Instruction Set Architecture (ISA)

App | | App | | App e What is an ISA?
System software e And what is a good ISA?

CSE 371 mm_IEI i [ Aspects of ISAs

. . . ¢ With examples: LC3, MIPS, x86
Computer Organization and Design « RISC vs. CISC

o Compatibility is a powerful force
e Tricks: binary translation, uISAs

Unit 1: Instruction Set Architectures

CIS 371 (Roth/Martin): Instruction Set Architectures 1 CIS 371 (Roth/Martin): Instruction Set Architectures

Readings What Is An ISA?

e P+H o ISA (instruction set architecture)
¢ Chapter 2 ¢ A well-defined hardware/software interface
¢ The “contract” between software and hardware

¢ Functional definition of operations, modes, and storage
locations supported by hardware

¢ Precise description of how to invoke, and access them
¢ Not in the “contract”

¢ How operations are implemented

« Which operations are fast and which are slow and when

» Which operations take more power and which take less

e Instruction — Insn
¢ ‘Instruction’ is too long to write in slides

CIS 371 (Roth/Martin): Instruction Set Architectures 3 CIS 371 (Roth/Martin): Instruction Set Architectures



A Language Analogy for ISAs The Sequential Model

e Communication e Basic structure of all modern ISAs
¢ Person-to-person — software-to-hardware
Ll Fetch :
e Similar structure i | | * Processor logically executes loop at left
« Narrative — program e 0 e Atomically: insn X finishes before insn X+1 starts
e Sentence — insn Execute L
« Verb — operation (add, multiply, load, branch) write Output| | ® Program order: total order on dynamic insns
e Noun — data item (immediate, register value, memory value) Next Insn * Order and named storage define computation
[ ]

Value flows from insn X to Y via storage A iff...
A=X’s output, X=Y's input, Y after X in program order
No interceding insn Z where A=Z's output

¢ Adjective — addressing mode
e Many different languages, many different ISAs
« Similar basic structure, details differ (sometimes greatly)

¢ Key differences between languages and ISAs « Convenient feature: program counter (PC)
¢ Languages evolve organically, many ambiguities, inconsistencies

o ISAs are explicitly engineered and extended, unambiguous

¢ Insn itself at memory[PC]
¢ Next PC is PC++ unless insn says otherwise

CIS 371 (Roth/Martin): Instruction Set Architectures 5 CIS 371 (Roth/Martin): Instruction Set Architectures 6

LC3 P37X

Similar to LC3 in some ways (but better)

¢ LC3 highlights
o 1 datatype: 16-bit 2C integer
Addressible of memory locations: 16 bits e Similarities
Instructions are 16 bits * 16-bit data types _
3 arithmetic operations: add, and, not * 16-bit instructions, four-bit opcode
. } e « Similar TRAPs and devices
« Build everything else from these
8 registers, load-store model, three addressing modes
Condition codes for branches
Support for traps and interrupts

Differences
e More ALU ops: Add, Sub, Mul, Or, Not, And, Xor, Shift Left/Right
¢ No LDI, STI (indirect load/stores)
¢ No condition codes

e Why is LC3 this way? (and not some other way?)
e What are some other options?

Designed for CIS372
¢ PennSim supports this with a command-line mode switch

CIS 371 (Roth/Martin): Instruction Set Architectures 7 CIS 371 (Roth/Martin): Instruction Set Architectures 8



Some Other ISAs

What Is A Good ISA?

e LC3 & P37X has the basic features of a real-world ISA
+ Lacks a good bit of realism
e Only 16-bit
¢ Not byte addressable
¢ Fewer arithmetic insns (more for LC3 than P37X)
o Little support for system software, none for multiprocessing

e Two real world ISAs

¢ Intel x86 (IA32): a CISC ISA
e MIPS: a “real world” RISC ISA (also used in book)

e P37X: ISA used in 372
e A more RISCy LC3

e What is this RISC/CISC thing?

