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CSE 371
Computer Organization and Design

Unit 1: Instruction Set Architectures

CIS 371 (Roth/Martin): Instruction Set Architectures 2

Instruction Set Architecture (ISA)

• What is an ISA?

• And what is a good ISA?

• Aspects of ISAs

• With examples: LC3, MIPS, x86

• RISC vs. CISC

• Compatibility is a powerful force
• Tricks: binary translation, µISAs

CPUMem I/O

System software

AppApp App
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Readings

• P+H

• Chapter 2
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What Is An ISA?

• ISA (instruction set architecture)

• A well-defined hardware/software interface

• The “contract” between software and hardware

• Functional definition of operations, modes, and storage
locations supported by hardware

• Precise description of how to invoke, and access them

• Not in the “contract”

• How operations are implemented

• Which operations are fast and which are slow and when

• Which operations take more power and which take less

• Instruction ! Insn

• ‘Instruction’ is too long to write in slides
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A Language Analogy for ISAs

• Communication
• Person-to-person ! software-to-hardware

• Similar structure
• Narrative ! program

• Sentence ! insn

• Verb ! operation (add, multiply, load, branch)

• Noun ! data item (immediate, register value, memory value)

• Adjective ! addressing mode

• Many different languages, many different ISAs

• Similar basic structure, details differ (sometimes greatly)

• Key differences between languages and ISAs

• Languages evolve organically, many ambiguities, inconsistencies

• ISAs are explicitly engineered and extended, unambiguous
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The Sequential Model

• Basic structure of all modern ISAs

• Processor logically executes loop at left

• Atomically: insn X finishes before insn X+1 starts

• Program order: total order on dynamic insns

• Order and named storage define computation

• Value flows from insn X to Y via storage A iff…

• A=X’s output, X=Y’s input, Y after X in program order

• No interceding insn Z where A=Z’s output

• Convenient feature: program counter (PC)

• Insn itself at memory[PC]

• Next PC is PC++ unless insn says otherwise

FetchFetch

DecodeDecode

Read InputsRead Inputs

ExecuteExecute

Write OutputWrite Output

Next Next InsnInsn
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LC3

• LC3 highlights

• 1 datatype: 16-bit 2C integer

• Addressible of memory locations: 16 bits

• Instructions are 16 bits

• 3 arithmetic operations: add, and, not

• Build everything else from these

• 8 registers, load-store model, three addressing modes

• Condition codes for branches

• Support for traps and interrupts

• Why is LC3 this way? (and not some other way?)

• What are some other options?
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P37X

• Similar to LC3 in some ways (but better)

• Similarities

• 16-bit data types

• 16-bit instructions, four-bit opcode

• Similar TRAPs and devices

• Differences

• More ALU ops: Add, Sub, Mul, Or, Not, And, Xor, Shift Left/Right

• No LDI, STI (indirect load/stores)

• No condition codes

• Designed for CIS372

• PennSim supports this with a command-line mode switch
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Some Other ISAs

• LC3 & P37X has the basic features of a real-world ISA

± Lacks a good bit of realism

• Only 16-bit

• Not byte addressable

• Fewer arithmetic insns (more for LC3 than P37X)

• Little support for system software, none for multiprocessing

• Two real world ISAs

• Intel x86 (IA32): a CISC ISA

• MIPS: a “real world” RISC ISA (also used in book)

• P37X: ISA used in 372

• A more RISC’y LC3

• What is this RISC/CISC thing?
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What Is A Good ISA?

