CIS 371 Computer Organization and Design

Unit 4: Integer Arithmetic

CIS371 (Roth/Martin): Integer Arithmetic

Readings

- P+H
 - Chapter 3
 - Except 3.6 and 3.7: "floating point arithmetic"
 - · We'll get to that next

This Unit: Integer Arithmetic

- · A little review
 - Binary + 2s complement
 - Ripple-carry addition (RCA)
- Fast integer addition
 - Carry-select (CSeA)
 - Mention of Carry-lookahead (CLA)
- Shifters
- Integer multiplication
 - · Carry-save addition
- Division

CIS371 (Roth/Martin): Integer Arithmetic

2

The Importance of Fast Addition

- Addition of two 2C numbers is most common operation
 - · Programs use addition frequently
 - Loads and stores use addition for address calculation
 - Branches use addition to test conditions and calculate targets
 - · All insns use addition to calculate default next PC
- Fast addition critical to high performance

CIS371 (Roth/Martin): Integer Arithmetic

CIS371 (Roth/Martin): Integer Arithmetic

4

Adder Delay and Clock Period

- Common case: add + "forward" value to consuming insn
 - "forwarding": enables dependent insns to execute back-to-back
- MCCF: make addition (+ latch) + "forward" the clock cycle
 - "Pipeline" longer operations over multiple clock cycles

CIS371 (Roth/Martin): Integer Arithmetic

- 5

Fixed Width

- On pencil and paper, integers have infinite width
- In hardware, integers have fixed width
 - N bits: 16, 32 or 64
 - LSB is 2^0 , MSB is 2^{N-1}
 - Range: 0 to 2N-1
 - Numbers >2^N represented using multiple fixed-width integers
 - In software

Binary Integers

• Computers represent integers in binary (base2)

$$3 = 11, 4 = 100, 5 = 101, 30 = 11110$$

- + Natural since only two values are represented
- Addition, etc. take place as usual (carry the 1, etc.)

$$17 = 10001$$
 $+5 = 101$
 $22 = 10110$

- Some old machines use decimal (base10) with only 0/1
 - 30 = 011 000
 - Unnatural for digial logic, implementation complicated & slow

CIS371 (Roth/Martin): Integer Arithmetic

6

What About Negative Integers?

- Sign/magnitude
 - Unsigned plus one bit for sign

$$10 = 000001010, -10 = 100001010$$

- + Matches our intuition from "by hand" decimal arithmetic
- Both 0 and -0
- Addition is difficult
- Range: -(2^{N-1}-1) to 2^{N-1}-1
- Option II: two's complement (2C)
 - Leading 0s mean positive number, leading 1s negative 10 = 00001010, -10 = 11110110
 - + One representation for 0
 - + Easy addition
 - Range: -(2^{N-1}) to 2^{N-1}-1

The Tao of 2C

- How did 2C come about?
 - "Let's design a representation that makes addition easy"
 - Think of subtracting 10 from 0 by hand
 - Have to "borrow" 1s from some imaginary leading 1

```
0 = 100000000
-10 = 00001010
-10 = 011110110
```

Now, add the conventional way...

```
\begin{array}{rcl}
-10 & = & 11110110 \\
+10 & = & 00001010 \\
0 & = & 100000000
\end{array}
```

CIS371 (Roth/Martin): Integer Arithmetic

q

1st Grade: Decimal Addition

1 43 <u>+29</u>

- · Repeat N times
 - Add least significant digits and any overflow from previous add
 - Carry "overflow" to next addition
 - Overflow: any digit other than least significant of sum
 - Shift two addends and sum one digit to the right
- Sum of two N-digit numbers can yield an N+1 digit number