CIS 371 (Roth/Martin): Instruction Set Architectures 9

Insns/Program: Compiler Optimizations

¢ Lends itself to high-performance implementations
o Every ISA can be implemented
¢ Not every ISA can be implemented well

e Background: CPU performance equation
e Execution time: seconds/program
¢ Convenient to factor into three pieces
* (insns/program) * (cycles/insn) * (seconds/cycle)
¢ Insns/program: dynamic insns executed
¢ Seconds/cycle: clock period
¢ Cycles/insn (CPI): hmmm...

¢ For high performance all three factors should be low

CIS 371 (Roth/Martin): Instruction Set Architectures 10

Compiler Optimizations

e Compilers do two things

e Translate HLLs to assembly functionally
¢ Deterministic and fast compile time (gec -00)
¢ “Canonical”: not an active research area
e CIS 341

e "Optimize” generated assembly code
e “Optimize"? Hard to prove optimality in a complex system
¢ In systems: “optimize” means improve... hopefully
¢ Involved and relatively slow compile time (gecc -04)
e Some aspects: reverse-engineer programmer intention
¢ Not “canonical”: being actively researched
e CIS570

CIS 371 (Roth/Martin): Instruction Set Architectures 11

e Primarily reduce insn count
¢ Eliminate redundant computation, keep more things in registers
+ Registers are faster, fewer loads/stores
— An ISA can make this difficult by having too few registers

e But also...
¢ Reduce branches and jumps (later)
e Reduce cache misses (later)
¢ Reduce dependences between nearby insns (later)
— An ISA can make this difficult by having implicit dependences

¢ How effective are these?
+ Can give 4X performance over unoptimized code
— Collective wisdom of 40 years (“Proebsting’s Law"): 4% per year
¢ Funny but ... shouldn't leave 4X performance on the table

CIS 371 (Roth/Martin): Instruction Set Architectures 12



Seconds/Cycle and Cycle/Insn: Hmmm...

Foreshadowing: Pipelining

¢ For single-cycle datapath
¢ Cycle/insn: 1 by definition
¢ Seconds/cycle: proportional to “complexity of datapath”
¢ ISA can make seconds/cycle high by requiring a complex datapath

CIS 371 (Roth/Martin): Instruction Set Architectures 13

RISC/CISC

e Sequential model: insn X finishes before insn X+1 starts
¢ Anillusion designed to keep programmers sane

e Pipelining: important performance technique
* Hardware overlaps “processing iterations” for insns
— Variable insn length/format makes pipelining difficult
— Complex datapaths also make pipelining difficult (or clock slow)
¢ More about this later

time

Insn0 Insnl Insn2 Insn3 Insn4 Insn5
Fetch
Decode Fetch
Read Inputs Decode Fetch
Write Output Execute Read Inputs Decode Fetch
Next Insn | [Write Output Execute Read Inputs Decode | Fetch
CIS 371 (Roth/Martin): Instruction Set Architectures 14

ISA Basics

e RISC (Reduced Instruction Set Computer) ISAs
¢ Minimalist approach to an ISA: simple insns only
+ Low “cycles/insn” and “seconds/cycle”
— Higher “insn/program”, but hopefully not as much
* Rely on compiler optimizations

e CISC (Complex Instruction Set Computing) ISAs
¢ A more heavyweight approach: both simple and complex insns
+ Low “insns/program”
— Higher “cycles/insn” and “seconds/cycle”
* We have the technology to get around this problem

e More detail and context later

CIS 371 (Roth/Martin): Instruction Set Architectures 15

e Aspects of ISAs
e VonNeumann model
¢ Data types and operations
¢ Operand model
¢ Control
¢ Encoding
¢ Operating system support
e Multiprocessing support

