
CIS 371 (Roth/Martin): Instruction Set Architectures 1

CSE 371
Computer Organization and Design

Unit 1: Instruction Set Architectures

CIS 371 (Roth/Martin): Instruction Set Architectures 2

Instruction Set Architecture (ISA)

• What is an ISA?

• And what is a good ISA?

• Aspects of ISAs

• With examples: LC3, MIPS, x86

• RISC vs. CISC

• Compatibility is a powerful force
• Tricks: binary translation, µISAs

CPUMem I/O

System software

AppApp App

CIS 371 (Roth/Martin): Instruction Set Architectures 3

Readings

• P+H

• Chapter 2

CIS 371 (Roth/Martin): Instruction Set Architectures 4

What Is An ISA?

• ISA (instruction set architecture)

• A well-defined hardware/software interface

• The “contract” between software and hardware

• Functional definition of operations, modes, and storage
locations supported by hardware

• Precise description of how to invoke, and access them

• Not in the “contract”

• How operations are implemented

• Which operations are fast and which are slow and when

• Which operations take more power and which take less

• Instruction ! Insn

• ‘Instruction’ is too long to write in slides

CIS 371 (Roth/Martin): Instruction Set Architectures 5

A Language Analogy for ISAs

• Communication
• Person-to-person ! software-to-hardware

• Similar structure
• Narrative ! program

• Sentence ! insn

• Verb ! operation (add, multiply, load, branch)

• Noun ! data item (immediate, register value, memory value)

• Adjective ! addressing mode

• Many different languages, many different ISAs

• Similar basic structure, details differ (sometimes greatly)

• Key differences between languages and ISAs

• Languages evolve organically, many ambiguities, inconsistencies

• ISAs are explicitly engineered and extended, unambiguous

CIS 371 (Roth/Martin): Instruction Set Architectures 6

The Sequential Model

• Basic structure of all modern ISAs

• Processor logically executes loop at left

• Atomically: insn X finishes before insn X+1 starts

• Program order: total order on dynamic insns

• Order and named storage define computation

• Value flows from insn X to Y via storage A iff…

• A=X’s output, X=Y’s input, Y after X in program order

• No interceding insn Z where A=Z’s output

• Convenient feature: program counter (PC)

• Insn itself at memory[PC]

• Next PC is PC++ unless insn says otherwise

FetchFetch

DecodeDecode

Read InputsRead Inputs

ExecuteExecute

Write OutputWrite Output

Next Next InsnInsn

CIS 371 (Roth/Martin): Instruction Set Architectures 7

LC3

• LC3 highlights

• 1 datatype: 16-bit 2C integer

• Addressible of memory locations: 16 bits

• Instructions are 16 bits

• 3 arithmetic operations: add, and, not

• Build everything else from these

• 8 registers, load-store model, three addressing modes

• Condition codes for branches

• Support for traps and interrupts

• Why is LC3 this way? (and not some other way?)

• What are some other options?

CIS 371 (Roth/Martin): Instruction Set Architectures 8

P37X

• Similar to LC3 in some ways (but better)

• Similarities

• 16-bit data types

• 16-bit instructions, four-bit opcode

• Similar TRAPs and devices

• Differences

• More ALU ops: Add, Sub, Mul, Or, Not, And, Xor, Shift Left/Right

• No LDI, STI (indirect load/stores)

• No condition codes

• Designed for CIS372

• PennSim supports this with a command-line mode switch

CIS 371 (Roth/Martin): Instruction Set Architectures 9

Some Other ISAs

• LC3 & P37X has the basic features of a real-world ISA

± Lacks a good bit of realism

• Only 16-bit

• Not byte addressable

• Fewer arithmetic insns (more for LC3 than P37X)

• Little support for system software, none for multiprocessing

• Two real world ISAs

• Intel x86 (IA32): a CISC ISA

• MIPS: a “real world” RISC ISA (also used in book)

• P37X: ISA used in 372

• A more RISC’y LC3

• What is this RISC/CISC thing?

