
 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

Scalable Store-Load Forwarding via Store Queue Index Prediction

Tingting Sha, Milo M.K. Martin, Amir Roth
Department of Computer and Information Science, University of Pennsylvania

{shatingt,milom,am

ts
s
en-
t

it
so-
e

, it
or-
e-
-
e-

le
st
tic
c-
the
-
ri-
es
f

h
t-
e
-
d

m-
tor,

es
-
to
of
Abstract
Conventional processors use a fully-associativ

store queue (SQ) to implement store-load forwardin
Associative search latency does not scale well to capa
ities and bandwidths required by wide-issue, large win
dow processors. In this work, we improve SQ scalabili
by implementing store-load forwarding using specula
tive indexed access rather than associative search. O
design uses prediction to identify the single SQ ent
from which each dynamic load is most likely to forward
When a load executes, it either obtains its value from t
predicted SQ entry (if the address of the entry match
the load address) or the data cache (otherwise). A fo
warding mis-prediction—detected by pre-commit fi
tered load re-execution—results in a pipeline flush. S
index prediction is generally accurate, but for som
loads it cannot reliably identify a single SQ entry. T
avoid flushes on these difficult loads while keeping t
single-SQ-access-per-load invariant, a second predict
delays difficult loads until all but the youngest of the
“candidate” stores have committed. Our predictors ar
inspired by store-load dependence predictors for loa
scheduling (Store Sets and the Exclusive Collision Pr
dictor) and unify load scheduling and forwarding.

Experiments on the SPEC2000 and MediaBen
benchmarks show that on an 8-way issue processor w
a 512-entry reorder buffer, our technique perform
within 3.3% of an ideal associative SQ (same latency
the data cache) and either matches or exceeds the p
formance of a realistic associative SQ (slower than da
cache) on 31 of 47 programs.

1. Introduction
Store-load forwarding is a critical aspect of dynam

cally scheduled execution. Conventional processo
implement store-load forwarding by buffering the
addresses and data values of all in-flight stores in
age-ordered store queue (SQ). A load accesses the data
cache and in parallel associatively searches the SQ
older stores with matching addresses. The load obta
its value from the youngest such store (if any) or from
the data cache, as illustrated in Figure 1(a).

Associative structures can be made fast, but often
the cost of substantial additional energy, area, and
design effort. Furthermore, these implementation disa
vantages compound super-linearly—especially f
orderedassociative structures like the SQ—as structu
size or bandwidth scales up. As SQ access is on the lo
execution critical path, fully-associative search of
large SQ can result in load latency that is longer tha
data cache access latency, which in turn complica
scheduling and introduces replay overheads [8].
1

l-
Q
e
o
he
or
ir
e
d
e-

ch
ith
s
as
er-
ta

i-
rs

an

for
ins

at
/or
d-
or
re
ad
a
n

tes

We introduce a scalable SQ design that implemen
store-load forwarding without associative search. A
each dynamic load is renamed, we use store-load dep
dence prediction [3, 9, 22] to predict the single in-fligh
store from which that load is most likely to forward. As
illustrated in Figure 1(b), when a load executes,
accesses the SQ only at this predicted index, not as
ciatively. If the entry contains a matching address, th
load reads the corresponding data value. Otherwise
uses the value from the cache. Because indexed f
warding is speculative, we use filtered in-order load r
execution prior to commit [2, 16] to catch mis-predic
tions (which trigger pipeline flushes) and train the stor
load dependence predictor.

To predict forwarding SQ entries, we use a two-tab
predictor that is an adaptation of Store Sets [3]. The fir
table maps each dynamic load to a small set of sta
stores from which it has forwarded in the past; the se
ond table maps each of these static stores (PCs) to
SQ index of its youngest in-flight instance. The predic
tor selects the youngest of these indices. Our expe
ments show that this predictor mis-forwards (i.e., miss
an actual forwarding and incurs a flush) only 0.18% o
dynamic loads (less than 2 in 1000).

For a few loads—especially in large windows whic
support more (and more complex) forwarding pa
terns—the forwarding predictor cannot reliably choos
a single candidate forwarding store. To minimize flush
ing while maintaining the single-SQ-access-per-loa
simplification, we delay difficult loads until all but the
youngest of their candidate forwarding stores have co
mitted. We use a distance-based dependence predic
similar to the Exclusive Collision predictor [22], to map
each static load to a maximum number of older stor
that can safely be in-flight for the load to forward cor
rectly. This delay mechanism reduces mis-forwarding
0.03% at the cost of delaying the execution of 2.3%
loads by an average of 53 cycles each.
ir}@cis.upenn.edu

e
g.
c-
-

ty
-
ur
ry
.

he
es
r- Figure 1. Store queues:(a) associative, (b) indexed.

ad
dr

ag
e

lo
gi

c
SQ

 h
ea

d

SQ
 lo

ad

CAM

SQ

ad
dr

da
ta

=

de
co

de
r

(a) (b)

SQ

RAM

D$

addr

D$

predicted SQ entryaddr

da
ta

RAM

data data

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

ts
ia-

he
a-

ry
n-

ted
o
ute
es

ds.

e-
ith

lly
um-
re
e

n a
to

is
d
ly if
its
a
t

y
g
gh

7]

e

s
e

a-
e-
ot
n
e
he
to

d
].

se
es
the
e
ns
We are not the first researchers to propose alterna-
tive SQ designs to scale store-load forwarding to large
window sizes and wider issue [1, 5, 13, 15, 17, 20]. Our
approach differs from these previous proposals as it
completely eliminates associative search while main-
taining the simplicity of a non-segmented, age-ordered
SQ organization. Our design unifies load scheduling
and store-load forwarding in a single mechanism and
transfers the complexity of that mechanism from the
latency critical execution core to the more latency toler-
ant front end. When combined with recent proposals for
non-associative load queues [2, 16], our design yields
an in-flight data memory system that is completely free
of associative search and eliminates one of the structural
barriers to wide-issue large-window processors.

2. Baseline Microarchitecture: Background
This section describes four aspects of out-of-order

load and store execution in modern processors: (1) com-
mitting stores to the data cache in program order, (2)
forwarding values to loads from the youngest older in-
flight stores that wrote to the address, (3) detecting
memory-ordering violations by determining when a
load executed too early relative to its producing store,
and (4) reducing the frequency of memory-ordering vio-
lations. The first two functions are performed by a store
queue (SQ), the third by a load queue (LQ), and the
fourth by a load scheduling predictor. Although this
paper focuses on the SQ, our design uses and dovetails
with previously proposed scheduling and ordering tech-
niques. This section reviews these techniques, focusing
on those we incorporate into our microarchitecture.

Store commit and store-load forwarding.Conven-
tional processors implement in-order store commit and
store load forwarding with an age-ordered SQ, an array
that contains one entry for each in-flight store in pro-
gram (age) order. Each SQ entry encodes the store’s
physical address, data size, ready bits, and value. The
SQ supports three operations: indexed writes for store
execution, indexed reads for store commit, and fully-
associative search-and-read operations for load execu-
tion. If a load forwards (i.e., receives its value from an
in-flight store via the SQ), it must do so from the young-
est in-flight store older than itself that has a matching
address. To quickly find all matching store addresses
(there may be several), the address portion of the SQ is
implemented as a CAM (content addressable memory).
A priority encoding age logic follows the CAM and
selects the youngest matching store that is also older
than the load. The associative search logic (the CAM
and priority encoder) is the slow and non-scalable com-
ponent of the SQ, and is the one our design eliminates.

Detecting memory-ordering violations. A mem-
ory-ordering violation occurs when a load executed too
early (i.e., before the store upon which the load depends
executed). Modern processors detect memory-ordering
violations using a load queue (LQ). Similar to an SQ, a
traditional LQ is a CAM that contains load addresses in

program order. When a load executes, it writes i
address into the LQ. When a store executes, it assoc
tively searches the LQ for younger loads that read t
address it wrote. A match indicates an ordering viol
tion and triggers a pipeline flush.