e Examples
e LC3 (P37X)
e MIPS
* x86

CIS 371 (Roth/Martin): Instruction Set Architectures 16



Operations and Datatypes

LC3/MIPS/x86 Operations and Datatypes

Fetch
Decode
Read Inputs
Execute
Write Output
Next Insn

e Datatypes
e Software: attribute of data
e Hardware: attribute of operation, data is just 0/1’s
¢ All processors support
¢ 2C integer arithmetic/logic (8/16/32/64-bit)
o IEEE754 floating-point arithmetic (32/64 bit)
« Intel has 80-bit floating-point
e More recently, most processors support
¢ “Packed-integer” insns, e.g., MMX
e “Packed-fp” insns, e.g., SSE/SSE2
¢ For multimedia, more about these later
e Processor no longer (??) support
¢ Decimal, other fixed-point arithmetic
¢ Binary-coded decimal (BCD)

CIS 371 (Roth/Martin): Instruction Set Architectures

Where Does Data Live?

17

e LC3
¢ 16-bit integer: add, and, not
e P37X also has sub, mul, or, xor, shifts
¢ No floating-point

e MIPS
e 32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor
o 32(64) bit floating-point: add, sub, mul, div

e x86
o 32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor
o 80-bit floating-point: add, sub, mul, div, sqrt
¢ 64-bit packed integer (MMX): padd, pmul...
e 64(128)-bit packed floating-point (SSE/2): padd, pmul...
e BCD!!! (not really used obviously)
CIS 371 (Roth/Martin): Instruction Set Architectures 18

How Many Registers?

Fetch

Decode

Read Inputs

Write Output

e Memory
¢ Fundamental storage space
¢ Processor w/o memory = table w/o chairs

¢ Registers
e Faster than memory, quite handy
¢ Most processors have these too

o Immediates
¢ Values spelled out as bits in insns
e Input only

CIS 371 (Roth/Martin): Instruction Set Architectures

19

¢ Registers faster than memory, have as many as possible?
e No

One reason registers are faster: there are fewer of them
¢ Small is fast (hardware truism)

Another: they are directly addressed (no address calc)
— More of them, means larger specifiers

— Fewer registers per insn or indirect addressing

Not everything can be put in registers
e Structures, arrays, anything pointed-to
« Compilers are getting better at putting more things in

More registers means more saving/restoring

CIS 371 (Roth/Martin): Instruction Set Architectures 20



LC3/MIPS/x86 Registers

How Much Memory?

e LC3/P37X
¢ 8 16-bit integer registers
¢ No floating-point registers

e MIPS
e 32 32-bit integer registers ($0 hardwired to 0)
¢ 32 32-bit floating-point registers (or 16 64-bit registers)

e x86
o 8 8/16/32-bit integer registers (not general purpose)
¢ No floating-point registers!

o 64-bit x86 (EM64T)
¢ 16 64-bit integer registers
o 16 128-bit floating-point registers

CIS 371 (Roth/Martin): Instruction Set Architectures 21

LC3/MIPS/x86 Memory Size

e What does “64-bit” in 64-bit ISA mean?
+ Each program can address (i.e., use) 24 bytes
64 is the virtual address (VA) size
Alternative (wrong) definition: width of arithmetic operations

Most critical, inescapable ISA design decision
Too small?
« Limits the lifetime of ISA
¢ May require nasty hacks to overcome (e.g., x86 segments)

¢ All ISAs moving to 64 bits (if not already there)

CIS 371 (Roth/Martin): Instruction Set Architectures 22

How Are Memory Locations Specified?

e LC3/P37X
o 16-bit (216 16-bit words)

e MIPS
e 32-bit
* 64-bit

o x86
e 8086: 16-bit
o 80286: 24-bit
o 80386: 32-bit
¢ AMD Opteron/Athlon64, Intel's newer Pentium4, Core 2: 64-bit

CIS 371 (Roth/Martin): Instruction Set Architectures 23

e Registers are specified directly
¢ Register names are short, can be encoded in insn
¢ Some insns implicitly read/write certain registers

e How are addresses specified?
¢ Addresses are as big or bigger than insns
e Addressing mode: how are insn bits converted to addresses?
¢ Think about: what high-level idiom addressing mode captures