CIS 371 (Roth/Martin): Instruction Set Architectures 10

What Is A Good ISA?

• Lends itself to high-performance implementations

• Every ISA can be implemented

• Not every ISA can be implemented well

• Background: CPU performance equation

• Execution time: seconds/program

• Convenient to factor into three pieces

• (insns/program) * (cycles/insn) * (seconds/cycle)

• Insns/program: dynamic insns executed

• Seconds/cycle: clock period

• Cycles/insn (CPI): hmmm…

• For high performance all three factors should be low

CIS 371 (Roth/Martin): Instruction Set Architectures 11

Insns/Program: Compiler Optimizations

• Compilers do two things

• Translate HLLs to assembly functionally
• Deterministic and fast compile time (gcc –O0)

• “Canonical”: not an active research area

• CIS 341

• “Optimize” generated assembly code
• “Optimize”? Hard to prove optimality in a complex system

• In systems: “optimize” means improve… hopefully

• Involved and relatively slow compile time (gcc –O4)

• Some aspects: reverse-engineer programmer intention

• Not “canonical”: being actively researched

• CIS 570

CIS 371 (Roth/Martin): Instruction Set Architectures 12

Compiler Optimizations

• Primarily reduce insn count
• Eliminate redundant computation, keep more things in registers

+ Registers are faster, fewer loads/stores

– An ISA can make this difficult by having too few registers

• But also…
• Reduce branches and jumps (later)

• Reduce cache misses (later)

• Reduce dependences between nearby insns (later)

– An ISA can make this difficult by having implicit dependences

• How effective are these?
+ Can give 4X performance over unoptimized code

– Collective wisdom of 40 years (“Proebsting’s Law”): 4% per year

• Funny but … shouldn’t leave 4X performance on the table

CIS 371 (Roth/Martin): Instruction Set Architectures 13

Seconds/Cycle and Cycle/Insn: Hmmm…

• For single-cycle datapath

• Cycle/insn: 1 by definition

• Seconds/cycle: proportional to “complexity of datapath”

• ISA can make seconds/cycle high by requiring a complex datapath

CIS 371 (Roth/Martin): Instruction Set Architectures 14

Foreshadowing: Pipelining

• Sequential model: insn X finishes before insn X+1 starts

• An illusion designed to keep programmers sane

• Pipelining: important performance technique

• Hardware overlaps “processing iterations” for insns

– Variable insn length/format makes pipelining difficult

– Complex datapaths also make pipelining difficult (or clock slow)

• More about this later

FetchFetch

DecodeDecode

Read InputsRead Inputs

ExecuteExecute

Write OutputWrite Output

Next Next InsnInsn

FetchFetch

DecodeDecode

Read InputsRead Inputs

ExecuteExecute

Write OutputWrite Output

FetchFetch

DecodeDecode

Read InputsRead Inputs

ExecuteExecute

FetchFetch

DecodeDecode

Read InputsRead Inputs

FetchFetch

DecodeDecode FetchFetch

Insn0Insn0 Insn1Insn1 Insn2Insn2 Insn3Insn3 Insn4Insn4 Insn5Insn5

ti
m

e
ti
m

e

CIS 371 (Roth/Martin): Instruction Set Architectures 15

RISC/CISC

• RISC (Reduced Instruction Set Computer) ISAs

• Minimalist approach to an ISA: simple insns only

+ Low “cycles/insn” and “seconds/cycle”

– Higher “insn/program”, but hopefully not as much

• Rely on compiler optimizations

• CISC (Complex Instruction Set Computing) ISAs

• A more heavyweight approach: both simple and complex insns

+ Low “insns/program”

– Higher “cycles/insn” and “seconds/cycle”

• We have the technology to get around this problem

• More detail and context later

CIS 371 (Roth/Martin): Instruction Set Architectures 16

ISA Basics

• Aspects of ISAs

• VonNeumann model

• Data types and operations

• Operand model

• Control

• Encoding

• Operating system support

• Multiprocessing support

• Examples

• LC3 (P37X)