To avoid expensive associative search, memo
ordering violations can alternatively be detected by i
order load re-execution prior to commit [2, 6]. This
approach detects a violation when a load’s re-execu
value does not equal its (initial) executed value. T
reduce data cache traffic, only those loads that exec
in the presence of older stores with unknown address
are re-executed. For SPECint, this is about 9% of loa

Store Vulnerability Window (SVW) [16] further
reduces the re-execution rate. With SVW, a load re-ex
cutes only if it issued in the presence an older store w
an unknown addressand that store wrote to the load’s
address. SVW assigns each store a monotonica
increasing sequence number (the Store Sequence N
ber or SSN). An address-indexed table called the Sto
Sequence Bloom Filter (SSBF) tracks the SSN of th
most recent committed store to a given address. Whe
load executes, the SSN of the youngest older store
which it is not vulnerable—the SSN of the forwarding
store or the SSN of the youngest committed store—
recorded in its LQ entry. Prior to re-execution, the loa
uses its address to probe the SSBF. It re-executes on
the SSN in the SSBF entry is greater than the SSN in
own LQ entry, i.e., if its address collides with that of
store to which it is vulnerable. With SVW, the SPECin
re-execution rate falls to 1%.

Reducing memory-ordering violations. Modern
processors reduce memory-ordering violations b
recording the identities of offending loads and delayin
the execution of future instances of those loads enou
to avoid violations (and ideally without introducing
unnecessary delay). Simple store-blind predictors [
delay suspect loads untilall older stores execute. More
sophisticated store-load pair predictors [3, 9, 22] forc
the load to wait for a particular store to execute.

In a processor with a traditional LQ, which detect
memory-ordering violations during store execution, th
PCs of both the store and the load involved in the viol
tion are readily available to train a store-load pair pr
dictor. However, pre-commit re-execution does n
automatically identify which store caused the violatio
[2]. This limitation is overcome by the Store PC Tabl
(SPCT), a small, address-indexed table (similar to t
SSBF) that holds the PC of the last committed store
write to each address [16].

Baseline microarchitecture.Our baseline microar-
chitecture uses SVW-filtered load re-execution [16] an
a load scheduling predictor inspired by Store Sets [3
This sophisticated predictor allows our baseline to u
address-less scheduling [11] and avoid splitting stor
into address and data operations. Figure 2 shows
load-store unit of this microarchitecture. Notice th
absence of the LQ address CAM and the modificatio
to support SVW-filtered re-execution in gray.
2

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

in
o
g
ral-
e

e-
the
e
he
l-

ect

s
ot
ire
-

ns
n-
re
A
-

g
r-
Figure 2. Baseline load-store unit. This design
enforces memory ordering using SVW-filtered re-
execution (note the absence of an LQ address CAM)
using three sets of structures. The load re-execution
port and LQ value fields (light gray) implement basic
re-execution. The LQ SVW fields and SSBF (medium
gray) implement the SVW filter. The SPCT (dark
gray) helps train store-load pair predictors.

PC

svw

address data control

SSBF

>

!=

SPCT

mark load for store sets

mark store for store sets

val
addrLQ

D$

addr CAM

LD

ST

addr
SQ val

SSNcmt

scheduler

regfile

ROB

flush

bypass

3. Indexed Store-Load Forwarding

en

-
is
r
’s
sed
l-

e
ult
e

-

e

tly
ive
r-

so-
s
sin-
2-

st
d

ch
Our design improves SQ scalability by replacin
fully-associative search traditionally used to impleme
store-load forwarding with indexed (i.e., direct) SQ
access. As illustrated in Figure 1(b), this approac
reduces the load-forwarding critical path by replacin
the address CAM and age logic with a simple decode

Indexed SQ access uses two predictors. To avo
search, we use aforwarding index predictorto predict
the SQ index from which a load is most likely to for-
ward. No forwarding predictor is perfectly accurate. T
reduce the frequency of forwarding mis-predictions, w
use adelay index predictorto delay the execution of
troublesome loads until all non-predicted stores likely
forward to this load have committed, allowing the loa
to obtain the correct value from either the cache or t
single predicted SQ entry. Before describing our speci
design of these two predictors (in Section 3.2 an
Section 3.3, respectively), we first describe the mech
nism that uses the predictions to perform store-load fo
warding and load scheduling.

3.1. Indexed Forwarding Mechanism
The processor generates a forwarding index pred

tion and a delay index prediction for each dynamic loa
during the decode/rename pipeline stages. Both pred
tions either identify a particular in-flight store instanc
or predict that no in-flight store instance is relevant. Th
load executes when (1) its input registers are ready,
the store corresponding to its forwarding index hasexe-
cuted(to enforce the likely memory dependence), an
(3) the store corresponding to its delay index hascom-
mitted (to force ambiguous but potentially value-pro
3

g
nt

h
g
r.
id

o
e

to
d
he
fic
d
a-
r-

ic-
d
ic-
e
e

(2)

d

-

ducing stores to commit to the cache). Notice that
addition to coordinating forwarding, use of these tw
predictions subsume traditional load scheduling. Durin
load execution, the load accesses the data cache in pa
lel with reading the single SQ entry determined by th
predicted forwarding index. If (1) the address of the pr
dicted SQ entry matches the load address and (2)
load width is less than or equal to the store width, th
load uses the data value from the SQ. Otherwise, t
load receives its value from the cache. We use SVW-fi
tered load re-execution (described in Section 2) to det
forwarding mis-predictions (which trigger pipeline
flushes) and train both predictors.

SQ indices and SSNs.Indexed SQ access require
an SQ index (position). However, SQ indices do n
contain information about committed stores and requ
somewhat complex wrap-around logic. To simplify sev
eral prediction, scheduling, and re-execution functio
and to uniquely identify recent store instances (both i
flight andcommitted), we name stores using their Sto
Sequence Numbers (SSNs) as defined by SVW [16].
given store is in-flight if its SSN is greater than the glo
bal counter SSNcmt. The SQ index of an in-flight store is
derived from the low-order bits of its SSN (assumin
SQ size is a power of two). As such, we refer to the fo
warding index as SSNfwd and the delay index as SSNdly.
Wrap-around ofN-bit SSNs is handled by draining the
pipeline and clearing all structures that hold SSNs wh
a store with SSN=0 is renamed (once every 2N stores).

3.2. Forwarding Index Predictor
The goal of a forwarding index predictor is to deter

mine the store instance (identified by its SSN) that
most likely to forward to a given load instance. In ou
scheme, forwarding takes place only if the load
address matches that of the predicted store. Only mis
forwarding instances (i.e., loads that should obtain va
ues from an in-flight store that we fail to predict) ar
considered incorrect. Predicted forwardings that res
in the load properly obtaining its value from the cach
are still considered correct. We call the first case amis-
forwarding and the second anon-forwarding. By toler-
ating non-forwarding, we relax the precision require
ments of the forwarding predictor.

Our forwarding predictor consists of two tables. Th
Forwarding Store Predictor (FSP)maps each load PC
to a small set of store PCs from which the load recen
forwarded. The FSP is a PC-indexed, set-associat
table. Each entry contains a valid bit, a partial tag, a pa
tial store PC, and a short saturating counter. The as
ciativity of the FSP determines both how many load
can share a set and how many store dependences a
gle load can represent. Our experiments show that
way set-associativity is adequate. TheStore Alias Table
(SAT) maps each store PC to the SSN of the younge
in-flight instance of that store. The SAT is untagged an
each entry contains only a single SSN.

Chained FSP/SAT access is used to attach to ea
dynamic load the SSN of the most likely-to-forward

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

n
-

w
ds

a
P
d).
tic
of
g

nd
es
e-
ich
ts.
(1)
y
h
or

e
),

ta
g

e
at

r-

c-
).

e

).

e-

e
a
e
ts
ry.
e
uc-
r-
as
dynamic store (this is the load’s SSNfwd). The decode
stage uses the load PC to access the FSP and produce a
small set of store PCs (limited by FSP associativity).
The rename stage accesses the SAT (in parallel for each
of the store PCs returned by the FSP) to generate a set
of SSNs. The youngest (largest) of these SSNs is chosen
as the load’s predicted SSNfwd.

SAT update. The SSN of each store is inserted into
the SAT at rename. Like a register alias table (RAT), the
SAT is repaired on pipeline flushes, although a SAT
requires repair only for performance, not for correct-
ness. The mechanisms for repairing the SAT—logging
over-written entries or checkpointing—are analogs of
the mechanisms that repair a RAT.