• Lends itself to high-performance implementations

• Every ISA can be implemented

• Not every ISA can be implemented well

• Background: CPU performance equation

• Execution time: seconds/program

• Convenient to factor into three pieces

• (insns/program) * (cycles/insn) * (seconds/cycle)

• Insns/program: dynamic insns executed

• Seconds/cycle: clock period

• Cycles/insn (CPI): hmmm…

• For high performance all three factors should be low
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Insns/Program: Compiler Optimizations

• Compilers do two things

• Translate HLLs to assembly functionally
• Deterministic and fast compile time (gcc –O0)

• “Canonical”: not an active research area

• CIS 341

• “Optimize” generated assembly code
• “Optimize”? Hard to prove optimality in a complex system

• In systems: “optimize” means improve… hopefully

• Involved and relatively slow compile time (gcc –O4)

• Some aspects: reverse-engineer programmer intention

• Not “canonical”: being actively researched

• CIS 570
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Compiler Optimizations

• Primarily reduce insn count
• Eliminate redundant computation, keep more things in registers

+ Registers are faster, fewer loads/stores

– An ISA can make this difficult by having too few registers

• But also…
• Reduce branches and jumps (later)

• Reduce cache misses (later)

• Reduce dependences between nearby insns (later)

– An ISA can make this difficult by having implicit dependences

• How effective are these?
+ Can give 4X performance over unoptimized code

– Collective wisdom of 40 years (“Proebsting’s Law”): 4% per year

• Funny but … shouldn’t leave 4X performance on the table
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Seconds/Cycle and Cycle/Insn: Hmmm…

• For single-cycle datapath

• Cycle/insn: 1 by definition

• Seconds/cycle: proportional to “complexity of datapath”

• ISA can make seconds/cycle high by requiring a complex datapath
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Foreshadowing: Pipelining

• Sequential model: insn X finishes before insn X+1 starts

• An illusion designed to keep programmers sane

• Pipelining: important performance technique

• Hardware overlaps “processing iterations” for insns

– Variable insn length/format makes pipelining difficult

– Complex datapaths also make pipelining difficult (or clock slow)

• More about this later
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RISC/CISC

• RISC (Reduced Instruction Set Computer) ISAs

• Minimalist approach to an ISA: simple insns only

+ Low “cycles/insn” and “seconds/cycle”

– Higher “insn/program”, but hopefully not as much

• Rely on compiler optimizations

• CISC (Complex Instruction Set Computing) ISAs

• A more heavyweight approach: both simple and complex insns

+ Low “insns/program”

– Higher “cycles/insn” and “seconds/cycle”

• We have the technology to get around this problem

• More detail and context later
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ISA Basics

• Aspects of ISAs

• VonNeumann model

• Data types and operations

• Operand model

• Control

• Encoding

• Operating system support

• Multiprocessing support

• Examples

• LC3 (P37X)

• MIPS

• x86
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Operations and Datatypes

• Datatypes
• Software: attribute of data

• Hardware: attribute of operation, data is just 0/1’s

• All processors support
• 2C integer arithmetic/logic (8/16/32/64-bit)

• IEEE754 floating-point arithmetic (32/64 bit)

• Intel has 80-bit floating-point

• More recently, most processors support
• “Packed-integer” insns, e.g., MMX

• “Packed-fp” insns, e.g., SSE/SSE2

• For multimedia, more about these later

• Processor no longer (??) support
• Decimal, other fixed-point arithmetic

• Binary-coded decimal (BCD)

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn
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LC3/MIPS/x86 Operations and Datatypes

• LC3
• 16-bit integer: add, and, not

• P37X also has sub, mul, or, xor, shifts

• No floating-point

• MIPS
• 32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor

• 32(64) bit floating-point: add, sub, mul, div

• x86
• 32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor

• 80-bit floating-point: add, sub, mul, div, sqrt

• 64-bit packed integer (MMX): padd, pmul…

• 64(128)-bit packed floating-point (SSE/2): padd, pmul…

• BCD!!! (not really used obviously)
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Where Does Data Live?

• Memory

• Fundamental storage space

• Processor w/o memory = table w/o chairs

• Registers

• Faster than memory, quite handy

• Most processors have these too

• Immediates

• Values spelled out as bits in insns

• Input only
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CIS 371 (Roth/Martin): Instruction Set Architectures 20

How Many Registers?