CIS 371 (Roth/Martin): Instruction Set Architectures 24



LC3/MIPS/x86 Addressing Modes

e LC3
¢ Displacement: R1+offset (6-bit)
¢ PC-displacement: PC+offset (9-bit)
 Memory-indirect/PC-displacement: mem[[PC]+offset(9-bit)]
— Nasty, requires accessing memory twice, P37X doesn't have this

o MIPS
* Displacement: R1+offset (16-bit)
¢ Experiments showed this covered 80% of accesses on VAX

e x86 (MOV instructions)
¢ Absolute: zero + offset (8/16/32-bit)
* Register indirect: R1
¢ Indexed: R1+R2
¢ Displacement: R1+offset (8/16/32-bit)
e Scaled: R1 + (R2*Scale) + offset(8/16/32-bit) Scale =1, 2, 4, 8

CIS 371 (Roth/Martin): Instruction Set Architectures 25

How Do Values Get From/To Memory?

¢ How do values move from/to memory (primary storage)...
e ... to/from registers/accumulator/stack?
¢ Assume displacement addressing for these examples

¢ Registers: load/store
load rl, 8(r2) means [R1] = mem[[R2] + 8]
store rl, 8(r2) means mem[[R2] + 8] = [R1]
e Accumulator: load/store
load 8 (r2) means ACC = mem[[R2] + 8]
store 8 (r2) means mem[[R2] + 8] = ACC
e Stack: push/pop
push 8 (r2) means STK[TOS++]= mem[[R2] + 8]
pop 8 (r2) means mem[[R2] + 8] = STK[TOS--]

CIS 371 (Roth/Martin): Instruction Set Architectures 27

How Many Explicit Operands / ALU Insn?

e Operand model: how many explicit operands / ALU insn?
¢ 3: general-purpose
add R1,R2,R3 means [R1] = [R2] + [R3] (MIPS uses this)
2: multiple explicit accumulators (output doubles as input)
add R1,R2 means [R1] = [R1] + [R2] (x86 uses this)
1: one implicit accumulator
add R1 means ACC = ACC + [R1]

0: hardware stack (like Java bytecodes)
add means STK[TOS++] = STK[--TOS] + STK[--TOS]

4+: useful only in special situations

e Examples show register operands...
¢ But operands can be memory addresses, or mixed register/memory

o ISAs with register-only ALU insns are “load-store”
CIS 371 (Roth/Martin): Instruction Set Architectures 26

Operand Model Pros and Cons

e Metric I: static code size
¢ Want: many Implicit operands (stack), high level insns

¢ Metric II: data memory traffic
¢ Want: as many long-lived operands in on-chip storage (load-store)

e Metric III: CPI
e Want: short latencies, little variability (load-store)

¢ CPI and data memory traffic more important these days
¢ In most niches

CIS 371 (Roth/Martin): Instruction Set Architectures 28



LC3/MIPS/x86 Operand Models

e LC3
o Integer: 8 accumulator registers
¢ Floating-point: none

e MIPS
¢ Integer/floating-point: 32 general-purpose registers, load-store

e Xx86
¢ Integer (8 registers) reg-reg, reg-mem, mem-reg, but no mem-mem
¢ Floating point: stack (why x86 floating-point sucked for years)
¢ Note: integer push, pop for managing software stack
¢ Note: also reg-mem and mem-mem string functions in hardware
o x86-64
¢ Integer/floating-point: 16 registers

CIS 371 (Roth/Martin): Instruction Set Architectures 29

Control Transfers I: Computing Targets

Control Transfers

¢ Default next-PC is PC + sizeof(current insn)

e The issues
¢ How far (statically) do you need to jump?
¢ Not far within procedure, further from one procedure to another
¢ Do you need to jump to a different place each time?
¢ PC-relative
¢ Position-independent within procedure
¢ Used for branches and jumps within a procedure
¢ Absolute
¢ Position independent outside procedure
¢ Used for procedure calls
e Indirect (target found in register)
¢ Needed for jumping to dynamic targets
e Used for returns, dynamic procedure calls, switch statements