• MIPS

• x86

CIS 371 (Roth/Martin): Instruction Set Architectures 17

Operations and Datatypes

• Datatypes
• Software: attribute of data

• Hardware: attribute of operation, data is just 0/1’s

• All processors support
• 2C integer arithmetic/logic (8/16/32/64-bit)

• IEEE754 floating-point arithmetic (32/64 bit)

• Intel has 80-bit floating-point

• More recently, most processors support
• “Packed-integer” insns, e.g., MMX

• “Packed-fp” insns, e.g., SSE/SSE2

• For multimedia, more about these later

• Processor no longer (??) support
• Decimal, other fixed-point arithmetic

• Binary-coded decimal (BCD)

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

CIS 371 (Roth/Martin): Instruction Set Architectures 18

LC3/MIPS/x86 Operations and Datatypes

• LC3
• 16-bit integer: add, and, not

• P37X also has sub, mul, or, xor, shifts

• No floating-point

• MIPS
• 32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor

• 32(64) bit floating-point: add, sub, mul, div

• x86
• 32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor

• 80-bit floating-point: add, sub, mul, div, sqrt

• 64-bit packed integer (MMX): padd, pmul…

• 64(128)-bit packed floating-point (SSE/2): padd, pmul…

• BCD!!! (not really used obviously)

CIS 371 (Roth/Martin): Instruction Set Architectures 19

Where Does Data Live?

• Memory

• Fundamental storage space

• Processor w/o memory = table w/o chairs

• Registers

• Faster than memory, quite handy

• Most processors have these too

• Immediates

• Values spelled out as bits in insns

• Input only

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

CIS 371 (Roth/Martin): Instruction Set Architectures 20

How Many Registers?

• Registers faster than memory, have as many as possible?

• No

• One reason registers are faster: there are fewer of them

• Small is fast (hardware truism)

• Another: they are directly addressed (no address calc)

– More of them, means larger specifiers

– Fewer registers per insn or indirect addressing

• Not everything can be put in registers

• Structures, arrays, anything pointed-to

• Compilers are getting better at putting more things in

– More registers means more saving/restoring

CIS 371 (Roth/Martin): Instruction Set Architectures 21

LC3/MIPS/x86 Registers

• LC3/P37X
• 8 16-bit integer registers

• No floating-point registers

• MIPS
• 32 32-bit integer registers ($0 hardwired to 0)

• 32 32-bit floating-point registers (or 16 64-bit registers)

• x86
• 8 8/16/32-bit integer registers (not general purpose)

• No floating-point registers!

• 64-bit x86 (EM64T)
• 16 64-bit integer registers

• 16 128-bit floating-point registers

CIS 371 (Roth/Martin): Instruction Set Architectures 22

How Much Memory?

• What does “64-bit” in 64-bit ISA mean?

• Each program can address (i.e., use) 264 bytes

• 64 is the virtual address (VA) size

• Alternative (wrong) definition: width of arithmetic operations

• Most critical, inescapable ISA design decision

• Too small?

• Limits the lifetime of ISA

• May require nasty hacks to overcome (e.g., x86 segments)

• All ISAs moving to 64 bits (if not already there)

CIS 371 (Roth/Martin): Instruction Set Architectures 23

LC3/MIPS/x86 Memory Size

• LC3/P37X

• 16-bit (216 16-bit words)

• MIPS

• 32-bit

• 64-bit

• x86

• 8086: 16-bit

• 80286: 24-bit

• 80386: 32-bit

• AMD Opteron/Athlon64, Intel’s newer Pentium4, Core 2: 64-bit

CIS 371 (Roth/Martin): Instruction Set Architectures 24

How Are Memory Locations Specified?

• Registers are specified directly

• Register names are short, can be encoded in insn

• Some insns implicitly read/write certain registers

• How are addresses specified?