FSP training. The FSP is trained at load commit
with the help of the SPCT and SSBF [16]. The SPCT
maps each (partial) address to the PC of the last store to
write to the address, allowing each committing load to
determine the PC of the store it should have forwarded
from, if any. The SSBF maps each (partial) address to
the SSN of the last store to write to it, allowing the load
to determine the distance (in dynamic stores) to this for-
warding store. Distance information is useful because a
distance greater than the size of the SQ means that no
forwarding could have actually occurred. Both the
SSBF and SPCT are implemented at a granularity of 1
byte, with wide stores making multiple writes and wide
loads making multiple reads. This organization is
needed to capture forwarding of multiple data sizes, and
can be implemented efficiently by banking each struc-
ture 8-ways (assuming a maximum data size of 8 bytes).

If making predictions for non-forwarding loads had
no negative effects, the FSP could be trained (up) only
by mis-forwarding loads. However, a load must wait
until its predicted forwarding store has executed, even in
non-forwarding cases. If a load forwards from a store 1
out of 1000 times, it is better not to learn (or to unlearn)
the forwarding behavior and incur a single flush rather
than to unnecessarily delay the other 999 instances. For
this reason, the FSP is potentially trained (either posi-
tively or negatively) by every committing load. The
counter in each entry weighs positive training against
negative (our default ratio is 8:1).

Generally speaking, we learn store-load depen-
dences on correct forwarding (to reinforce dependences
known to be useful) and on mis-forwardings in which
we fail to predict not only the forwarding index, but also
the forwarding store PC (to create new, potentially-use-
ful dependences). We unlearn dependences when the
load and most recent store to its address are dynamically
far enough apart (i.e., further than SQ size) that no
actual forwarding can take place (to unlearn entries that
result in too many non-forwardings). We also unlearn
dependences if we successfully predict the forwarding
store’s PC, but not its dynamic instance. This happens
when a load forwards from what is not the most recent
instance of a store (e.g., a load forwards across multiple
loop iterations as in the loop bodyX[i]=A*X[i-2]).
Because our SAT tracks only the most recent instance of

each store, our mechanism cannot capture thisnot-
most-recent forwardingbehavior. All the same, there is
no point in delaying the load on a store instance o
which it is known not to depend (e.g., the load for itera
tion i=5 depends on storeX[3] , but there is no point
in delaying it on storeX[4] even though that is the only
store the SAT can predict). Section 3.3 describes ho
the delay predictor prevents pipeline flushes for loa
that exhibit not-most-recent forwarding behavior.

Example operation. Figure 3 shows our indexed
SQ in operation for a 2-entry FSP, a 2-entry SAT, and
4-entry SQ. For simplicity of the example, each FS
entry has a single store (i.e., the FSP is direct-mappe
The main participants are dynamic instances of sta
stores Y and Z and static load W. The left hand side
the figure shows a predictor training sequence involvin
one execution of these three instructions; the right ha
side shows a successful indexed forwarding that us
the dependence information learned during the first ex
cution. Each sequence consists of five snapshots wh
show the relevant events in the lives of the participan
Each snapshot shows the contents of five structures:
the FSP, (2) the SAT, (3) an SQ which is marked b
head and tail pointers (thick lines) and in which eac
entry contains a store PC (Y or Z), a data address (A
B), a value (single digit), and an implicit SSN (doubl
digit number above the entry), (4) the data cache (D$
and (5) the SPCT, both of which are indexed by da
address (A or B). We first examine the trainin
sequence:
1. Store Z renames;enqueues on the SQ, receives th

next sequential SSN (18) and notes in the SAT th
the youngest instance of store Z has SSN 18.Load
W decodesand accesses the FSP, but finds no fo
warding store.

2. Store Z (SSN 18) executesand writes its address/
value (B/6) to the SQ.Load W renamesbut has no
store PC with which to access the SAT.

3. Store Y (older than Z) commits and writes its
value (5) and PC (Y) to the D$ and SPCT, respe
tively, in the slots corresponding to its address (A
Load W calculates its address (B) and executes.
Because it was not predicted to forward, it reads th
value (0) from the D$. This is a mis-forwarding; it
should actually read its value from store Z (SSN 18

4. Store Z commitsand writes its value (6) and PC (Z)
to the D$ and SPCT, respectively, in the slots corr
sponding to its address (B).

5. Load W re-executesand discovers a discrepancy
between the value it originally loaded (0) and th
correct value it re-loaded (6). The load triggers
flush, learns the identity of the store it should hav
forwarded from (Z) by accessing the SPCT using i
address (B), and enters that store into its FSP ent
The sequence on the right of the figure follows th

same events in a future execution of these three instr
tions. The difference in this sequence is that the fo
warding relationship between store Z and load W h
been previously established in the FSP.
4

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

-
-
-

c-
as

the
he

a
s-

ing
er
s
es

n a

e-
1. Store Z renames,enqueues on the SQ, is assigned
the next SSN (34) and notes it in its SAT entry.
Load W decodes,accesses the FSP, and this time
finds that it may forward from store Z.

2. Store Z executesand writes its address/value (A/8)
to the SQ.Load W renames, accesses the SAT
using its predicted forwarding store PC (Z) and finds
that its likely forwarding SQ entry corresponds to
SSN 34 (SSNfwd = 34).

3. Store Y commits and updates the D$, SPCT, and
SAT. Load W calculates its address (A) and exe-
cutes. It indexes the SQ at index (34 mod 4) and
finds a matching address (A). It therefore reads the
value from the same SQ entry (8).

4. Store Z commits, updating the D$ (8) and SPCT
(Z) at its address (A).

5. Load W re-executes, discovers that the value it
originally forwarded (8) is correct, and commits.
Similarity to Store Sets. The organization of our

predictor is similar to (and inspired by) a Store Sets pre-
dictor, which predicts store-load pair dependences for
load-scheduling purposes [3]. Our FSP is the analog of
Store Set ID Table (SSIT), but whereas the FSP maps
load PCs to store PCs directly, the SSIT maps both load
and store PCs to Store Set IDs. Our SAT is the analog of
the Last Fetched Store Table (LFST).

3.3. Delay Index Predictor
The goal of delay index prediction is to reduce mis

forwarding flushes by delaying execution of difficult-to
forward-predict loads. For each difficult load, we pre
dict a delay index (SSNdly); the load does not execute
until the corresponding store commits. An ideal predi
tor delays as few loads as possible for as few cycles
possible to avoid mis-forwarding.

Our delay predictor consists of one table. TheDelay
Distance Predictor (DDP)maps each static load to the
distance (in dynamic stores) between the load and
closest older store that causes its mis-forwardings. T
DDP is a tagged, PC-indexed table. Each entry has
valid bit, a partial tag, a saturating counter. and two di
tance fields. The counter determinesif a load should be
delayed. The distance fields are represented us
log2(SQ.size) bits because any delay distance larg
than the size of the SQ is effectively no delay at all. A
described below, the second distance field facilitat
delay distance down-training.

At decode, each load accesses the DDP to obtai
delay distance Ddly. At rename, SSNdly is computed as
the SSN of the most recently renamed store (SSNren)
minus the distance field (Ddly). If the load has no DDP
entry or the entry’s counter is below threshold, the pr
dicted SSNdly is 0, indicating no effective delay.
Figure 3. Working example. LEFT: forwarding predictor training sequence.RIGHT: speculative forwarding sequence.

update D$, SPCT

ren W: ld B

update SQexc Z: st 6, B

00

BA

YZ

A

5

1718

1817

ZYXW

ren Z: st 6, B

BA

FSP SAT D$ SPCTSQ

00

BA

YZ

AB

56

1718

1817

ZYXW

dec W: ld B

BA

05

BA

YZ

AB

56

1817

ZYXW

Y

BA18 17

cmt Y: st 5, A

SSNfwd=SAT[∅]

PCfwd=FSP[W]=∅
SAT[Z]=SSN=18

exc W: ld B, 0 SSNfwd=∅, read D$

cmt Z: st 6, B
65

BA

B

6

18

1817

ZYXW

ZY

BA

update D$, SPCT

rex W: ld B, 0
65

BA

1817

ZY

Z

XW

ZY

BA

re-exec, violation
flush, train FSP[W]=SPCT[B]