CIS 371 (Roth/Martin): Instruction Set Architectures 31

Fetch
Decode | | ® Branches and jumps can change that
Read Inputs * Otherwise dynamic program == static program
Execute * Not useful
Write Output
o Computing targets: where to jump to
¢ For all branches and jumps
e Testing conditions: whether to jump at all
¢ For (conditional) branches only
CIS 371 (Roth/Martin): Instruction Set Architectures 30

Control Transfers II: Testing Conditions

e Compare and branch insns
branch-less-than R1,10, target
+ Simple
— Two ALUs: one for condition, one for target address
— Extra latency
¢ Implicit condition codes (x86, LC3)
subtract R2,R1,10 // sets “negative” CC
branch-neg target
+ Condition codes set “for free”
— Implicit dependence is tricky
¢ Conditions in regs, separate branch (MIPS, P37X)
set-less-than R2,R1,10
branch-not-equal-zero R2,target
— Additional insns
+ one ALU per insn, explicit dependence
CIS 371 (Roth/Martin): Instruction Set Architectures 32



LC3, MIPS, x86 Control Transfers

e ILC3
o 9-bit offset PC-relative branches/jumps (uses condition codes)
o 11-bit offset PC-relative calls and indirect calls
e P37X
* 6-bit offsets PC-relative simple branches (uses register for condition)
e 12-bit offset on calls and unconditional branchess

e MIPS
¢ 16-bit offset PC-relative conditional branches (uses register for condition)
e Compare 2 regs: beq, bne or reg to 0: bgtz, bgez, bltz, blez
+ Don't need adder for these, cover 80% of cases
o Explicit “set condition into registers”: s1t, sltu, slti, sltiu, etc.
¢ 26-bit target absolute jumps and function calls

e x86
o 8-bit offset PC-relative branches (uses condition codes)
o 8/16-bit target absolute jumps and function calls (within segment)
¢ Far jumps and calls (change code segment) for longer jumps
CIS 371 (Roth/Martin): Instruction Set Architectures 33

LC3/MIPS/x86 Length and Format

Length and Format

e LC3: 2-byte insns, 3 formats (P37X is similar)
O-reg [Op@4) Offset(12) |
1-reg |Op(4)R(3) Offset(9) |
2-reg [Op(4)R(3)R(3)Offset(6)]
3-reg [Op@REBIREIVBIRE)

e MIPS: 4-byte insns, 3 formats
R-type | Op(8) | Rs(5) | Rt(5) [ Rd(5) | Sh(5) |Func(6)|
I-type | Op(®) | Rs(5) | Rt(5) | Immed(16) |
J-type | Op(6) | Target(26) |

e x86: 1-16 byte insns

e Length
e Fixed length
Fetch ! .
B ¢ Most common is 32 bits
ecode
Read Inputs + Simple implementation: next PC = PC+4
Execute + Longer reach for branch/jump targets
Write Output — Code density: 32 bits to increment a register by 1?
i i e Variable length

— Complex implementation
+ Code density
e Compromise: two lengths
e MIPS16 or ARM’s Thumb
¢ Encoding
¢ A few simple encodings simplify decoder

CIS 371 (Roth/Martin): Instruction Set Architectures 34

Operating System Support

|Prefix*(1-4)]  Op | OpExt* | ModRM* | SIB* | Disp*(1-4) | Imm*(1-4) |

CIS 371 (Roth/Martin): Instruction Set Architectures 35

e ISA support required to implement an operating system

¢ At least two privilege modes: user (low), kernel (high)
¢ Some operations, storage locations accessible in all modes
o Others accessible only in high privilege mode
» Deal with I/O, exceptions, virtual memory, privilege itself
« Anything that allows one process to interfere with another

e Support for safely up-grading and down-grading privilege

¢ Programmatically: system calls
¢ Transparently: interrupts

CIS 371 (Roth/Martin): Instruction Set Architectures 36



Traps and System Calls

LC3/MIPS/x86 OS Support

e What if a user process wanted to access an I/O device?
e Can't actually “call” kernel procedures
¢ Kernel is “shared” by all user applications — a separate process
¢ Should not be allowed to “call” or “jump” into arbitrary kernel code
¢ Should not be allowed to upgrade privilege outside of kernel

e How does this work then?