• Addresses are as big or bigger than insns

• Addressing mode: how are insn bits converted to addresses?

• Think about: what high-level idiom addressing mode captures

CIS 371 (Roth/Martin): Instruction Set Architectures 25

LC3/MIPS/x86 Addressing Modes

• LC3
• Displacement: R1+offset (6-bit)

• PC-displacement: PC+offset (9-bit)

• Memory-indirect/PC-displacement: mem[[PC]+offset(9-bit)]

– Nasty, requires accessing memory twice, P37X doesn’t have this

• MIPS
• Displacement: R1+offset (16-bit)

• Experiments showed this covered 80% of accesses on VAX

• x86 (MOV instructions)
• Absolute: zero + offset (8/16/32-bit)

• Register indirect: R1

• Indexed: R1+R2

• Displacement: R1+offset (8/16/32-bit)

• Scaled: R1 + (R2*Scale) + offset(8/16/32-bit) Scale = 1, 2, 4, 8

CIS 371 (Roth/Martin): Instruction Set Architectures 26

How Many Explicit Operands / ALU Insn?

• Operand model: how many explicit operands / ALU insn?

• 3: general-purpose

add R1,R2,R3 means [R1] = [R2] + [R3] (MIPS uses this)

• 2: multiple explicit accumulators (output doubles as input)

add R1,R2 means [R1] = [R1] + [R2] (x86 uses this)

• 1: one implicit accumulator

add R1 means ACC = ACC + [R1]

• 0: hardware stack (like Java bytecodes)

add means STK[TOS++] = STK[--TOS] + STK[--TOS]

• 4+: useful only in special situations

• Examples show register operands…

• But operands can be memory addresses, or mixed register/memory

• ISAs with register-only ALU insns are “load-store”

CIS 371 (Roth/Martin): Instruction Set Architectures 27

How Do Values Get From/To Memory?

• How do values move from/to memory (primary storage)…

• … to/from registers/accumulator/stack?

• Assume displacement addressing for these examples

• Registers: load/store
load r1, 8(r2) means [R1] = mem[[R2] + 8]

store r1, 8(r2) means mem[[R2] + 8] = [R1]

• Accumulator: load/store
load 8(r2) means ACC = mem[[R2] + 8]

store 8(r2) means mem[[R2] + 8] = ACC

• Stack: push/pop
push 8(r2) means STK[TOS++]= mem[[R2] + 8]

pop 8(r2) means mem[[R2] + 8] = STK[TOS--]

CIS 371 (Roth/Martin): Instruction Set Architectures 28

Operand Model Pros and Cons

• Metric I: static code size

• Want: many Implicit operands (stack), high level insns

• Metric II: data memory traffic

• Want: as many long-lived operands in on-chip storage (load-store)

• Metric III: CPI

• Want: short latencies, little variability (load-store)

• CPI and data memory traffic more important these days

• In most niches

CIS 371 (Roth/Martin): Instruction Set Architectures 29

LC3/MIPS/x86 Operand Models

• LC3

• Integer: 8 accumulator registers

• Floating-point: none

• MIPS

• Integer/floating-point: 32 general-purpose registers, load-store

• x86

• Integer (8 registers) reg-reg, reg-mem, mem-reg, but no mem-mem

• Floating point: stack (why x86 floating-point sucked for years)

• Note: integer push, pop for managing software stack

• Note: also reg-mem and mem-mem string functions in hardware

• x86-64

• Integer/floating-point: 16 registers

CIS 371 (Roth/Martin): Instruction Set Architectures 30

Control Transfers

• Default next-PC is PC + sizeof(current insn)

• Branches and jumps can change that

• Otherwise dynamic program == static program

• Not useful

• Computing targets: where to jump to

• For all branches and jumps

• Testing conditions: whether to jump at all

• For (conditional) branches only

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

CIS 371 (Roth/Martin): Instruction Set Architectures 31

Control Transfers I: Computing Targets

• The issues

• How far (statically) do you need to jump?