65

BA

YZ

B

4

3334ZYXW

ren Z: st 8, A

ZY

BA

FSP SAT D$ SPCTSQ

SAT[Z]=SSN=34

update SQexc Z: st 8, A

65

BA

YZ

BA

48

3334ZYXW

dec W: ld A

ZY
BA

PCfwd=FSP[W]=Z

45

BA

YZ

BA

48

3334ZYXW

YY

BA

cmt Y: st 4, B update D$, SPCT

exc W: ld A, 8 read SQ[34⊗4]

cmt Z: st 8, A
48

BA

A

8

34

3433

ZY

Z

XW

YZ

BA

update D$, SPCT

cmt W: ld A, 8
48

BA

3433

ZY

Z

XW

YZ

BA

re-exec, OK

Time 1

Time 2

Time 3

Time 4

Time 5

Time 1

Time 2

Time 3

Time 4

Time 6

Z Z

3433Z

ren W: ld A; SSNfwd=SAT[Z]=34

3433Z

3433Z
5

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

e
ys.
of
.

l-
l-
n
lly

at
he
and
in
als

an
ted
nt
e

re
en-
cia-
ll
nly

e
at
im-
ess
DDP training. Like the FSP, the DDP is trained by
all committing loads and supports both positive and
negative training. Generally speaking, we learn delay on
a wrong forwarding prediction and unlearn it on correct
forwardings (if we can correctly predict the forwarding
behavior of a load, there is no need to delay it until the
forwarding store commits). Note, a wrong forwarding
prediction does not necessarily mean a mis-forwarding.
A load with an incorrect forwarding prediction can still
obtain its correct value from the cache. This happens
when the actual forwarding store has already commit-
ted, either naturally or via a forced delay.

On any wrong forwarding prediction, the DDP
increments the delay counter and learns a delay distance
equal to the difference of SSNcmt and the SSN of the
actual forwarding store (retrieved from the SSBF). To
conservatively preserve information about previous
delays, a delay distance is learned only if it is smaller
than the current known delay. On a correct forwarding
prediction, the DDP decrements the delay counter. To
allow unlearning of delay distances (in addition to
binary delay-or-not decisions), the predictor entry uses
a second “future” distance field. Both distance fields are
trained in parallel. Every 8 load instances the “current”
field is set to the future field and the future field is reset.
This mechanism allows loads to avoids monotonic con-
vergence to overly conservative delay distances.

The cooperation between forwarding and delay
index prediction is illustrated by the example that for-
warding prediction itself cannot handle, not-most-recent
forwarding (e.g., as in the loopX[i]=A*X[i-2]). We
have already seen that the forwarding predictor will not
learn to forward loadi=5 . However, because the for-
warding prediction will always be wrong, the delay pre-
dictor will properly learn to delay the load until store

X[3] commits. This example also motivates why w
use distances (rather than the SAT) to compute dela
The SAT can identify only the most recent instance
each store; a distance can identify any store instance

Similarity to Exclusive Collision Predictor. Our
delay distance predictor is similar to the Exclusive Co
lision predictor [22] and both are used for load schedu
ing. The Exclusive Collision predictor was used with a
associative SQ to delay all loads until some (potentia
empty) range of older stores hasexecuted. Our predictor
is used with an indexed SQ to delayonly difficult loads
until some range of older stores hascommitted.

3.4. Summary
Table 1 summarizes actions for loads and stores

each pipeline stage for three SQ configurations. T
first uses an associative SQ, Store Sets scheduling,
SVW-filtered load re-execution (whose actions are
bold). This configuration represents research propos
that preceded this paper.

The second configuration is our baseline. It uses
associative SQ, but a Store Sets scheduler reformula
using PCs/SSNs rather than SSIDs/INUMs (equivale
of SQ indices). The important differences between th
original Store Sets and our formulation are: (1) Sto
Sets can represent a arbitrary number of store dep
dences per load whereas we are limited by FSP asso
tivity; (2) Store Sets serializes the execution of a
dynamic loads and stores within a set whereas we o
serialize a load with a single dynamic store.

The final configuration is our proposed speculativ
indexed SQ. The modifications over a configuration th
uses re-execution and reformulated Store Sets are l
ited. The notable differences are the indexed SQ acc
at execute (of course) and the delay machinery.

Table 1. Pipeline action diagram.Store-load forwarding relevant actions (for both loads and stores) for three store queue

designs. ld.A and st.A refer to the addresses of the load and store, respectively.

DECODE RENAME WAIT UNTIL EXECUTE SVW / RE-EXECUTE / COMMIT

Associative store queue with original Store Sets scheduling andSVW-filtered load re-execution

ld.SSID=SSIT[ld.PC] ld.INUM=LFST[ld.SSID] SQ[ld.INUM] issue search SQ[ld.A]
ld.SVW = forward?

st.SSN : SSNcmt

SSBF[ld.A] > ld.SVW ? re-execute
re-execute, violation? flush

SSIT[ld.PC, SPCT[ld.A]]=ld.SSID

st.SSID=SSIT[st.PC] LFST[st.SSID]=INUM++ SSBF[st.A]=SSNcmt++, SPCT[st.A]=st.PC

Associative store queue withreformulated Store Sets scheduling and SVW-filtered load re-execution

ld.PCfwd=FSP[ld.PC] ld.SSNfwd=SAT[ld.PCfwd] SQ[ld.SSNfwd] issue search SQ[ld.A]
ld.SVW = forward?

st.SSN : SSNcmt

SSBF[ld.A] > ld.SVW ? re-execute
re-execute, violation? flush,recover SAT

FSP[ld.PC]=SPCT[ld.A]

SAT[st.PC]=SSNren++ SSBF[st.A]=SSNcmt++, SPCT[st.A]=st.PC

Indexed store queuewith reformulated Store Sets scheduling and SVW-filtered load re-execution

ld.PCfwd=FSP[ld.PC]

ld.Ddly=DDP[ld.PC]
ld.SSNfwd=SAT[ld.PCfwd]

ld.SSNdly=SSNren–ld.Ddly

SQ[ld.SSNfwd] issue

ld.SSNdly ≤ SSNcmt

index SQ[ld.SSNfwd]
ld.SVW = forward?

st.SSN : SSNcmt

SSBF[ld.A] > ld.SVW ? re-execute
re-execute, violation? flush, recover SAT
ld.PCfwd != SPCT[ld.A]

FSP[ld.PC]=SPCT[ld.A]
ld.SSNfwd != SSBF[ld.A] ?

DDP[ld.PC]min=SSNcmt–SSBF[ld.A]

SAT[st.PC]=SSNren++ SSBF[st.A]=SSNcmt++, SPCT[st.A]=st.PC
6

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

s

om
6-
ci-
ry
ze)
s,
se
ts
ing
e

o-
.2
-
es
s.
V
o-
ds

l
tion
rtu-
SQ
ts
ss
r-

ed
en-
e
B
M

+
M
.

s,
ed
rt
s
s-
is
le
).
ge

a-
r a
le
r-
en-
for

he
an
ds
4. Experimental Evaluation
An ideal SQ has access bandwidth and latency equal

to those of the data cache. Our speculative indexed SQ
will never outperform an ideal associative SQ in terms
of IPC. Our goal is to show our indexed SQ performs
nearly as well as an ideal associative SQ—and competi-
tively with a realistic (slow) associative SQ—while
maintaining the implementation advantages we
described earlier.

4.1. Methodology
We evaluate the indexed SQ using timing simulation

on the SPEC2000 (our simulator cannot properly exe-
cute fma3d) and MediaBench programs. We run the
SPEC programs on their training inputs using 2% peri-
odic sampling with 8% cache/branch predictor warm-
up. Each sample contains 10M instructions. We run the
MediaBench programs unsampled on their provided
inputs. All programs execute to completion.

General processor configuration.Our simulator
executes the Alpha AXP user-level ISA. We model a
dynamically scheduled processor with a 512-entry reor-
der buffer, 300-entry issue queue, 128-entry load queue,
and 64-entry store queue. The pipeline has 19 stages (3
fetch, 2 decode, 2 rename, 2 schedule, 3 register read, 1
execute, 1 writeback, 1 SVW, 3 re-execute, and 1 com-
mit). Our processor can fetch up to 12 instructions per
cycle, past a single taken branch. It predicts branches
using a 4K-entry hybrid gShare/bimodal predictor, a
2K-entry, 4-way set-associative BTB, and a 32-entry
RAS. Our processor can decode, rename, issue, and
commit 8 instructions per cycle. The issue mix is 6 inte-
ger, 4 FP, 1 branch, 2 store, and 2 loads per cycle. The
load scheduler is address-less and uses a 1K-entry mod-
ified Store Sets predictor. The scheduler models selec-
tive replay [8] for instructions dependent on loads that
miss in the cache or that forward from an SQ whose
access latency is longer than cache latency. The primary
caches are 64KB, 2-way set-associative, and 3-cycle
access. The L2 is 1MB, 8-way set-associative, and 10
cycle access. The TLBs are 128-entry, 4-way set-asso-
ciative. Memory latency is 150 cycles. The L2 and
memory buses are 16B wide, the latter is clocked at 1/4
processor frequency.

