding the SQ with a Bloom fil- same address (although these can be supported using
ter that conservatively encodes the addresses of in-flighexplicit age tags). To be effective, address-indexed for-
stores. Only loads whose addresses hit in this filterwarding must be treated as speculative and backed by a
access the SQ. This scheme is generally effective, bugonventional forwarding mechanism [15, 20].
suffers from several drawbacks. Specifically, the Bloom  Multiscalar's ARB [4] is an address-indexed for-
filter is managed speculatively and out-of-order mean-warding and disambiguation structure. It does not suffer
ing that its contents are difficult to maintain precisely from some of the traditional limitations of address-
and that it is vulnerable to false positives from loads thatindexed designs because it does not track all in-flight
match younger (i.e., non forwarding) stores. It also addsstores, but rather only the “live-out” stores of each of a
to the load execution critical path. fixed number of processing elements (PEs). In an ARB,

Srinivasan et al. [19] app]y a similar strategy to a the number of in ﬂlght versions of each address |S||m-
two-level SQ. A fast first-level SQ holds the most recent ited to the number of PEs; so these can be explicitly
stores while a larger, second-level SQ holds all in-flight tracked. ARB stores are also non-speculative with
stores. A Bloom Filter eliminates most searches to therespect to their PE, making ARB recovery an infrequent
second-level SQ. A more recent version of their designeévent amenable to a simple low performance implemen-
eliminates the associative function of the second-leveltation. ) )

SQ by allowing old stores to speculatively spill to the ~ Speculative memory renaming.The FSP and SAT
data cache and implementing speculative forwardingessentially implement speculative memory renaming.
through the cache [5]. Just like a register alias table (RAT, register rename

Park et al. [13] scale SQ access bandwidth using amap) directly connects regisper consumers to their in-
store-load dependence predictor (like ours) modified toflight producers, the SAT directly connects memory
track all in-flight dependences. They scale SQ capacityconsumers (loads) to their in-flight producers (stores).

(and bandwidth) by chaining multiple SQ segments But where a RAT makes these connections non-specula-
tively using register names, the SAT makes them specu-

11
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latively using the store-load dependence information inReferences

the FSP. Previous implementations of memory renam-y;
ing [10, 14, 21] focused on reducing execution latency
for a subset of forwarding loads by collapsing DEF- 2]
store-load-USE chains to DEF-USE chains, conven-
tional associative forwarding is used for the rest. We use
memory renaming not to collapse dependence—chains[,?’]
but rather to eliminate associative searchafbloads. ul
6. Conclusions

Traditional, associatively-searched structures for[®!
tracking in-flight memory operations are a timing bot-
tleneck for future large-window processor designs. An
associative store queue (SQ) for a processor with a 51201
entry instruction window may have significantly higher
latency than the first-level data cache, reducing perfor-
mance and increasing the complexity of a deeply pipe-
lined design.

This work introduces an SQ design that implements
store-load forwarding without associative search. For[g
each load the processor predicts a single SQ entry to
query, transforming SQ lookup into a cache-style direct-
indexed lookup. To support indexed access, we intro-[10]
duce two predictors. A PC-based forwarding predictor
inspired Store Sets [3] identifies likely forwarding SQ
entries. A distance based delay predictor inspired by the11]
Exclusive Collision Predictor [22] delays difficult-to-
predict loads until the stores they are likely to forward
from have committed.

Detailed timing simulations of the SPEC2000 and
MediaBench benchmarks shows that this design yields a
3.3% average slowdown relative to an idealized associat!3]
tive SQ (same access latency as data cache) and only a
0.6% slowdown relative to realistic associative SQ [14]
(longer access latency than data cache). The indexed SQ
beats the realistic associative SQ on 19 of 47 programs;s;
and matches it on 12 others. The indexed SQ also has
non-performance implementation advantages. It unifies[m]
(and simplifies) load-scheduling and store-load for-
warding and avoids forwarding-related instruction
replays. The combination of our indexed SQ with a pre- [17]
vious design that uses filtered load re-execution to elim-
inate load queue search [2] yields a more scalable
system for managing in-flight memory operations: one|ig;
that uses no associative search whatsoever.

Although our predictor is reasonably accurate, it [19]
does have several limitations, most notably an inability
to forward from not-most-recent store instances. Future
work should explore alternative predictor organizations[zo]
and approaches, potentially with an aim to overcome
these limitations. For example, path-based information
might increase both forwarding prediction and delay [21)
prediction accuracy and robustness.

(7]
(8]

(12]
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