• Not far within procedure, further from one procedure to another

• Do you need to jump to a different place each time?

• PC-relative

• Position-independent within procedure

• Used for branches and jumps within a procedure

• Absolute

• Position independent outside procedure

• Used for procedure calls

• Indirect (target found in register)

• Needed for jumping to dynamic targets

• Used for returns, dynamic procedure calls, switch statements

CIS 371 (Roth/Martin): Instruction Set Architectures 32

Control Transfers II: Testing Conditions

• Compare and branch insns
branch-less-than R1,10,target

+ Simple

– Two ALUs: one for condition, one for target address

– Extra latency

• Implicit condition codes (x86, LC3)
subtract R2,R1,10 // sets “negative” CC

branch-neg target

+ Condition codes set “for free”

– Implicit dependence is tricky

• Conditions in regs, separate branch (MIPS, P37X)
set-less-than R2,R1,10

branch-not-equal-zero R2,target

– Additional insns

+ one ALU per insn, explicit dependence

CIS 371 (Roth/Martin): Instruction Set Architectures 33

LC3, MIPS, x86 Control Transfers

• LC3
• 9-bit offset PC-relative branches/jumps (uses condition codes)

• 11-bit offset PC-relative calls and indirect calls

• P37X
• 6-bit offsets PC-relative simple branches (uses register for condition)

• 12-bit offset on calls and unconditional branchess

• MIPS
• 16-bit offset PC-relative conditional branches (uses register for condition)

• Compare 2 regs: beq, bne or reg to 0: bgtz, bgez, bltz, blez

+ Don’t need adder for these, cover 80% of cases

• Explicit “set condition into registers”: slt, sltu, slti, sltiu, etc.

• 26-bit target absolute jumps and function calls

• x86
• 8-bit offset PC-relative branches (uses condition codes)

• 8/16-bit target absolute jumps and function calls (within segment)

• Far jumps and calls (change code segment) for longer jumps

CIS 371 (Roth/Martin): Instruction Set Architectures 34

Length and Format

• Length

• Fixed length

• Most common is 32 bits

+ Simple implementation: next PC = PC+4

+ Longer reach for branch/jump targets

– Code density: 32 bits to increment a register by 1?

• Variable length

– Complex implementation

+ Code density

• Compromise: two lengths

• MIPS16 or ARM’s Thumb

• Encoding

• A few simple encodings simplify decoder

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

CIS 371 (Roth/Martin): Instruction Set Architectures 35

LC3/MIPS/x86 Length and Format

• LC3: 2-byte insns, 3 formats (P37X is similar)

• MIPS: 4-byte insns, 3 formats

• x86: 1–16 byte insns

Op(6)Op(6) RsRs(5)(5) RtRt(5)(5) Rd(5)Rd(5) ShSh(5)(5) FuncFunc(6)(6)R-typeR-type

Op(6)Op(6) RsRs(5)(5) RtRt(5)(5) ImmedImmed(16)(16)I-typeI-type

Op(6)Op(6) Target(26)Target(26)J-typeJ-type

OpOp OpExtOpExt** ModRMModRM** SIB*SIB* DispDisp*(1-4)*(1-4) ImmImm*(1-4)*(1-4)Prefix*(1-4)Prefix*(1-4)

Op(4)Op(4)R(3)R(3) Offset(9)Offset(9)1-1-regreg

Op(4)Op(4) Offset(6)Offset(6)2-2-regreg

Op(4)Op(4) Offset(12)Offset(12)0-0-regreg

R(3)R(3)R(3)R(3)

Op(4)Op(4)3-3-regreg R(3)R(3)R(3)R(3)U(3)U(3)R(3)R(3)

CIS 371 (Roth/Martin): Instruction Set Architectures 36

Operating System Support

• ISA support required to implement an operating system

• At least two privilege modes: user (low), kernel (high)