SQ relevant structures.Our processor uses SVW-
filtered re-execution to verify speculation associated
with both memory ordering and forwarding (our base-
line processor uses it to verify only memory ordering).
The SVW mechanism uses 16-bit SSNs, a 2K-entry 1-
byte granularity SSBF with 2 read and 2 write ports, and
a similarly configured SPCT. The FSP and DDP are 4K-
entry 2-way set-associative with 2 read and 2 write
ports.Indexed forwarding requires a larger FSP(4K-
entry rather than 1K) because it requires all in-flight
store-load dependences, not only ones that execute out-
of-order. The SAT has 256 entries. The SAT has 6 read
ports (2 for each of two loads renamed per cycle, 1 for
each of 2 stores renamed per cycle to allow logging for

SAT repair) and 2 write ports (1 for each of 2 store
renamed per cycle). It supports 4 checkpoints.

The sizes of these structures can be calculated fr
the SSN width (2B), the SQ size, and the SAT size (25
entries). The SSBF and SAT hold SSNs, so their capa
ties are 4KB and 512B, respectively. Each DDP ent
holds two delay distances (each bounded by SQ si
and a 4-bit counter, for a total of 2B. Assuming 1B tag
a 4K-entry DDP represents 12KB of storage. Becau
the SAT is untagged and is indexed using only 8-bi
(1B), the FSP and SPCT may represent store PCs us
only 1B. Assuming 1B tags and 4-bit counters for th
FSP, these would be 10KB and 2KB, respectively.

4.2. Quantitative Store Queue Comparison
To quantify the scalability differences between ass

ciative and indexed SQ designs, we use CACTI 3
[18]—modified to simulate memories of arbitrary con
figurations—to calculate the load latencies and energi
of SQs with different capacities and load bandwidth
For all calculations, we use 90nm technology, a 1.1
supply voltage, and a 3GHz clock. Although the abs
lute numbers may not be accurate, we expect the tren
to be representative.

Configuration. To avoid aliasing, SQs hold physica
addresses. To sidestep the latency of address transla
in SQ access, modern designs use the analog of a vi
ally-indexed/physically-tagged cache and access the
CAM only with the untranslated low-order address bi
(i.e., the page offset). The remaining physical addre
bits are recorded in the SQ RAM and are used to pe
form a cache-style full address match on the select
entry after TLB access. This approach has the side b
efit of reducing CAM width and latency. We assum
that 64-bit data, 40-bit physical addresses, and 4K
pages. For the associative SQ the partial-address CA
is 12 bits wide and the RAM is 96 bits wide (64 data
28 remaining address + 4 size/ready). Indexed SQ RA
entries are 108 bits wide; there is no indexed SQ CAM

Latency. Table 2 shows the load latencies for SQ
data cache banks, and a TLB. All SQs have one index
write port for store execution and one indexed read po
for store commit. An associative SQ with two load port
(for an 8-way issue, 512-entry re-order buffer proce
sor) has a load latency of 1.38ns (5 cycles at 3GHz); th
estimate does not include the age logic. A comparab
indexed SQ has a latency of only 0.60ns (2 cycles
Indexed SQ latency can be reduced by banking; the a
logic makes banking an associative SQ more difficult.

The most significant aspect of SQ latency is its rel
tionship to data cache latency. Our latency estimate fo
2-way interleaved 64KB data cache (i.e., for a sing
32KB bank) is 1.00ns (3 cycles). To maximize perfo
mance, processors speculatively schedule load-dep
dent instructions assuming data cache access latency
the load. If SQ latency is equal to or less than cac
latency—as for the indexed SQ—the scheduler c
assume data cache latency for SQ-forwarded loa
(which are the minority), effectively ignoring the for-
7

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005
ward/no-forward distinction. If SQ latency is longe
than cache latency—as for a large associative SQ—
scheduler has several options. First, it could treat
loads as having SQ latency. Because loads that do
forward dominate, this approach is not attractive. Alte
natively, it could speculatively treat all loads as havin
cache latency, then handle forwarding like a cache m
and replay dependent instructions. This approach inc
expensive replays and suffers as windows grow and f
warding becomes more prevalent. Finally, the schedu
could hybridize these two approaches and predict (e.
using the store-load pair predictor) whether a given lo
will forward. This form of “forwarding prediction” was
implicitly used in a segmented SQ [13], we believe th
our use of it in the context of a conventional SQ is nove
We model both the second and third approaches.

Energy. Although not shown in the table, our energ
calculations show that for 64 entries and 2 load por
the per-access energy of an indexed SQ is about 3
lower than that of an associative SQ. The difference
this “low” because the energy-hungry CAM is only 12
bits wide. Regardless, a 30% advantage combined w
more natural support for energy-saving organizatio
like interleaving suggests the potential for significan
SQ energy savings. However, our experiments indica
that associative SQ energy accounts for an average
1.5% of total processor energy for our configuration. S
although converting the SQ from associative to index
saves SQ energy, total energy consumption largely m
rors execution time. For this reason, we do not furth
quantify the energy impact of our technique.

4.3. Forwarding and Delay Prediction
Accurate SQ index prediction is at the heart of ou

proposed design. To avoid introducing performanc
degradation, the mis-forwarding rate must be low.

The first (shaded) column of Table 3 shows the loa
forwarding rate (percentage of dynamic loads that fo
ward). Across all benchmark suites, the load forwardin
rate is 12.9%, although individual benchmarks (vortex,
mesa, sixtrack, gs, mpeg2) forward at much higher rates.
The complement of the forwarding rate (i.e., the pe
centage of loads that rightfully get their values from th
cache) is the lower-bound accuracy for our forwardin
index predictor. Because we match addresses prior
1 Load Port 2 Load Ports

Assoc. Index Assoc. Index
SQ 16-entry 0.98 (3) 0.51 (2) 1.01 (3) 0.53 (2)

32-entry 1.12 (4) 0.53 (2) 1.14 (4) 0.55 (2)
64-entry 1.34 (4) 0.57 (2) 1.38 (5) 0.60 (2)
128-entry 1.51 (5) 0.67 (2) 1.55 (5) 0.71 (3)
256-entry 1.73 (6) 0.70 (3) 1.79 (6) 0.75 (3)

D$
bank

8KB, 2-way 0.84 (3) 0.92 (3)
32KB, 2-way 1.00 (3) 1.15 (4)

TLB 32-entry, 4-way 0.64 (2) 0.70 (3)

Table 2. Store queue latencies in 90nm process.ns
and equivalent cycles on a 3GHz processor.
8

r
the
all
not
r-
g
iss
urs
or-
ler
g.,
ad

at
l.