Still More On 2C

- What is the interpretation of 2C?
 - Same as binary, except MSB represents -2^{N-1}, not 2^{N-1}

$$\bullet$$
 -10 = 11110110 = -2⁷+2⁶+2⁵+2⁴+2²+2¹

+ Extends to any width

$$\bullet$$
 -10 = 110110 = -2⁵+2⁴+2²+2¹

• Why? $2^N = 2*2^{N-1}$

•
$$-2^5+2^4+2^2+2^1 = (-2^6+2*2^5)-2^5+2^4+2^2+2^1 = -2^6+2^5+2^4+2^2+2^1$$

- Trick to negating a number quickly: $-\mathbf{B} = \mathbf{B'} + \mathbf{1}$
 - -(1) = (0001)'+1 = 1110+1 = 1111 = -1
 - -(-1) = (1111)'+1 = 0000+1 = 0001 = 1
 - -(0) = (0000)'+1 = 1111+1 = 0000 = 0
 - · Think about why this works

CIS371 (Roth/Martin): Integer Arithmetic

1

Binary Addition: Works the Same Way

```
\begin{array}{rcl}
1 & 111111 \\
43 &= 00101011 \\
+29 &= 00011101 \\
72 &= 01001000
\end{array}
```

- Repeat N times
 - Add least significant bits and any overflow from previous add
 - Carry the overflow to next addition
 - Shift two addends and sum one bit to the right
- Sum of two N-bit numbers can yield an N+1 bit number
- More steps (smaller base)
- + Each one is simpler (adding just 1 and 0)
 - So simple we can do it in hardware

The Half Adder

- How to add two binary integers in hardware?
- Start with adding two bits
 - When all else fails ... look at truth table

- S = A^B
- CO (carry out) = AB
- This is called a half adder

CIS371 (Roth/Martin): Integer Arithmetic

13

Ripple-Carry Adder

- N-bit ripple-carry adder
 - N 1-bit full adders "chained" together
 - $CO_0 = CI_1$, $CO_1 = CI_2$, etc.
 - $CI_0 = 0$
 - \bullet $\text{CO}_{\text{N-1}}$ is carry-out of entire adder
 - $CO_{N-1} = 1 \rightarrow "overflow"$
- Example: 16-bit ripple carry adder
 - · How fast is this?
 - How fast is an N-bit ripple-carry adder?

The Other Half

- We could chain half adders together, but to do that...
 - Need to incorporate a carry out from previous adder

- S = C'A'B + C'AB' + CA'B' + CAB = C ^ A ^ B
- CO = C'AB + CA'B + CAB' + CAB = CA + CB + AB
- This is called a full adder

CIS371 (Roth/Martin): Integer Arithmetic

14

Quantifying Adder Delay

- Combinational logic dominated by gate (transistor) delays
 - Array storage dominated by wire delays
 - Longest delay or "Critical path" is what matters
- Can implement any combinational function in "2" logic levels
 - 1 level of AND + 1 level of OR (PLA)
 - NOTs are "free": push to input (DeMorgan's), read from latch
 - Example: delay(FullAdder) = 2
 - d(CarryOut) = delay(AB + AC + BC)
 - $d(Sum) = d(A \land B \land C) = d(AB'C' + A'BC' + ABC' + ABC) = 2$
 - Note '^' means Xor (just like in C & Java)
- Caveat: "2" assumes gates have few (<8 ?) inputs

Ripple-Carry Adder Delay

- Longest path is to CO₁₅ (or S₁₅)
 - $d(CO_{15}) = 2 + MAX(d(A_{15}), d(B_{15}), d(CI_{15}))$ • $d(A_{15}) = d(B_{15}) = 0, d(CI_{15}) = d(CO_{14})$
 - $d(CO_{15}) = 2 + d(CO_{14}) = 2 + 2 + d(CO_{13}) ...$
 - $d(CO_{15}) = 32$
- $D(CO_{N-1}) = 2N$
 - Too slow!
 - Linear in number of bits
- · Number of gates is also linear

CIS371 (Roth/Martin): Integer Arithmetic

17

Theme: Hardware != Software

- Hardware can do things that software fundamentally can't
 - And vice versa (of course)
- In hardware, it's easier to trade resources for latency
- One example of this: speculation
 - Slow computation is waiting for some slow input?
 - Input one of two things?
 - Compute with both (slow), choose right one later (fast)
- Does this make sense in software? Not on a uni-processor
- Difference? hardware is parallel, software is sequential

Bad idea: a PLA-based Adder?