• Registers faster than memory, have as many as possible?

• No

• One reason registers are faster: there are fewer of them

• Small is fast (hardware truism)

• Another: they are directly addressed (no address calc)

– More of them, means larger specifiers

– Fewer registers per insn or indirect addressing

• Not everything can be put in registers

• Structures, arrays, anything pointed-to

• Compilers are getting better at putting more things in

– More registers means more saving/restoring
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LC3/MIPS/x86 Registers

• LC3/P37X
• 8 16-bit integer registers

• No floating-point registers

• MIPS
• 32 32-bit integer registers ($0 hardwired to 0)

• 32 32-bit floating-point registers (or 16 64-bit registers)

• x86
• 8 8/16/32-bit integer registers (not general purpose)

• No floating-point registers!

• 64-bit x86 (EM64T)
• 16 64-bit integer registers

• 16 128-bit floating-point registers
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How Much Memory?

• What does “64-bit” in 64-bit ISA mean?

• Each program can address (i.e., use) 264 bytes

• 64 is the virtual address (VA) size

• Alternative (wrong) definition: width of arithmetic operations

• Most critical, inescapable ISA design decision

• Too small?

• Limits the lifetime of ISA

• May require nasty hacks to overcome (e.g., x86 segments)

• All ISAs moving to 64 bits (if not already there)
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LC3/MIPS/x86 Memory Size

• LC3/P37X

• 16-bit (216 16-bit words)

• MIPS

• 32-bit

• 64-bit

• x86

• 8086: 16-bit

• 80286: 24-bit

• 80386: 32-bit

• AMD Opteron/Athlon64, Intel’s newer Pentium4, Core 2: 64-bit
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How Are Memory Locations Specified?

• Registers are specified directly

• Register names are short, can be encoded in insn

• Some insns implicitly read/write certain registers

• How are addresses specified?

• Addresses are as big or bigger than insns

• Addressing mode: how are insn bits converted to addresses?

• Think about: what high-level idiom addressing mode captures
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LC3/MIPS/x86 Addressing Modes

• LC3
• Displacement: R1+offset (6-bit)

• PC-displacement: PC+offset (9-bit)

• Memory-indirect/PC-displacement: mem[[PC]+offset(9-bit)]

– Nasty, requires accessing memory twice, P37X doesn’t have this

• MIPS
• Displacement: R1+offset (16-bit)

• Experiments showed this covered 80% of accesses on VAX

• x86 (MOV instructions)
• Absolute: zero + offset (8/16/32-bit)

• Register indirect: R1

• Indexed: R1+R2

• Displacement: R1+offset (8/16/32-bit)

• Scaled: R1 + (R2*Scale) + offset(8/16/32-bit)      Scale = 1, 2, 4, 8
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How Many Explicit Operands / ALU Insn?

• Operand model: how many explicit operands / ALU insn?

• 3: general-purpose

add R1,R2,R3 means [R1] = [R2] + [R3]    (MIPS uses this)

• 2: multiple explicit accumulators (output doubles as input)

add R1,R2 means [R1] = [R1] + [R2]   (x86 uses this)

• 1: one implicit accumulator

add R1 means ACC = ACC + [R1]

• 0: hardware stack (like Java bytecodes)

add means STK[TOS++] = STK[--TOS] + STK[--TOS]

• 4+: useful only in special situations

• Examples show register operands…

• But operands can be memory addresses, or mixed register/memory

• ISAs with register-only ALU insns are “load-store”
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How Do Values Get From/To Memory?

• How do values move from/to memory (primary storage)…

• … to/from registers/accumulator/stack?