• Some operations, storage locations accessible in all modes

• Others accessible only in high privilege mode

• Deal with I/O, exceptions, virtual memory, privilege itself

• Anything that allows one process to interfere with another

• Support for safely up-grading and down-grading privilege

• Programmatically: system calls

• Transparently: interrupts

CIS 371 (Roth/Martin): Instruction Set Architectures 37

Traps and System Calls

• What if a user process wanted to access an I/O device?
• Can’t actually “call” kernel procedures

• Kernel is “shared” by all user applications ! a separate process

• Should not be allowed to “call” or “jump” into arbitrary kernel code

• Should not be allowed to upgrade privilege outside of kernel

• How does this work then?
• Kernel publishes a set of service codes (not function addresses)

• User processes use special insn to invoke desired service

• TRAP, INTERRUPT, SYSCALL: a (process-changing) call only…

• Specifies function “code” rather than address

• Upgrades privilege: only way to do this

• Return-from-interrupt: a (process-changing) return only…

• Downgrades privilege

CIS 371 (Roth/Martin): Instruction Set Architectures 38

LC3/MIPS/x86 OS Support

• LC3

• Trap, return from interrupt

• Interrupts supported but not used in CIS 240

• MIPS

• Trap, return from trap

• “Exception coprocessor”

• Interrupts

• X86

• Trap, return from trap

• Exception flags

• Multi-level interrupts

CIS 371 (Roth/Martin): Instruction Set Architectures 39

Multiprocessing Support

• ISA support also required for multiprocessing

• Memory model

• Atomic “conditional reg/mem swap” insns

• “Fence” insns

• LC3

• No multiprocessing support

• MIPS/x86

• Yes, please

• More about this later

CIS 371 (Roth/Martin): Instruction Set Architectures 40

RISC and CISC

• RISC: reduced-instruction set computer

• Coined by Patterson in early 80’s

• Berkeley RISC-I, Stanford MIPS, IBM 801

• Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

• CISC: complex-instruction set computer

• Term didn’t exist before “RISC”

• Examples: x86, Motorola 68000, VAX (makes x86 look like LC3), etc.

• Religious war started in mid 1980’s

• RISC “won” the (technology) battle, CISC won the (commercial) war

• Compatibility a stronger force than anyone (but Intel) thought

• Intel & AMD beat RISC at its own game

CIS 371 (Roth/Martin): Instruction Set Architectures 41

Pre 1980: The Setup

• Vicious feedback pendulum
• Bad compilers " complex ISAs " slow multi-chip designs

• Assembly commonly written by hand

CIS 371 (Roth/Martin): Instruction Set Architectures 42

Complex ISAs " Bad Compilers

• Who is generating assembly code?

• Humans like high-level “CISC” ISAs (close to HLLs)
+ Can “concretize” (“drill down”): move down a layer

+ Can “abstract” (“see patterns”): move up a layer

– Can deal with few things at a time ! like things at a high level

• Computers (compilers) like low-level “RISC” ISAs
+ Can deal with many things at a time ! can do things at any level

+ Can “concretize”: 1-to-many lookup functions (databases)

– Difficulties with abstraction: many-to-1 lookup functions (AI)

• Translation should move strictly “down” levels

• Stranger than fiction
• People once thought computers would execute HLLs directly

CIS 371 (Roth/Martin): Instruction Set Architectures 43

Complex ISAs " Slow Implementations

• Complex ISAs have nasty datapaths

• Nasty datapaths are difficult to pipeline

• And pipelining doesn’t help that much

• If you aren’t going to pipeline, you want a high-level ISA

• To amortize fetch/decode

Fetch/Decode

“Execute”
Execute

Fetch/Decode

Execute

Fetch/Decode

Execute

Fetch/Decode

Execute

Fetch/Decode

Fetch/Decode

“Execute”

Fetch/Decode

“Execute”
Fetch/Decode

“Execute”