y
ts,
0%
is
-
ith
ns
t
te
of
o

ed
ir-
er

r
e

d
r-
g

r-
e
g
to

%load
forward

Fwd Fwd+Dly

mis-
forward

/1000

mis-
forward

/1000
%load
delay

avg. delay
cycles

adpcm.d 0.0 0.0 0.0 0.0 7.6
adpcm.e 0.0 0.0 0.0 0.0 6.8
epic.e 8.6 0.3 0.2 0.1 31.5
epic.d 19.2 0.1 0.1 0.2 11.0
g721.d 7.4 0.0 0.0 0.4 15.7
g721.e 10.5 1.7 0.0 0.3 6.4
gs.d 26.5 3.0 0.1 6.5 28.9
gsm.d 3.0 1.4 0.4 2.9 9.8
gsm.e 7.2 2.2 0.1 3.8 23.0
jpeg.d 1.7 0.3 0.4 2.0 35.5
jpeg.e 14.3 1.2 1.2 0.3 22.2
mesa.m 43.6 1.9 0.0 0.6 30.0
mesa.o 39.2 0.2 0.2 0.1 25.0
mesa.t 35.9 12.3 0.8 5.3 72.6
mpeg2.d 25.2 0.3 0.0 0.2 16.7
mpeg2.e 4.8 0.2 0.2 0.1 31.8
pegwit.d 8.4 2.0 0.4 1.6 19.5
pegwit.e 9.2 3.7 0.5 1.3 29.3
Media.avg 14.3 1.6 0.1 2.1 32.5
bzip2 11.7 1.9 0.4 1.3 36.9
crafty 7.0 1.2 0.3 1.1 31.3
eon.c 28.4 5.0 0.8 8.3 21.0
eon.k 21.0 7.0 0.9 8.0 19.7
eon.r 24.2 7.1 0.9 9.5 23.3
gap 9.5 0.5 0.1 0.5 41.2
gcc 9.2 0.9 0.2 2.2 21.0
gzip 19.6 1.2 0.2 1.6 32.4
mcf 2.6 1.3 0.4 1.1 95.3
parser 14.0 4.3 0.2 1.8 65.8
perl.d 10.8 0.9 0.1 0.9 15.9
perl.s 12.7 0.9 0.0 0.3 11.2
twolf 9.7 2.9 1.0 1.2 18.5
vortex 24.5 3.7 0.2 2.8 29.4
vpr.p 8.4 1.9 0.5 1.2 15.6
vpr.r 18.9 0.9 0.4 0.6 67.7
Int.avg 13.5 1.8 0.3 1.6 53.2
ammp 13.7 3.3 0.2 1.0 90.4
applu 13.1 1.6 0.0 0.4 43.5
apsi 6.9 0.7 0.5 2.2 237.6
art 2.0 0.0 0.0 0.9 406.4
equake 4.2 0.6 0.4 0.8 75.5
facerec 2.0 0.0 0.0 0.4 62.8
galgel 1.7 0.8 0.1 0.3 51.4
lucas 0.0 0.0 0.0 0.2 34.0
mesa 25.4 3.3 0.1 5.9 92.4
mgrid 5.5 1.1 0.0 0.5 19.4
sixtrack 33.9 9.5 2.4 8.8 38.2
swim 3.2 0.1 0.0 0.4 105.4
wupwise 18.4 2.5 0.9 11.8 52.9
FP.avg 11.5 1.9 0.3 3.2 100.0
All.avg 12.9 1.8 0.3 2.3 53.1

Table 3. Store queue index prediction diagnostics.
Load forwarding rates, raw prediction accuracy, and
improved accuracy using delay prediction.

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

g-
se

tter
ed

ce,

f
use
g.
nd
.
r
re
ad.
er
l.
h
ets

a
e
y;
e
ich
c-

g.
forwarding, we cannot possibly mis-forward these
loads. Fortunately, our predictor is much more accurate
than this lower bound.

Table 3 also shows dynamic load mis-forwardings
per 1000 loads. TheFwd configuration represents raw
accuracy with no delay prediction. TheFwd+Dly con-
figuration adds delay prediction, and also lists the per-
centage of loads delayed and the average number of
delay cycles per delayed load. Without delays, our for-
warding predictor only mis-forwards on average 1.8
times per 1000 loads. Put another way, it induces pipe-
line flushes less frequently than control speculation
driven by a typical branch predictor. Adding delay pre-
diction reduces the mis-forwarding rate to 0.3 loads per
1000 at the cost of on average delaying about 2% of
dynamic loads. More importantly, our delay predictor
substantially reduces flushing for benchmarks with high
mis-forwarding rates (e.g.,eon, sixtrack, andmesa.tex-
gen). For example, formesa.texgenmis-forwarding
drops from 12.3 to 0.8 per 1000 loads.

4.4. Performance
Figure 4 shows execution times of five different SQ

configurations relative to an ideal baseline: a 64-entry
associative SQ with 3-cycle access (same as data cache)

and oracle scheduling. The IPC of this idealized confi
uration is printed above the benchmark name. Becau
we use relative execution times, shorter bars are be
(as they represent lower overhead versus our idealiz
baseline). When reporting average relative performan
we use the geometric mean.

Associative-3(first bar from left) is an associative
SQ with ideal 3-cycle latency, and our formulation o
Store Sets scheduling. Load scheduling overheads ca
only a 1.4% slowdown over idealized load schedulin
The overhead is less than 1% for most benchmarks, a
only sixtrackandgsm.ehave more than a 5% overhead
Both suffer from one of the limitations of our particula
Store Sets formulation: the inability to represent mo
than 2 (FSP associativity) store dependences per lo
However, our experiments show that in many oth
cases our formulation slightly outperforms the origina

Associative-5(second bar) is an associative SQ wit
a 5-cycle access latency and (modified) Store S
scheduling. Two sub-configurations are shown as
stack. In the first (striped, top portion of the stack), th
scheduler optimistically assumes a 3-cycle load latenc
forwarding triggers dependent instruction replays. In th
second, the scheduler uses Store Sets to predict wh
loads will forward and avoid some dependent-instru
Figure 4. Performance.Execution times relative to an ideal, 3-cycle associative store queue with oracle load schedulin

1.00

1.05

1.10

1.15
associative-3 associative-5 indexed-3-fwd indexed-3-fwd+dly

1.
16

1.
42

2.42 1.51 4.56 3.13 3.31 2.99 3.72 5.63 4.97 4.00 3.46 3.47 3.07 3.47 5.59 4.38 2.58 2.57
adpcm.d adpcm.e epic.e epic.d g721.d g721.e gs.d gsm.d gsm.e jpeg.d jpeg.e mesa.m mesa.o mesa.t mpeg2.d mpeg2.e pegwit.d pegwit.e

MediaBench

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

1.00

1.05

1.10

1.15 1.
15

2.77 2.76 2.90 2.49 2.69 1.18 1.67 2.39 0.20 1.55 1.61 1.87 1.64 2.84 2.28 1.22
bzip2 crafty eon.c eon.k eon.r gap gcc gzip mcf parser perl.d perl.s twolf vortex vpr.p vpr.r

SPECint

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

1.00

1.05

1.10

1.15 1.
30

1.
33

1.
50

1.
23

1.12 2.17 1.94 0.49 1.83 2.08 4.51 3.97 3.95 4.31 4.21 1.86 3.88
ammp applu apsi art equake facerec galgel lucas mesa mgrid sixtrack swim wupwise

SPECfp

1.
00

6

1.
01

3

1.
02

3

1.
01

4

1.
01

7
/ 1

.0
23

1.
03

4
/ 1

.0
39

1.
02

8
/ 1

.0
28

1.
02

7
/ 1

.0
31

1.
05

3

1.
06

1

1.
06

8

1.
06

3

1.
02

4

1.
03

2

1.
04

0

1.
03

3

Media Int FP All

GMean

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

9

1

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005
Figure 5. Performance sensitivity. Normalized
runtime for the store queue with different forwarding
and delay prediction configurations. In all graphs, the
black bar is our default configuration.

1.00

1.05

1.10

1.15 1.
42

1.
15

0:
1

1:
1

4:
1

1:
0

jpeg.d mesa.t mpeg2.d eon.c vortex vpr.r apsi equake wupwise

DDP training ratio

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

1.00

1.05

1.10

1.15 1.
16

51
2

2k 8k

jpeg.d mesa.t mpeg2.d eon.c vortex vpr.r apsi equake wupwise

FSP/DDP Capacity

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

1.00

1.05

1.10

1.15

1 4 32

jpeg.d mesa.t mpeg2.d eon.c vortex vpr.r apsi equake wupwise

FSP Associativity

R
el

at
iv

e
E

xe
cu

ti
on

 T
im

e

le

lty
for

Q

r-
e
y
er,
-

nt

d
Q
Q.
ive
Q

ks.
-
e
ns
r-
-
n
lty4.5. Performance Sensitivity
of
e
Q
is

t-
2

s
le-
as
is
r-
ally
ce

e-

of
K-
g.

y
e-
2.
tion replays. The performance penalty (over a 3-cyc
SQ with realistic scheduling) of a 5-cycle design is 1.7%
on average. Forwarding prediction reduces this pena
to about 1.3%, but it actually decreases performance
programs with individual loads that forward with low
but non-zero frequencies (e.g.,vpr.route). In the ensuing
discussion, we compare to the 5-cycle associative S
that exploits forwarding prediction.

Indexed-3-fwdis our new 3-cycle indexed SQ with-
out delay prediction. Even without delay, indexed fo
warding incurs an average slowdown of only 5% relativ
to a 3-cycle SQ with realistic scheduling, and it is onl
3.6% slower than a 5-cycle associative SQ. Howev
without delay prediction, some programs with signifi
cant rates of not-most-recent forwarding (e.g.,mesa.tex-
gen, bzip2, ammp, equake, andwupwise)exhibit large
slowdowns.