- If any function can be expressed as two-level logic...
 - ...why not use a PLA for an entire 8-bit adder?
- Not small
 - Approx. 2¹⁵ AND gates, each with 2¹⁶ inputs
 - Then, 2¹⁶ OR gates, each with 2¹⁶ inputs
 - Number of gates exponential in bit width!
- · Not that fast, either
 - An AND gate with 65 thousand inputs != 2-input AND gate
 - Many-input gates made a tree of, say, 4-input gates
 - 16-input gates would have at least 8 logic levels
 - · So, at least 16 levels of logic for a 16-bit PLA
 - Even so, delay is logarithmic in number of bits
- There are better (faster, smaller) ways

CIS371 (Roth/Martin): Integer Arithmetic

18

Carry-Select Adder

- Carry-select adder
 - Do $A_{15-8}+B_{15-8}$ twice, once assuming C_8 (CO₇) = 0, once = 1
 - Choose the correct one when CO₇ finally becomes available
 - + Effectively cuts carry chain in half (break critical path)
 - But adds mux

Multi-Segment Carry-Select Adder

- Multiple segments
 - Example: 5, 5, 6 bit = 16 bit
- Hardware cost
 - Still mostly linear
 - Compute each segment with 0 and 1 carry-in
 - Serial mux chain
- Delay
 - 5-bit adder (10) + Two muxes (4) = 14

CIS371 (Roth/Martin): Integer Arithmetic

21

Another Option: Carry Lookahead

- Is carry-select adder as fast as we can go?
 - Nope
- Another approach to using additional resources
 - · Instead of redundantly computing sums assuming different carries
 - Use redundancy to compute carries more quickly
 - This approach is called carry lookahead (CLA)

Carry-Select Adder Delay

- What is carry-select adder delay (two segment)?
 - $d(CO_{15}) = MAX(d(CO_{15-8}), d(CO_{7-0})) + 2$
 - $d(CO_{15}) = MAX(2*8, 2*8) + 2 = 18$
 - In general: 2*(N/2) + 2 = N+2 (vs 2N for RCA)
- What if we cut adder into 4 equal pieces?
 - Would it be 2*(N/4) + 2 = 10? Not quite
 - $d(CO_{15}) = MAX(d(CO_{15-12}), d(CO_{11-0})) + 2$
 - $d(CO_{15}) = MAX(2*4, MAX(d(CO_{11-8}), d(CO_{7-0})) + 2) + 2$
 - $d(CO_{15}) = MAX(2*4,MAX(2*4,MAX(d(CO_{7-4}),d(CO_{3-0})) + 2) + 2) + 2$
 - $d(CO_{15}) = MAX(2*4, MAX(2*4, MAX(2*4, 2*4) + 2) + 2) + 2$
 - $d(CO_{15}) = 2*4 + 3*2 = 14$
- N-bit adder in M equal pieces: 2*(N/M) + (M-1)*2
 - 16-bit adder in 8 parts: 2*(16/8) + 7*2 = 18

CIS371 (Roth/Martin): Integer Arithmetic

22

Carry Lookahead Adder (CLA)

- Calculate "propagate" and "generate" based on A, B
 - Not based on carry in
- · Combine with tree structure
- Prior years: CLA covered in great detail
 - Dozen slides or so
 - Not this year
- Take aways
 - Tree gives logarithmic delay
 - · Reasonable area

Adders In Real Processors

- Real processors super-optimize their adders
 - Ten or so different versions of CLA
 - · Highly optimized versions of carry-select
 - · Other gate techniques: carry-skip, conditional-sum
 - Sub-gate (transistor) techniques: Manchester carry chain
 - · Combinations of different techniques
 - Alpha 21264 uses CLA+CSeA+RCA
 - Used a different levels
- Even more optimizations for incrementers
 - Why?