¢ Kernel publishes a set of service codes (not function addresses)

e User processes use special insn to invoke desired service

e TRAP, INTERRUPT, SYSCALL: a (process-changing) call only...
¢ Specifies function “code” rather than address
o Upgrades privilege: only way to do this

¢ Return-from-interrupt: a (process-changing) return only...
* Downgrades privilege

CIS 371 (Roth/Martin): Instruction Set Architectures 37

Multiprocessing Support

e LC3
¢ Trap, return from interrupt
o Interrupts supported but not used in CIS 240

e MIPS

e Trap, return from trap
e “Exception coprocessor”
e Interrupts

e X86
e Trap, return from trap
¢ Exception flags
e Multi-level interrupts

CIS 371 (Roth/Martin): Instruction Set Architectures 38

RISC and CISC

e ISA support also required for multiprocessing
¢ Memory model
¢ Atomic “conditional reg/mem swap” inshs
¢ “Fence” insns

e LC3

¢ No multiprocessing support

e MIPS/x86

¢ Yes, please

e More about this later

CIS 371 (Roth/Martin): Instruction Set Architectures 39

e RISC: reduced-instruction set computer
¢ Coined by Patterson in early 80’s
¢ Berkeley RISC-I, Stanford MIPS, IBM 801
¢ Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC
e CISC: complex-instruction set computer
e Term didn't exist before “RISC"
e Examples: x86, Motorola 68000, VAX (makes x86 look like LC3), etc.

e Religious war started in mid 1980’s
e RISC “won” the (technology) battle, CISC won the (commercial) war
o Compatibility a stronger force than anyone (but Intel) thought
¢ Intel & AMD beat RISC at its own game

CIS 371 (Roth/Martin): Instruction Set Architectures 40



Pre 1980: The Setup

¢ Vicious feedback pendulum
e Bad compilers <= complex ISAs <= slow multi-chip designs
¢ Assembly commonly written by hand

CIS 371 (Roth/Martin): Instruction Set Architectures 41

Complex ISAs <= Slow Implementations

Complex ISAs <= Bad Compilers

e Complex ISAs have nasty datapaths

¢ Nasty datapaths are difficult to pipeline
¢ And pipelining doesn't help that much

¢ If you aren't going to pipeline, you want a high-level ISA
e To amortize fetch/decode

High-level ISA High-level ISA Low-level ISA
Single-cycle Pipelined Single-cycle

Execute

e Who is generating assembly code?

e Humans like high-level “CISC" ISAs (close to HLLSs)
+ Can “concretize” (“drill down”): move down a layer
+ Can “abstract” ("see patterns”): move up a layer
— Can deal with few things at a time — like things at a high level

e Computers (compilers) like low-level “"RISC” ISAs
+ Can deal with many things at a time — can do things at any level
+ Can “concretize”: 1-to-many lookup functions (databases)
— Difficulties with abstraction: many-to-1 lookup functions (AI)
¢ Translation should move strictly “down” levels

e Stranger than fiction
¢ People once thought computers would execute HLLs directly

CIS 371 (Roth/Martin): Instruction Set Architectures 42

Early 1980s: The Tipping Point

e Moore's Law makes single-chip microprocessor possible...
¢ ...but only for small, simple ISAs

¢ Performance advantage of “integration” was compelling

¢ RISC manifesto: create ISAs that...
¢ Simplify implementation
¢ Facilitate optimizing compilation
¢ Some guiding principles (“tenets”)
¢ Single cycle execution/hard-wired control