• Assume displacement addressing for these examples

• Registers: load/store
load r1, 8(r2) means [R1] = mem[[R2] + 8]

store r1, 8(r2) means mem[[R2] + 8] = [R1]

• Accumulator: load/store
load 8(r2) means ACC = mem[[R2] + 8]

store 8(r2) means mem[[R2] + 8] = ACC

• Stack: push/pop
push 8(r2) means STK[TOS++]= mem[[R2] + 8]

pop 8(r2) means mem[[R2] + 8] = STK[TOS--]
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Operand Model Pros and Cons

• Metric I: static code size

• Want: many Implicit operands (stack), high level insns

• Metric II: data memory traffic

• Want: as many long-lived operands in on-chip storage (load-store)

• Metric III: CPI

• Want: short latencies, little variability (load-store)

• CPI and data memory traffic more important these days

• In most niches
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LC3/MIPS/x86 Operand Models

• LC3

• Integer: 8 accumulator registers

• Floating-point: none

• MIPS

• Integer/floating-point: 32 general-purpose registers, load-store

• x86

• Integer (8 registers) reg-reg, reg-mem, mem-reg, but no mem-mem

• Floating point: stack (why x86 floating-point sucked for years)

• Note: integer push, pop for managing software stack

• Note: also reg-mem and mem-mem string functions in hardware

• x86-64

• Integer/floating-point: 16 registers
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Control Transfers

• Default next-PC is PC + sizeof(current insn)

• Branches and jumps can change that

• Otherwise dynamic program == static program

• Not useful

• Computing targets: where to jump to

• For all branches and jumps

• Testing conditions: whether to jump at all

• For (conditional) branches only

Fetch
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Read Inputs

Execute

Write Output

Next Insn
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Control Transfers I: Computing Targets

• The issues

• How far (statically) do you need to jump?

• Not far within procedure, further from one procedure to another

• Do you need to jump to a different place each time?

• PC-relative

• Position-independent within procedure

• Used for branches and jumps within a procedure

• Absolute

• Position independent outside procedure

• Used for procedure calls

• Indirect (target found in register)

• Needed for jumping to dynamic targets

• Used for returns, dynamic procedure calls, switch statements
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Control Transfers II: Testing Conditions

• Compare and branch insns
branch-less-than R1,10,target

+ Simple

– Two ALUs: one for condition, one for target address

– Extra latency

• Implicit condition codes (x86, LC3)
subtract R2,R1,10   // sets “negative” CC

branch-neg target

+ Condition codes set “for free”

– Implicit dependence is tricky

• Conditions in regs, separate branch (MIPS, P37X)
set-less-than R2,R1,10

branch-not-equal-zero R2,target

– Additional insns

+ one ALU per insn, explicit dependence
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LC3, MIPS, x86 Control Transfers

• LC3
• 9-bit offset PC-relative branches/jumps (uses condition codes)

• 11-bit offset PC-relative calls and indirect calls

• P37X
• 6-bit offsets PC-relative simple branches (uses register for condition)

• 12-bit offset on calls and unconditional branchess

• MIPS
• 16-bit offset PC-relative conditional branches (uses register for condition)

• Compare 2 regs: beq, bne or reg to 0: bgtz, bgez, bltz, blez

+ Don’t need adder for these, cover 80% of cases

• Explicit “set condition into registers”: slt, sltu, slti, sltiu, etc.

• 26-bit target absolute jumps and function calls

• x86
• 8-bit offset PC-relative branches (uses condition codes)

• 8/16-bit target absolute jumps and function calls (within segment)

• Far jumps and calls (change code segment) for longer jumps
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Length and Format

• Length

• Fixed length

• Most common is 32 bits

+ Simple implementation: next PC = PC+4

+ Longer reach for branch/jump targets

– Code density: 32 bits to increment a register by 1?