High-level ISAHigh-level ISA

Single-cycleSingle-cycle

High-level ISAHigh-level ISA

PipelinedPipelined
Low-level ISALow-level ISA

Single-cycleSingle-cycle

CIS 371 (Roth/Martin): Instruction Set Architectures 44

Early 1980s: The Tipping Point

• Moore’s Law makes single-chip microprocessor possible…

• …but only for small, simple ISAs

• Performance advantage of “integration” was compelling

• RISC manifesto: create ISAs that…

• Simplify implementation

• Facilitate optimizing compilation

• Some guiding principles (“tenets”)

• Single cycle execution/hard-wired control

• Fixed instruction length, format

• Lots of registers, load-store architecture, few addressing modes

• No equivalent “CISC manifesto”

CIS 371 (Roth/Martin): Instruction Set Architectures 45

The Debate

• RISC argument
• CISC is fundamentally handicapped

• For a given technology, RISC implementation will be better (faster)

• Current technology enables single-chip RISC

• When it enables single-chip CISC, RISC will be pipelined

• When it enables pipelined CISC, RISC will have caches

• When it enables CISC with caches, RISC will have next thing...

• CISC rebuttal
• CISC flaws not fundamental, can be fixed with more transistors

• Moore’s Law will narrow the RISC/CISC gap (true)

• Good pipeline: RISC = 100K transistors, CISC = 300K

• By 1995: 2M+ transistors had evened playing field

• Software costs dominate, compatibility is paramount

CIS 371 (Roth/Martin): Instruction Set Architectures 46

Compatibility

• No-one buys new hardware… if it requires new software

• Intel greatly benefited from this (IBM, too)

• ISA must remain compatible, no matter what

• x86 one of the worst designed ISAs EVER, but survives

• As does IBM’s 360/370 (the first “ISA family”)

• Backward compatibility

• New processors must support old programs (can’t drop features)

• Very important

• Forward (upward) compatibility

• Old processors must support new programs (with software help)

• New processors redefine only previously-illegal opcodes

• Allow software to detect support for specific new instructions

• Old processors emulate new instructions in low-level software

CIS 371 (Roth/Martin): Instruction Set Architectures 47

Intel’s Trick: RISC Inside

• 1993: Intel wanted out-of-order execution in Pentium Pro

• OoO was very hard to do with a coarse grain ISA like x86

• Solution? Translate x86 to RISC uops in hardware
push $eax

becomes (we think, uops are proprietary)
store $eax [$esp-4]

addi $esp,$esp,-4

+ Processor maintains x86 ISA externally for compatibility

+ Executes RISC µISA internally for datapath implementation

• Given translator, x86 almost as easy to implement as RISC

• Intel implemented out-of-order before any RISC company

• Idea co-opted by other x86 companies: AMD and Transmeta

• The one company that resisted (Cyrix) couldn’t keep up

CIS 371 (Roth/Martin): Instruction Set Architectures 48

More About Uops

• Even better? Two forms of hardware translation

• Optimized logic: for common insns that translate into 1–4 uops

+ Fast

– Complex

• Table: for rare insns or nasty insns that translate into 5+ uops

– Slow

+ “Off to the side”, doesn’t complicate rest of machine

• x86: average 1.6 uops / x86 insn

• x86-64: average 1.1 uops / x86 insn
• More registers (can pass parameters too), fewer pushes/pops

• Speculation about Core 2: PLA for 1–2 uops, Table for 3+ uops?

CIS 371 (Roth/Martin): Instruction Set Architectures 49

Transmeta’s Take: Code Morphing

• Code morphing: x86 translation in software

• Crusoe/Astro are x86 emulators, no actual x86 hardware anywhere

• Only “code morphing” translation software written in native ISA

• Native ISA is invisible to applications, OS, even BIOS

• Different Crusoe versions have (slightly) different ISAs: can’t tell

• How was it done?