Delay prediction helps address the not-most-rece
forwarding pathology. Indexed-3-fwd+dly is our
indexed SQ with delay prediction. With delay, indexe
forwarding is 3.3% slower than an idealized 3-cycle S
and only 0.6% slower than the 5-cycle associative S
The performance advantage of the 5-cycle associat
SQ is concentrated in 16 benchmarks. The indexed S
outperforms the associative SQ on 19 of 47 benchmar
On 12 others—generally programs with little forward
ing—the two have similar performance. Despite th
addition of delay, the 5-cycle associative SQ remai
superior for programs with high not-most-recent fo
warding rates (e.g.,bzip2, mesa.texgen, equake, wup
wise). This is not surprising because delay predictio
does not completely eliminate the performance pena
of not-most-recent forwarding; it simply converts th
flushing penalty to a less severe delay penalty. This
sufficient to narrow the performance gap, often substa
tially. It is typically not sufficient to overcome the natu
ral advantage of associative search, which can actua
perform not-most-recent forwarding.

In addition to reducing performance overhead fo
not-most-recent forwarding, delay prediction also help
with FSP conflict misses. This is the effect ineonand
vortex. Without delay, loads that forward from a large
number of static stores thrash in the FSP and flush f
quently. With delay, these loads still thrash, but they a
also delayed long enough to avoid flushing.

Interestingly, delay prediction actuallydegradesthe
performance of 6 of the 47 benchmarks. Programs li
jpeg.decode, gcc, gzip, and mesa prefer to forward
aggressively with no delay. This result helps to put dela
prediction in proper context. Delay is not a universall
beneficial mechanism. It targets and suppresses the p
formance loss associated with certain indexed acc
pathologies like not-most-recent forwarding and FS
conflicts. In the process, it introduces delays into we
behaved indexed forwarding. On average, the benefic
outweighs the harmful, yielding an overall performanc
improvement.
e
is
n-

-
lly

r
s

re-
re

ke

y
y
er-

ess
P
ll-
ial
e

Any prediction-based scheme has a wide range
possible predictor configurations. In this subsection, w
explore the performance sensitivity of our proposed S
to three predictor design dimensions. We perform th
analysis using three benchmarks from each suite.

FSP/DDP capacity. The top graph of Figure 5
shows the effect of varying the capacities of 2-way se
associative FSPs and DDPs (in conjunction), from 51
to 8K entries by factors of two. Our default 4K-entry
configuration is in black. As expected, smaller table
trade some performance in exchange for reduced imp
mentation cost. Even a 1K-entry FSP often performs
well as a much larger table; our default 4K-entry FSP
actually over-provisioned for most programs. Perfo
mance begins to degrade at 512 FSP entries, especi
for programs with large static load-store dependen
footprints (unlike scheduling, indexed forwarding
requiresall in-flight store-load dependences to be repr
sented). Themesa.texgenresult displays an anomaly in
our mechanism. Up to 2K-entries, the benefits
increased FSP capacity dominate. However, after 2
entries increased DDP capacity leads to over-delayin

FSP associativity.The middle graph in Figure 5
shows the effects of varying associativity for a 4K-entr
FSP; DDP associativity is fixed at 2. The bars corr
spond to associativities of 1, our default 2, 4, 8, and 3
0

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

he
ri-

le
it/
Q
all
is

ins
ds
ces
m
es
d
his
s

o
st-

n-
ur
ly

ss-
In
t-
orts
w-
ss-
s
s-
es

sing
r-
y a

-
er
-
ht
a
B,
-

tly
th
nt
n-

g.
e

n-
y
).
la-
u-
Reducing associativity to 1 increases overheads dramat-
ically. Many benchmarks have at least a few loads that
forward from more than one static store. In contrast, few
benchmarks benefit from higher associativities.

Note, although we vary FSP associativity, we main-
tain the invariant of accessing the SQ at most once per
load. Breaking this invariant has the potential to over-
come our not-most-recent forwarding shortcoming, but
will also complicate our design and partially negate the
transition from associative search to indexed lookup.

DDP training ratio. The final graph in Figure 5
measures sensitivity to the DDP training ratio. In the
first bar from the left, delay is trained with a posi-
tive:negative ratio of 0:1; in other words it is never
trained and effectively degenerates to the “raw”Fwd
configuration. Successive ratios are 1:1 (delay and no
delay are equally weighted), 2:1, our default 4:1, 8:1
and 1:0 (delay is never “un-learned”). Although many
benchmarks are insensitive to the DDP training ratio,
some benchmarks (e.g,jpeg.decode) prefer lower ratios
(i.e., to flush rather than delay) while others (e.g.,eon.c)
prefer high ratios (i.e., to delay rather than flush). For
most benchmarks, our default 4:1 ratio provides a good
compromise between over- and under- delay.

5. Related Work
We have already discussed work related to load

scheduling [3, 7, 9, 12, 22] and filtered re-execution [2,
6, 16] in our background section and in the exposition
of our technique. In this section we focus on competing
designs for scalable SQs.

Age-ordered SQs.One class of designs maintains
the age-ordered SQ structure but uses partitioning, fil-
tering, and hierarchy to improve its bandwidth and
capacity scalability. Sethumadhavan et al. [17] scale SQ
access bandwidth by guarding the SQ with a Bloom fil-
ter that conservatively encodes the addresses of in-flight
stores. Only loads whose addresses hit in this filter
access the SQ. This scheme is generally effective, but
suffers from several drawbacks. Specifically, the Bloom
filter is managed speculatively and out-of-order mean-
ing that its contents are difficult to maintain precisely
and that it is vulnerable to false positives from loads that
match younger (i.e., non forwarding) stores. It also adds
to the load execution critical path.

Srinivasan et al. [19] apply a similar strategy to a
two-level SQ. A fast first-level SQ holds the most recent
stores while a larger, second-level SQ holds all in-flight
stores. A Bloom Filter eliminates most searches to the
second-level SQ. A more recent version of their design
eliminates the associative function of the second-level
SQ by allowing old stores to speculatively spill to the
data cache and implementing speculative forwarding
through the cache [5].

Park et al. [13] scale SQ access bandwidth using a
store-load dependence predictor (like ours) modified to
track all in-flight dependences. They scale SQ capacity
(and bandwidth) by chaining multiple SQ segments

together and accessing them in a pipelined fashion. T
disadvantage of this scheme is that it introduces va
ability in load latency, complicating the scheduler.

Roth [15] and Baugh and Zilles [1] propose to sca
SQ size and bandwidth by dividing the store-comm
store-load forwarding functions of a conventional S
between two queues. A large commit SQ contains
stores but is not associatively searched. Forwarding
implemented using a small associative SQ that conta
only stores whose previous instances forwarded to loa
and is accessed only by loads whose previous instan
required forwarding. Re-execution or some other for
of high-bandwidth verification detects loads and stor
that were falsely excluded from the forwarding SQ an
trains the store-membership/load-access predictor. T
design generally performs well, but suffers on program
where a large fraction of dynamic stores forward t
future loads. For these, a small set-associative “be
effort” forwarding structure can off-load some of the
forwarding from the associative SQ.

These techniques improve SQ scalability but mai
tain the basic associative search functionality. O
design is the first of which we are aware that complete
eliminates associative search in an age-ordered SQ.

Address-indexed SQs.A more inherently scalable
alternative to an age-ordered SQ design is an addre
indexed design as proposed by Torres et al. [20].
addition to replacing fully-associative search with se
associative search, an address-indexed SQ supp
interleaving that matches that of the data cache. Ho
ever, there are many disadvantages to an addre
indexed SQ [17]: it suffers from address conflicts, it
contents are difficult to maintain precisely in the pre
ence of control and data mis-speculations, and it do
not naturally support multiple in-flight versions of the
same address (although these can be supported u
explicit age tags). To be effective, address-indexed fo
warding must be treated as speculative and backed b
conventional forwarding mechanism [15, 20].

Multiscalar’s ARB [4] is an address-indexed for
warding and disambiguation structure. It does not suff
from some of the traditional limitations of address
indexed designs because it does not track all in-flig
stores, but rather only the “live-out” stores of each of
fixed number of processing elements (PEs). In an AR
the number of in flight versions of each address is lim
ited to the number of PEs; so these can be explici
tracked. ARB stores are also non-speculative wi
respect to their PE, making ARB recovery an infreque
event amenable to a simple low performance impleme
tation.