• Variable length

– Complex implementation

+ Code density

• Compromise: two lengths

• MIPS16 or ARM’s Thumb

• Encoding

• A few simple encodings simplify decoder
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LC3/MIPS/x86 Length and Format

• LC3: 2-byte insns, 3 formats  (P37X is similar)

• MIPS: 4-byte insns, 3 formats

• x86: 1–16 byte insns

Op(6)Op(6) RsRs(5)(5) RtRt(5)(5) Rd(5)Rd(5) ShSh(5)(5) FuncFunc(6)(6)R-typeR-type

Op(6)Op(6) RsRs(5)(5) RtRt(5)(5) ImmedImmed(16)(16)I-typeI-type

Op(6)Op(6) Target(26)Target(26)J-typeJ-type

OpOp OpExtOpExt** ModRMModRM** SIB*SIB* DispDisp*(1-4)*(1-4) ImmImm*(1-4)*(1-4)Prefix*(1-4)Prefix*(1-4)

Op(4)Op(4)R(3)R(3) Offset(9)Offset(9)1-1-regreg

Op(4)Op(4) Offset(6)Offset(6)2-2-regreg

Op(4)Op(4) Offset(12)Offset(12)0-0-regreg

R(3)R(3)R(3)R(3)

Op(4)Op(4)3-3-regreg R(3)R(3)R(3)R(3)U(3)U(3)R(3)R(3)
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Operating System Support

• ISA support required to implement an operating system

• At least two privilege modes: user (low), kernel (high)

• Some operations, storage locations accessible in all modes

• Others accessible only in high privilege mode

• Deal with I/O, exceptions, virtual memory, privilege itself

• Anything that allows one process to interfere with another

• Support for safely up-grading and down-grading privilege

• Programmatically: system calls

• Transparently: interrupts
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Traps and System Calls

• What if a user process wanted to access an I/O device?
• Can’t actually “call” kernel procedures

• Kernel is “shared” by all user applications ! a separate process

• Should not be allowed to “call” or “jump” into arbitrary kernel code

• Should not be allowed to upgrade privilege outside of kernel

• How does this work then?
• Kernel publishes a set of service codes (not function addresses)

• User processes use special insn to invoke desired service

• TRAP, INTERRUPT, SYSCALL: a (process-changing) call only…

• Specifies function “code” rather than address

• Upgrades privilege: only way to do this

• Return-from-interrupt: a (process-changing) return only…

• Downgrades privilege
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LC3/MIPS/x86 OS Support

• LC3

• Trap, return from interrupt

• Interrupts supported but not used in CIS 240

• MIPS

• Trap, return from trap

• “Exception coprocessor”

• Interrupts

• X86

• Trap, return from trap

• Exception flags

• Multi-level interrupts
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Multiprocessing Support

• ISA support also required for multiprocessing

• Memory model

• Atomic “conditional reg/mem swap” insns

• “Fence” insns

• LC3

• No multiprocessing support

• MIPS/x86

• Yes, please

• More about this later

CIS 371 (Roth/Martin): Instruction Set Architectures 40

RISC and CISC

• RISC: reduced-instruction set computer

• Coined by Patterson in early 80’s

• Berkeley RISC-I, Stanford MIPS, IBM 801

• Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

• CISC: complex-instruction set computer

• Term didn’t exist before “RISC”

• Examples: x86, Motorola 68000, VAX (makes x86 look like LC3), etc.

• Religious war started in mid 1980’s

• RISC “won” the (technology) battle, CISC won the (commercial) war

• Compatibility a stronger force than anyone (but Intel) thought

• Intel & AMD beat RISC at its own game
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Pre 1980: The Setup

• Vicious feedback pendulum
• Bad compilers " complex ISAs " slow multi-chip designs

• Assembly commonly written by hand
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Complex ISAs " Bad Compilers

• Who is generating assembly code?