“Execute” “Execute”
etch/Decodd sy Desil « Fixed instruction length, format
etch/Decode “Execute” Execute L f A load hi f dd . d
e ¢ Lots of registers, load-store architecture, few addressing modes

“Execute”

Execute

etch/Decode

I Execute
CIS 371 (Roth/Martin): Instruction Set Architectures 43

¢ No equivalent “CISC manifesto”

CIS 371 (Roth/Martin): Instruction Set Architectures 44



The Debate

Compatibility

e RISC argument
e CISC is fundamentally handicapped
¢ For a given technology, RISC implementation will be better (faster)
¢ Current technology enables single-chip RISC
* When it enables single-chip CISC, RISC will be pipelined
* When it enables pipelined CISC, RISC will have caches
¢ When it enables CISC with caches, RISC will have next thing...

e CISC rebuttal
¢ CISC flaws not fundamental, can be fixed with more transistors
¢ Moore’s Law will narrow the RISC/CISC gap (true)
¢ Good pipeline: RISC = 100K transistors, CISC = 300K
¢ By 1995: 2M+ transistors had evened playing field
¢ Software costs dominate, compatibility is paramount

CIS 371 (Roth/Martin): Instruction Set Architectures 45

Intel’s Trick: RISC Inside

¢ No-one buys new hardware... if it requires new software
o Intel greatly benefited from this (IBM, too)
¢ ISA must remain compatible, no matter what
» x86 one of the worst designed ISAs EVER, but survives
¢ As does IBM’s 360/370 (the first “ISA family”)
e Backward compatibility
e New processors must support old programs (can't drop features)
¢ Very important
e Forward (upward) compatibility
¢ Old processors must support new programs (with software help)
¢ New processors redefine only previously-illegal opcodes
¢ Allow software to detect support for specific new instructions
¢ Old processors emulate new instructions in low-level software

CIS 371 (Roth/Martin): Instruction Set Architectures 46

More About Uops

e 1993: Intel wanted out-of-order execution in Pentium Pro
e 000 was very hard to do with a coarse grain ISA like x86
¢ Solution? Translate x86 to RISC uops in hardware
push $eax
becomes (we think, uops are proprietary)
store $eax [S$Sesp-4]
addi $esp, S$esp,-4
+ Processor maintains x86 ISA externally for compatibility
+ Executes RISC pISA internally for datapath implementation
¢ Given translator, x86 almost as easy to implement as RISC
¢ Intel implemented out-of-order before any RISC company
o Idea co-opted by other x86 companies: AMD and Transmeta
¢ The one company that resisted (Cyrix) couldn’t keep up

CIS 371 (Roth/Martin): Instruction Set Architectures 47

e Even better? Two forms of hardware translation
¢ Optimized logic: for common insns that translate into 1-4 uops
+ Fast
— Complex
¢ Table: for rare insns or nasty insns that translate into 5+ uops
— Slow
+ “Off to the side”, doesn’t complicate rest of machine

e x86: average 1.6 uops / x86 insn

e Xx86-64: average 1.1 uops / x86 insn
* More registers (can pass parameters too), fewer pushes/pops
¢ Speculation about Core 2: PLA for 1-2 uops, Table for 3+ uops?

CIS 371 (Roth/Martin): Instruction Set Architectures 48



Transmeta’s Take: Code Morphing

How x86 Won the Commercial War

e Code morphing: x86 translation in software
¢ Crusoe/Astro are x86 emulators, no actual x86 hardware anywhere
¢ Only “code morphing” translation software written in native ISA
¢ Native ISA is invisible to applications, OS, even BIOS
o Different Crusoe versions have (slightly) different ISAs: can't tell

e How was it done?
¢ Code morphing software resides in boot ROM
e On startup boot ROM hijacks 16MB of main memory
e Translator loaded into 512KB, rest is translation cache
o Software starts running in interpreter mode
o Interpreter profiles to find “hot” regions: procedures, loops
¢ Hot region compiled to native, optimized, cached
¢ Gradually, more and more of application starts running native

CIS 371 (Roth/Martin): Instruction Set Architectures 49

Actually, The Volume Winner is RISC

e x86 was first 16-bit chip by ~2 years
e IBM put it into its PCs: there was no competing choice

e Rest is Moore's Law, inertia and “financial feedback”
* x86 is most difficult ISA to implement and do it fast but...