CIS371 (Roth/Martin): Integer Arithmetic

25

A 16-bit ALU

- Build an ALU with functions: add/sub, and, or, not, xor
 - · All of these already in CLA adder/subtracter
 - add A B, sub A B ... check
 - not B is needed for subtraction

• xor A B?

• $S_i = A_i ^B_i ^C_i$

• What is still missing?

Subtraction: Addition's Tricky Pal

- Sign/magnitude subtraction is mental reverse addition
 - · 2C subtraction is addition
- How to subtract using an adder?
 - sub A B = add A -B
 - Negate B before adding (fast negation trick: -B = B' + 1)
- Isn't a subtraction then a negation and two additions?
 - + No, an adder can implement A+B+1 by setting the carry-in to 1

26

Shift and Rotation Instructions

- Left/right shifts are useful...
 - Fast multiplication/division by small constants (next)
 - Bit manipulation: extracting and setting individual bits in words
- Right shifts
 - Can be logical (shift in 0s) or arithmetic (shift in copies of MSB)

srl 110011, 2 = 001100

sra 110011, 2 = 111100

- Caveat: sra is not equal to division by 2 of negative numbers
- Rotations are less useful...
 - But almost "free" if shifter is there
 - MIPS and P37X have only shifts, x86 has shifts and rotations

A Simple Shifter

- The simplest 16-bit shifter: can only shift left by 1
 - Implement using wires (no logic!)
- Slightly more complicated: can shift left by 1 or 0
 - Implement using wires and a multiplexor (mux16_2to1)

CIS371 (Roth/Martin): Integer Arithmetic

29

3rd Grade: Decimal Multiplication

19 // multiplicand * 12 // multiplier 38 + 190 228 // product

- Start with product 0, repeat steps until no multiplier digits
 - Multiply multiplicand by least significant multiplier digit
 - Add to product
 - Shift multiplicand one digit to the left (multiply by 10)
 - Shift multiplier one digit to the right (divide by 10)
- Product of N-digit, M-digit numbers may have N+M digits

Barrel Shifter

- What about shifting left by any amount 0-15?
- 16 consecutive "left-shift-by-1-or-0" blocks?
 Would take too long (how long?)
- Barrel shifter: 4 "shift-left-by-X-or-0" blocks (X = 1,2,4,8)
 - What is the delay?

• Similar barrel designs for right shifts and rotations

CIS371 (Roth/Martin): Integer Arithmetic

30

Binary Multiplication: Same Refrain

- ± Smaller base → more steps, each is simpler
 - Multiply multiplicand by least significant multiplier digit
 + 0 or 1 → no actual multiplication, add multiplicand or not
 - Add to total: we know how to do that
 - · Shift multiplicand left, multiplier right by one digit

Software Multiplication

- · Can implement this algorithm in software
- Inputs: md (multiplicand) and mr (multiplier)

```
int pd = 0; // product
int i = 0;
for (i = 0; i < 16 && mr != 0; i++) {
   if (mr & 1) {
     pd = pd + md;
   md = md << 1;
                   // shift left
  mr = mr >> 1;
                   // shift right
```

CIS371 (Roth/Martin): Integer Arithmetic

Hardware Multiply

- Control: repeat 16 times
 - LSB(multiplier) == 1 ? Add multiplicand to product
 - · Shift multiplicand left by 1
 - Shift multiplier right by 1

Strength Reduction

• Strength reduction: compilers will do this (sort of)

• Useful for address calculation: all basic data types are 2^M in size int A[100];

```
&A[N] = A+(N*sizeof(int)) = A+N*4 = A+N<<2
```

CIS371 (Roth/Martin): Integer Arithmetic

Aside: Shift Registers

- Shift register: shift in place by constant quantity
 - Useful for multipliers and a few other things