Speculative memory renaming.The FSP and SAT
essentially implement speculative memory renamin
Just like a register alias table (RAT, register renam
map) directly connects register consumers to their i
flight producers, the SAT directly connects memor
consumers (loads) to their in-flight producers (stores
But where a RAT makes these connections non-specu
tively using register names, the SAT makes them spec
11

 Appears in the Proceedings of the 38th International Symposium on Microarchitecture (MICRO-38), Nov. 2005

y

-

ng
r

.
es-
-

es
In

-

c
In
e

-

n
o-
-

n

-

r

S-

nd
r

e

.

d

r

-
n

h-
n
i-
latively using the store-load dependence information in
the FSP. Previous implementations of memory renam-
ing [10, 14, 21] focused on reducing execution latency
for a subset of forwarding loads by collapsing DEF-
store-load-USE chains to DEF-USE chains, conven-
tional associative forwarding is used for the rest. We use
memory renaming not to collapse dependence-chains,
but rather to eliminate associative search forall loads.

6. Conclusions
Traditional, associatively-searched structures for

tracking in-flight memory operations are a timing bot-
tleneck for future large-window processor designs. An
associative store queue (SQ) for a processor with a 512-
entry instruction window may have significantly higher
latency than the first-level data cache, reducing perfor-
mance and increasing the complexity of a deeply pipe-
lined design.

This work introduces an SQ design that implements
store-load forwarding without associative search. For
each load the processor predicts a single SQ entry to
query, transforming SQ lookup into a cache-style direct-
indexed lookup. To support indexed access, we intro-
duce two predictors. A PC-based forwarding predictor
inspired Store Sets [3] identifies likely forwarding SQ
entries. A distance based delay predictor inspired by the
Exclusive Collision Predictor [22] delays difficult-to-
predict loads until the stores they are likely to forward
from have committed.

Detailed timing simulations of the SPEC2000 and
MediaBench benchmarks shows that this design yields a
3.3% average slowdown relative to an idealized associa-
tive SQ (same access latency as data cache) and only a
0.6% slowdown relative to realistic associative SQ
(longer access latency than data cache). The indexed SQ
beats the realistic associative SQ on 19 of 47 programs
and matches it on 12 others. The indexed SQ also has
non-performance implementation advantages. It unifies
(and simplifies) load-scheduling and store-load for-
warding and avoids forwarding-related instruction
replays. The combination of our indexed SQ with a pre-
vious design that uses filtered load re-execution to elim-
inate load queue search [2] yields a more scalable
system for managing in-flight memory operations: one
that uses no associative search whatsoever.

Although our predictor is reasonably accurate, it
does have several limitations, most notably an inability
to forward from not-most-recent store instances. Future
work should explore alternative predictor organizations
and approaches, potentially with an aim to overcome
these limitations. For example, path-based information
might increase both forwarding prediction and delay
prediction accuracy and robustness.

Acknowledgments
We thank the anonymous reviewers for their com-

ments and suggestions. This work was partially sup-
ported by NSF CAREER Award CCF-0238203 (Roth).

References
[1] L. Baugh and C. Zilles. “Decomposing the Load-Store Queue b

Function for Power Reduction and Scalability.” In2004 IBM
P=AC^2 Conference, Oct. 2004.

[2] H. Cain and M. Lipasti. “Memory Ordering: A Value Based Def-
inition.” In Proc. 31st International Symposium on Computer Ar
chitecture, pages 90–101, Jun. 2004.

[3] G. Chrysos and J. Emer. “Memory Dependence Prediction usi
Store Sets.” InProc. 25th International Symposium on Compute
Architecture, pages 142–153, Jun. 1998.

[4] M. Franklin and G. Sohi. “ARB: A Hardware Mechanism for
Dynamic Reordering of Memory References.”IEEE Transac-
tions on Computers, May 1996.

[5] A. Gandhi, H. Akkary, R. Rajwar, S. Srinivasan, and K. Lai
“Scalable Load and Store Processing in Latency Tolerant Proc
sors.” InProc. 32nd International Symposium on Computer Ar
chitecture, pages 446–457, Jun. 2005.

[6] K. Gharachorloo, A. Gupta, and J. Hennessy. “Two Techniqu
to Enhance the Performance of Memory Consistency Models.”
Proc. of the International Conference on Parallel Processing,
pages 355–364, Aug. 1991.

[7] R. Kessler. “The Alpha 21264 Microprocessor.”IEEE Micro,
19(2), Mar./Apr. 1999.

[8] I. Kim and M. Lipasti. “Understanding Scheduling Replay
Schemes.” InProc. 10th International Symposium on High Per
formance Computer Architecture, Feb. 2004.

[9] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. “Dynami
Speculation and Synchronization of Data Dependences.”
Proc. 24th International Symposium on Computer Architectur,
pages 181–193, Jun. 1997.

[10] A. Moshovos and G. Sohi. “Streamlining Inter-Operation Com
munication via Data Dependence Prediction.” InProc. 30th In-
ternational Symposium on Microarchitecture, pages 235–245,
Dec. 1997.

[11] A. Moshovos and G. Sohi. “Memory Dependence Speculatio
Tradeoffs in Centralized, Continuous-Window Superscalar Pr
cessors.” InProc. 6th Annual International Symposium on High
Performance Computer Architecture, pages 301–312, Feb. 2000.

[12] S. Onder and R. Gupta. “Dynamic Memory Disambiguation i
the Presence of Out-of-Order Store Issuing.” InProc. 32nd Inter-
national Symposium on Microarchitecture, pages 170–176, Nov.
1999.

[13] I. Park, C. Ooi, and T. Vijaykumar. “Reducing Design Complex
ity of the Load/Store Queue.” InProc. 36th International Sympo-
sium on Microarchitecture, Dec. 2003.

[14] V. Petric, A. Bracy, and A. Roth. “Three Extensions to Registe
Integration.” InProc. 35th International Symposium on Microar-
chitecture, Nov. 2002.

[15] A. Roth. “A High Bandwidth Low Latency Load/Store Unit for
Single- and Multi- Threaded Processors.” Technical Report M
CIS-04-09, University of Pennsylvania, Jun. 2004.

[16] A. Roth. “Store Vulnerability Window (SVW): Re-Execution
Filtering for Enhanced Load Optimization.” InProc. 32nd Inter-
national Symposium on Computer Architecture, pages 458–468,
Jun. 2005.

[17] S. Sethumadhavan, R. Desikan, D. Burger, C. Moore, a
S. Keckler. “Scalable Hardware Memory Disambiguation fo
High ILP Processors.” InProc. 36th International Symposium on
Microarchitecture, Dec. 2003.

[18] P. Shivakumar and N. Jouppi. “CACTI 3.0: An Integrated Cach
Timing, Power, and Area Model.” Technical report, COMPAQ
Western Research Laboratory, 2001.

[19] S. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton
“Continual Flow Pipelines.” InProc. 11th International Confer-
ence on Architectural Support for Programming Languages an
Operating Systems, Oct. 2004.

[20] E. Torres, P. Ibanez, V. Vinals, and J. Llaberia. “Store Buffe
Design in First-Level Multibanked Data Caches.” InProc. 32nd
International Symposium on Computer Architecture, pages 469–
480, Jun. 2005.

[21] G. Tyson and T. Austin. “Improving the Accuracy and Perfor
mance of Memory Communication Through Renaming.” I
Proc. 30th International Symposium on Microarchitecture, pag-
es 218–227, Dec. 1997.

[22] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. “Speculation Tec
niques for Improving Load-Related Instruction Scheduling.” I
Proc. 26th Annual International Symposium on Computer Arch
tecture, pages 42–53, May 1999.
12

	1. Introduction
	2. Baseline Microarchitecture: Background
	3. Indexed Store-Load Forwarding
	3.1. Indexed Forwarding Mechanism
	3.2. Forwarding Index Predictor
	3.3. Delay Index Predictor
	3.4. Summary

	4. Experimental Evaluation
	4.1. Methodology
	4.2. Quantitative Store Queue Comparison
	4.3. Forwarding and Delay Prediction
	4.4. Performance
	4.5. Performance Sensitivity

	5. Related Work
	6. Conclusions
	Acknowledgments
	References
	Scalable Store-Load Forwarding via Store Queue Index Prediction