Because Intel sells the most non-embedded processors...

It has the most money...

Which it uses to hire more and better engineers...

Which it uses to maintain competitive performance ...

¢ And given equal performance compatibility wins...

¢ So Intel sells the most hon-embedded processors...

e AMD keeps pressure on x86 performance

CIS 371 (Roth/Martin): Instruction Set Architectures 50

Redux: Are ISAs Important?

e ARM (Acorn RISC Machine — Advanced RISC Machine)
¢ First ARM chip in mid-1980s (from Acorn Computer Ltd).
¢ 1.2 billion units sold in 2004 (>50% of all 32/64-bit CPUs)
o Low-power and embedded devices (iPod, for example)

e 32-bit RISC ISA
* 16 registers (PC is one of them: to branch, just write to the PC)
¢ Many addressing modes, e.g., auto increment
¢ Predication: Condition codes, each instruction can be conditional

e Multiple compatible implementations
¢ Intel’s X-scale (original design was DEC's, bought by Intel)

¢ Others: Freescale (was Motorola), IBM, Texas Instruments,
Nintendo, STMicroelectronics, Samsung, Sharp, Philips, etc.

CIS 371 (Roth/Martin): Instruction Set Architectures 51

e Does “quality” of ISA actually matter?
¢ Not for performance (mostly)
¢ Mostly comes as a design complexity issue
¢ Insn/program: everything is compiled, compilers are good
¢ Cycles/insn and seconds/cycle: uISA, many other tricks

e Does “nastiness” of ISA matter?
¢ No, only compiler writers and hardware designers see it

e Even compatibility is not what it used to be...
* Software emulation

CIS 371 (Roth/Martin): Instruction Set Architectures 52



Compatibility Trap Door

e “Trap”: add some ISA feature for 5% gain
— Must support feature forever... even if gain turns to loss
¢ Classic: SPARC's register windows (hardware activation records)

e Trap: insn makes low-level “function call” to OS handler
o Compatibility’s friend

e Backward compatibility: rid yourself of some ISA mistakes
* New design: “mistake feature” opcodes trap, emulated in software
¢ Performance (of that feature) suffers

e Legal: ISA says nothing about performance
¢ Actually good: feature will be used less (“deprecation cycle”)

e Forward compatibility
o Reserve set of trap opcodes (don't define uses)

* Add ISA functionality by overloading traps

¢ Release firmware patch to “add” to old implementation
CIS 371 (Roth/Martin): Instruction Set Architectures 53

Summary

Translation and Virtual ISAs

App | | App | | App What is an ISA?
System software ¢ A functional contract

All ISAs are basically the same
Mem || CPU || /O : S ;
e But many design choices in details

e Two “philosophies”: CISC/RISC
Good ISA enables high-performance
o At least doesn't get in the way

Compatibility is a powerful force
e Tricks: binary translation, uISAs

Next: single-cycle datapath/control

CIS 371 (Roth/Martin): Instruction Set Architectures 55

¢ New compatibility interface: ISA + translation software
¢ Binary-translation: transform static image, run native
 Emulation: unmodified image, interpret each dynamic insn
 Typically optimized with just-in-time (JIT) compilation
o Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86)
* Performance overheads not that high

e Virtual ISAs: designed for translation, not direct execution
o Target for high-level compiler (one per language)
¢ Source for low-level translator (one per ISA)
¢ Goals: Portability (abstract hardware nastiness), flexibility over time
¢ Examples: Java Bytecodes

CIS 371 (Roth/Martin): Instruction Set Architectures 54