Multiplying Negative Numbers

- Just works as long as...
 - · Right shifts are arithmetic and not logical
 - · If addition overflows, remember overflow bit and shift it in
 - Try it out for yourself (at home)

CIS371 (Roth/Martin): Integer Arithmetic

37

Hardware != Software: Part Deux

- Recall: hardware is parallel, software is sequential
- Exploit: evaluate independent sub-expressions in parallel
- Example I: S = A + B + C + D
 - Software? 3 steps: (1) S1 = A+B, (2) S2 = S1+C, (3) S = S2+D
 - + Hardware? 2 steps: (1) S1 = A+B, S2=C+D, (2) S = S1+S2
- Example II: S = A + B + C
 - Software? 2 steps: (1) S1 = A+B, (2) S = S1+C
 - Hardware? 2 steps: (1) S1 = A+B (2) S = S1+C
 - + Actually hardware can do this in 1.2 steps!
 - Sub-expression parallelism exists below 16-bit addition level

Another Approach: Multiple Adders

- Multiply by N bits at a time using N adders
 - Example: N=5, terms (P=product, C=multiplicand, M=multiplier)
 - P = (M[0] ? (C) : 0) + (M[1] ? (C<<1) : 0) + (M[2] ? (C<<2) : 0) + (M[3] ? (C<<3) : 0) + ...
 - Arrange like a tree to reduce gate delay critical path (clock period)

CIS371 (Roth/Martin): Integer Arithmetic

38

Partial Sums/Carries

- Observe: carry-outs don't have to be chained immediately
 - Can be saved for later and added back in

- Partial sums/carries use simple half-adders, not full-adders
- + Aren't "chained" → can be done in two levels of logic
- Must sum partial sums/carries eventually, and this sum is chained
 d(CS-adder) = 2 + d(normal-adder)
- What is the point?

Three Input Addition

• Observe: only 0/1 carry-out possible even if 3 bits added

```
00111 = 7
 00011 = 3
+00010 = 2
            // partial sums (sums without carrries)
 00110
            // partial carries (carries without sums)
+00110
 01100 = 12
```

- · Partial sums/carries use full adders
- + Still aren't "chained" → can be done in two levels of logic
- The point is delay(CS-adder) = 2 + delay(normal-adder)...
- ...even for adding 3 numbers!
- 2 + delay(normal-adder) < 2 * delay(normal-adder)

CIS371 (Roth/Martin): Integer Arithmetic

Carry Save Addition (CSA)

- 2 RC adders
 - + 2 + d(add) gate delays
 - d(add) is really long

- CSA+RC adder
 - 2 + d(add)
 - Subtraction works too

CIS371 (Roth/Martin): Integer Arithmetic

Carry Save Addition (CSA)

- Carry save addition (CSA): delay(N adds) < N*d(1 add)
 - · Enabling observation: unconventional view of full adder
 - 3 inputs $(A,B,C_{in}) \rightarrow 2$ outputs (S,C_{out})
 - If adding two numbers, only thing to do is chain C_{out} to C_{in+1}
 - But what if we are adding three numbers (A+B+D)?
 - One option: back-to-back conventional adders
 - $(A,B,C_{inT}) \rightarrow (T,C_{outT})$, chain C_{outT} to C_{inT+1}
 - $(T,D,C_{inS}) \rightarrow (S,C_{outS})$, chain C_{outS} to C_{inS+1}
 - Notice: we have three independent inputs to feed first adder
 - (A,B,D) → (T,C_{outT}), no chaining (CSA: 2 gate levels)
 - T: A+B+D partial sum
 - C_{outT}: A+B+D partial carry
 - $(T,C_{outT},C_{inS}) \rightarrow (S,C_{outS})$, chain C_{outS} to C_{inS+1}

CIS371 (Roth/Martin): Integer Arithmetic

Carry Save Addition (CSA)