• Humans like high-level “CISC” ISAs (close to HLLs)
+ Can “concretize” (“drill down”): move down a layer

+ Can “abstract” (“see patterns”): move up a layer

– Can deal with few things at a time ! like things at a high level

• Computers (compilers) like low-level “RISC” ISAs
+ Can deal with many things at a time ! can do things at any level

+ Can “concretize”: 1-to-many lookup functions (databases)

– Difficulties with abstraction: many-to-1 lookup functions (AI)

• Translation should move strictly “down” levels

• Stranger than fiction
• People once thought computers would execute HLLs directly
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Complex ISAs " Slow Implementations

• Complex ISAs have nasty datapaths

• Nasty datapaths are difficult to pipeline

• And pipelining doesn’t help that much

• If you aren’t going to pipeline, you want a high-level ISA

• To amortize fetch/decode

Fetch/Decode

“Execute”
Execute

Fetch/Decode

Execute

Fetch/Decode

Execute

Fetch/Decode

Execute

Fetch/Decode

Fetch/Decode

“Execute”

Fetch/Decode

“Execute”
Fetch/Decode

“Execute”

High-level ISAHigh-level ISA

Single-cycleSingle-cycle

High-level ISAHigh-level ISA

PipelinedPipelined
Low-level ISALow-level ISA

Single-cycleSingle-cycle
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Early 1980s: The Tipping Point

• Moore’s Law makes single-chip microprocessor possible…

• …but only for small, simple ISAs

• Performance advantage of “integration” was compelling

• RISC manifesto: create ISAs that…

• Simplify implementation

• Facilitate optimizing compilation

• Some guiding principles (“tenets”)

• Single cycle execution/hard-wired control

• Fixed instruction length, format

• Lots of registers, load-store architecture, few addressing modes

• No equivalent “CISC manifesto”
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The Debate

• RISC argument
• CISC is fundamentally handicapped

• For a given technology, RISC implementation will be better (faster)

• Current technology enables single-chip RISC

• When it enables single-chip CISC, RISC will be pipelined

• When it enables pipelined CISC, RISC will have caches

• When it enables CISC with caches, RISC will have next thing...

• CISC rebuttal
• CISC flaws not fundamental, can be fixed with more transistors

• Moore’s Law will narrow the RISC/CISC gap (true)

• Good pipeline: RISC = 100K transistors, CISC = 300K

• By 1995: 2M+ transistors had evened playing field

• Software costs dominate, compatibility is paramount
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Compatibility

• No-one buys new hardware… if it requires new software

• Intel greatly benefited from this (IBM, too)

• ISA must remain compatible, no matter what

• x86 one of the worst designed ISAs EVER, but survives

• As does IBM’s 360/370 (the first “ISA family”)

• Backward compatibility

• New processors must support old programs (can’t drop features)

• Very important

• Forward (upward) compatibility

• Old processors must support new programs (with software help)

• New processors redefine only previously-illegal opcodes

• Allow software to detect support for specific new instructions

• Old processors emulate new instructions in low-level software
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Intel’s Trick: RISC Inside

• 1993: Intel wanted out-of-order execution in Pentium Pro

• OoO was very hard to do with a coarse grain ISA like x86

• Solution? Translate x86 to RISC uops in hardware
push $eax

becomes (we think, uops are proprietary)
store $eax [$esp-4]

addi $esp,$esp,-4

+ Processor maintains x86 ISA externally for compatibility

+ Executes RISC µISA internally for datapath implementation

• Given translator, x86 almost as easy to implement as RISC

• Intel implemented out-of-order before any RISC company

• Idea co-opted by other x86 companies: AMD and Transmeta

• The one company that resisted (Cyrix) couldn’t keep up
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More About Uops

• Even better? Two forms of hardware translation

• Optimized logic: for common insns that translate into 1–4 uops

+ Fast

– Complex

• Table: for rare insns or nasty insns that translate into 5+ uops

– Slow

+ “Off to the side”, doesn’t complicate rest of machine

• x86: average 1.6 uops / x86 insn

• x86-64: average 1.1 uops / x86 insn
• More registers (can pass parameters too), fewer pushes/pops

• Speculation about Core 2: PLA for 1–2 uops, Table for 3+ uops?
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Transmeta’s Take: Code Morphing

• Code morphing: x86 translation in software

• Crusoe/Astro are x86 emulators, no actual x86 hardware anywhere

• Only “code morphing” translation software written in native ISA

• Native ISA is invisible to applications, OS, even BIOS

• Different Crusoe versions have (slightly) different ISAs: can’t tell

• How was it done?