• Code morphing software resides in boot ROM

• On startup boot ROM hijacks 16MB of main memory

• Translator loaded into 512KB, rest is translation cache

• Software starts running in interpreter mode

• Interpreter profiles to find “hot” regions: procedures, loops

• Hot region compiled to native, optimized, cached

• Gradually, more and more of application starts running native

CIS 371 (Roth/Martin): Instruction Set Architectures 50

How x86 Won the Commercial War

• x86 was first 16-bit chip by ~2 years

• IBM put it into its PCs: there was no competing choice

• Rest is Moore’s Law, inertia and “financial feedback”

• x86 is most difficult ISA to implement and do it fast but…

• Because Intel sells the most non-embedded processors…

• It has the most money…

• Which it uses to hire more and better engineers…

• Which it uses to maintain competitive performance …

• And given equal performance compatibility wins…

• So Intel sells the most non-embedded processors…

• AMD keeps pressure on x86 performance

CIS 371 (Roth/Martin): Instruction Set Architectures 51

Actually, The Volume Winner is RISC

• ARM (Acorn RISC Machine ! Advanced RISC Machine)

• First ARM chip in mid-1980s (from Acorn Computer Ltd).

• 1.2 billion units sold in 2004 (>50% of all 32/64-bit CPUs)

• Low-power and embedded devices (iPod, for example)

• 32-bit RISC ISA
• 16 registers (PC is one of them: to branch, just write to the PC)

• Many addressing modes, e.g., auto increment

• Predication: Condition codes, each instruction can be conditional

• Multiple compatible implementations
• Intel’s X-scale (original design was DEC’s, bought by Intel)

• Others: Freescale (was Motorola), IBM, Texas Instruments,
Nintendo, STMicroelectronics, Samsung, Sharp, Philips, etc.

CIS 371 (Roth/Martin): Instruction Set Architectures 52

Redux: Are ISAs Important?

• Does “quality” of ISA actually matter?

• Not for performance (mostly)

• Mostly comes as a design complexity issue

• Insn/program: everything is compiled, compilers are good

• Cycles/insn and seconds/cycle: µISA, many other tricks

• Does “nastiness” of ISA matter?

• No, only compiler writers and hardware designers see it

• Even compatibility is not what it used to be…

• Software emulation

CIS 371 (Roth/Martin): Instruction Set Architectures 53

Compatibility Trap Door

• “Trap”: add some ISA feature for 5% gain
– Must support feature forever… even if gain turns to loss

• Classic: SPARC’s register windows (hardware activation records)

• Trap: insn makes low-level “function call” to OS handler
• Compatibility’s friend

• Backward compatibility: rid yourself of some ISA mistakes
• New design: “mistake feature” opcodes trap, emulated in software

• Performance (of that feature) suffers

• Legal: ISA says nothing about performance

• Actually good: feature will be used less (“deprecation cycle”)

• Forward compatibility
• Reserve set of trap opcodes (don’t define uses)

• Add ISA functionality by overloading traps

• Release firmware patch to “add” to old implementation
CIS 371 (Roth/Martin): Instruction Set Architectures 54

Translation and Virtual ISAs

• New compatibility interface: ISA + translation software

• Binary-translation: transform static image, run native

• Emulation: unmodified image, interpret each dynamic insn

• Typically optimized with just-in-time (JIT) compilation

• Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86)

• Performance overheads not that high

• Virtual ISAs: designed for translation, not direct execution

• Target for high-level compiler (one per language)

• Source for low-level translator (one per ISA)

• Goals: Portability (abstract hardware nastiness), flexibility over time

• Examples: Java Bytecodes

CIS 371 (Roth/Martin): Instruction Set Architectures 55

Summary

• What is an ISA?

• A functional contract

• All ISAs are basically the same

• But many design choices in details

• Two “philosophies”: CISC/RISC

• Good ISA enables high-performance

• At least doesn’t get in the way

• Compatibility is a powerful force
• Tricks: binary translation, µISAs

• Next: single-cycle datapath/control

CPUMem I/O

System software

AppApp App