- - 2 * d(add) gate delays
 - + d(add) may be fast

- CSA+general adder
- + 2 + d(add) gate levels
- + d(add) may be fast

CSA Tree Multiplier

- Use 3-to-2 CSA adders
 - Build a tree structure
- 16-bit
 - · Start: 16 bits
 - 1st: 5*(3->2)+1 = 11
 - 2nd: 3*(3->2)+2=8
 - 3rd: 2*(3->2)+2=6
 - 4th: 2*(3->2)+0=4
 - 5th: ...
- Called a "Wallace Tree"

CIS371 (Roth/Martin): Integer Arithmetic

4th Grade: Decimal Division

9 // quotient 3 | 29 // divisor | dividend -27 2 // remainder

- Shift divisor left (multiply by 10) until MSB lines up with dividend's
- Repeat until remaining dividend (remainder) < divisor
 - Find largest single digit q such that (q*divisor) < dividend
 - Set LSB of quotient to q
 - Subtract (q*divisor) from dividend
 - Shift quotient left by one digit (multiply by 10)
 - Shift divisor right by one digit (divide by 10)

Multiplier Latency and Clock Period

- Question
 - If adder latency determines clock period...
 - And adder latency is N gate delays...
 - How can a K gate delay CSA multiplier fit in 1 cycle?
 - And K > N
- Answer
 - ?

CIS371 (Roth/Martin): Integer Arithmetic

46

Binary Division

Binary Division Hardware

- Same as decimal division, except (again)
 - More individual steps (base is smaller)
 - + Each step is simpler
 - Find largest bit q such that (q*divisor) < dividend
 - q = 0 or 1
 - Subtract (q*divisor) from dividend
 - q = 0 or $1 \rightarrow$ no actual multiplication, subtract divisor or not
- Complication: largest q such that (q*divisor) < dividend
 - How do you know if (1*divisor) < dividend?
 - · Human can "eyeball" this
 - Computer does not have eyeballs
 - Subtract and see if result is negative

CIS371 (Roth/Martin): Integer Arithmetic

49

Divide Example

• Input: Divisor = 00011 , Dividend = 11101

Step	Remainder	Quotient	Remainder	Dividend
0	00000	00000	00000	11101
1	0000	00000	00001	1101 0
2	00011	00001	00000	101 00
3	00001	00010	00001	01 000
4	00010	00100	00001	1 0000
5	0010 <mark>1</mark>	0100 <mark>1</mark>	00010	00000

• Result: Quotient: 1001, Remainder: 10

Software Divide Algorithm

- Can implement this algorithm in software
- Inputs: dividend and divisor

```
for (int i = 0; i < 32; i++) {
  remainder = (remainder << 1) | (dividend >> 31);
  if (remainder >= divisor) {
    quotient = (quotient << 1) | 1;
    remainder = remainder - divisor;
  } else {
    quotient = quotient << 1
  }
  dividend = dividend << 1;
}</pre>
```

CIS371 (Roth/Martin): Integer Arithmetic

50

Divider Circuit

• N cycles for n-bit divide

Arithmetic Latencies

- Latency in cycles of common arithmetic operations
- Source: Software Optimization Guide for AMD Family 10h Processors, Dec 2007
 - Intel "Core 2" chips similar

Int 32	Int 64
1	1
3	5
14 to 40	23 to 87
	1 3

- · Divide is variable latency based on the size of the dividend
 - · Detect number of leading zeros, then divide

CIS371 (Roth/Martin): Integer Arithmetic

53

Summary

- Integer addition
 - Most timing-critical operation in datapath
 - Hardware != software

• Next up: Floating point

- exploit sub-addition parallelism
- Fast addition
 - Carry-select: parallelism in sum
 - Carry-lookahead: parallelism/hierarchy in carry
- Multiplication
 - Carry-save: parallelisms in three-inputs
- Division

CIS371 (Roth/Martin): Integer Arithmetic

5