• Code morphing software resides in boot ROM

• On startup boot ROM hijacks 16MB of main memory

• Translator loaded into 512KB, rest is translation cache

• Software starts running in interpreter mode

• Interpreter profiles to find “hot” regions: procedures, loops

• Hot region compiled to native, optimized, cached

• Gradually, more and more of application starts running native

CIS 371 (Roth/Martin): Instruction Set Architectures 50

How x86 Won the Commercial War

• x86 was first 16-bit chip by ~2 years

• IBM put it into its PCs: there was no competing choice

• Rest is Moore’s Law, inertia and “financial feedback”

• x86 is most difficult ISA to implement and do it fast but…

• Because Intel sells the most non-embedded processors…

• It has the most money…

• Which it uses to hire more and better engineers…

• Which it uses to maintain competitive performance …

• And given equal performance compatibility wins…

• So Intel sells the most non-embedded processors…

• AMD keeps pressure on x86 performance
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Actually, The Volume Winner is RISC

• ARM (Acorn RISC Machine ! Advanced RISC Machine)

• First ARM chip in mid-1980s (from Acorn Computer Ltd).

• 1.2 billion units sold in 2004 (>50% of all 32/64-bit CPUs)

• Low-power and embedded devices (iPod, for example)

• 32-bit RISC ISA
• 16 registers (PC is one of them: to branch, just write to the PC)

• Many addressing modes, e.g., auto increment

• Predication: Condition codes, each instruction can be conditional

• Multiple compatible implementations
• Intel’s X-scale (original design was DEC’s, bought by Intel)

• Others: Freescale (was Motorola), IBM, Texas Instruments,
Nintendo, STMicroelectronics, Samsung, Sharp, Philips, etc.
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Redux: Are ISAs Important?

• Does “quality” of ISA actually matter?

• Not for performance (mostly)

• Mostly comes as a design complexity issue

• Insn/program: everything is compiled, compilers are good

• Cycles/insn and seconds/cycle: µISA, many other tricks

• Does “nastiness” of ISA matter?

• No, only compiler writers and hardware designers see it

• Even compatibility is not what it used to be…

• Software emulation
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Compatibility Trap Door

• “Trap”: add some ISA feature for 5% gain
– Must support feature forever… even if gain turns to loss

• Classic: SPARC’s register windows (hardware activation records)

• Trap: insn makes low-level “function call” to OS handler
• Compatibility’s friend

• Backward compatibility: rid yourself of some ISA mistakes
• New design: “mistake feature” opcodes trap, emulated in software

• Performance (of that feature) suffers

• Legal: ISA says nothing about performance

• Actually good: feature will be used less (“deprecation cycle”)

• Forward compatibility
• Reserve set of trap opcodes (don’t define uses)

• Add ISA functionality by overloading traps

• Release firmware patch to “add” to old implementation
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Translation and Virtual ISAs

• New compatibility interface: ISA + translation software

• Binary-translation: transform static image, run native

• Emulation: unmodified image, interpret each dynamic insn

• Typically optimized with just-in-time (JIT) compilation

• Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86)

• Performance overheads not that high

• Virtual ISAs: designed for translation, not direct execution

• Target for high-level compiler (one per language)

• Source for low-level translator (one per ISA)

• Goals: Portability (abstract hardware nastiness), flexibility over time

• Examples: Java Bytecodes
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Summary

• What is an ISA?

• A functional contract

• All ISAs are basically the same

• But many design choices in details

• Two “philosophies”: CISC/RISC

• Good ISA enables high-performance

• At least doesn’t get in the way

• Compatibility is a powerful force
• Tricks: binary translation, µISAs

• Next: single-cycle datapath/control

CPUMem I/O

System software
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