CIS 371
Computer Organization and Design

Unit 4: Integer Arithmetic

This Unit: Integer Arithmetic

App		
	App	App
System software		
Mem	CPU	$1 / 0$

- A little review
- Binary $+2 s$ complement
- Ripple-carry addition (RCA)
- Fast integer addition
- Carry-select (CSeA)
- Mention of Carry-lookahead (CLA)
- Shifters
- Integer multiplication
- Carry-save addition
- Division

Readings

- $\mathrm{P}+\mathrm{H}$
- Chapter 3
- Except 3.6 and 3.7: "floating point arithmetic"
- We'll get to that next

The Importance of Fast Addition

- Addition of two 2C numbers is most common operation
- Programs use addition frequently
- Loads and stores use addition for address calculation
- Branches use addition to test conditions and calculate targets
- All insns use addition to calculate default next PC
- Fast addition critical to high performance

Adder Delay and Clock Period

- Common case: add + "forward" value to consuming insn
- "forwarding": enables dependent insns to execute back-to-back
- MCCF: make addition (+ latch) + "forward" the clock cycle
- "Pipeline" longer operations over multiple clock cycles

CIS371 (Roth/Martin): Integer Arithmetic

Fixed Width

- On pencil and paper, integers have infinite width
- In hardware, integers have fixed width
- N bits: 16,32 or 64
- LSB is $2^{0}, \mathrm{MSB}$ is $2^{\mathrm{N}-1}$
- Range: 0 to $2^{\mathrm{N}}-1$
- Numbers $>2^{N}$ represented using multiple fixed-width integers
- In software

Binary Integers

- Computers represent integers in binary (base2)
$3=11,4=100,5=101,30=11110$
+ Natural since only two values are represented
- Addition, etc. take place as usual (carry the 1 , etc.)

17	$=$	10001
$+5=$	101	
$22=$	10110	

- Some old machines use decimal (base10) with only $0 / 1$ $30=011000$
- Unnatural for digial logic, implementation complicated \& slow

What About Negative Integers?

- Sign/magnitude
- Unsigned plus one bit for sign

$$
10=000001010,-10=100001010
$$

+ Matches our intuition from "by hand" decimal arithmetic
- Both 0 and -0
- Addition is difficult
- Range: $-\left(2^{\mathrm{N}-1}-1\right)$ to $2^{\mathrm{N}-1}-1$
- Option II: two's complement (2C)
- Leading $0 s$ mean positive number, leading 1 s negative $10=00001010,-10=11110110$
+ One representation for 0
+ Easy addition
- Range: -(2 $\left.2^{\mathrm{N}-1}\right)$ to $2^{\mathrm{N}-1}-1$

The Tao of 2C

- How did 2C come about?
- "Let's design a representation that makes addition easy"
- Think of subtracting 10 from 0 by hand
- Have to "borrow" 1 s from some imaginary leading 1

$$
\begin{aligned}
0 & =100000000 \\
-10 & =00001010 \\
\hline-10 & =011110110
\end{aligned}
$$

- Now, add the conventional way...

$$
\begin{aligned}
-10 & =11110110 \\
+10 & =00001010 \\
\hline 0 & =100000000
\end{aligned}
$$

1st Grade: Decimal Addition

1

43
$+29$

- Repeat N times
- Add least significant digits and any overflow from previous add
- Carry "overflow" to next addition
- Overflow: any digit other than least significant of sum
- Shift two addends and sum one digit to the right
- Sum of two N -digit numbers can yield an $\mathrm{N}+1$ digit number

Still More On 2C

- What is the interpretation of 2 C ?
- Same as binary, except MSB represents $-2^{\mathrm{N}-1}$, not $2^{\mathrm{N}-1}$

$$
\text { - }-10=11110110=-2^{7}+2^{6}+2^{5}+2^{4}+2^{2}+2^{1}
$$

+ Extends to any width
- $-10=110110=-2^{5}+2^{4}+2^{2}+2^{1}$
-Why? $2^{\mathrm{N}}=2^{*} 2^{\mathrm{N}-1}$
- $-2^{5}+2^{4}+2^{2}+2^{1}=\left(-2^{6}+2^{*} 2^{5}\right)-2^{5}+2^{4}+2^{2}+2^{1}=-2^{6}+2^{5}+2^{4}+2^{2}+2^{1}$
- Trick to negating a number quickly: $-B=B^{\prime}+1$
- $-(1)=(0001)^{\prime}+1=1110+1=1111=-1$
- $-(-1)=(1111)^{\prime}+1=0000+1=0001=1$
- $-(0)=(0000)^{\prime}+1=1111+1=0000=0$
- Think about why this works

Binary Addition: Works the Same Way

1111111
$43=00101011$
$+29=00011101$
$72=01001000$

- Repeat N times
- Add least significant bits and any overflow from previous add
- Carry the overflow to next addition
- Shift two addends and sum one bit to the right
- Sum of two N -bit numbers can yield an $\mathrm{N}+1$ bit number
- More steps (smaller base)
+ Each one is simpler (adding just 1 and 0)
- So simple we can do it in hardware

The Half Adder

- How to add two binary integers in hardware?
- Start with adding two bits
- When all else fails ... look at truth table

```
\(\mathrm{AB}=\mathrm{CO} \mathrm{S}\)
\(00=00\)
\(1=01\)
\(10=01\)
\(11=10\)
```


- $\mathbf{C O}$ (carry out) $=\mathbf{A B}$
- This is called a half adder

Ripple-Carry Adder

- N-bit ripple-carry adder
- N 1-bit full adders "chained" together
- $\mathrm{CO}_{0}=\mathrm{CI}_{1}, \mathrm{CO}_{1}=\mathrm{CI}_{2}$, etc.
- $\mathrm{CI}_{0}=0$
- $\mathrm{CO}_{\mathrm{N}-1}$ is carry-out of entire adder

$$
\text { - } \mathrm{CO}_{N-1}=1 \rightarrow \text { "overflow" }
$$

- Example: 16 -bit ripple carry adder

- How fast is this?
- How fast is an N-bit ripple-carry adder?

The Other Half

- We could chain half adders together, but to do that...
- Need to incorporate a carry out from previous adder

- $\mathbf{S}=\mathbf{C}^{\prime} A^{\prime} B+C^{\prime} A B^{\prime}+C A^{\prime} B^{\prime}+C A B=C^{\wedge} A \wedge B$
- $C O=C^{\prime} A B+C A^{\prime} B+C A B^{\prime}+C A B=C A+C B+A B$
- This is called a full adder

CIS371 (Roth/Martin): Integer Arithmetic
14

Quantifying Adder Delay

- Combinational logic dominated by gate (transistor) delays
- Array storage dominated by wire delays
- Longest delay or "Critical path" is what matters
- Can implement any combinational function in " 2 " logic levels
- 1 level of AND + 1 level of OR (PLA)
- NOTs are "free": push to input (DeMorgan's), read from latch
- Example: delay(FullAdder) $=2$
- $d($ CarryOut $)=\operatorname{delay}(A B+A C+B C)$
- $d($ Sum $)=d(A \wedge B \wedge C)=d\left(A B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B C^{\prime}+A B C\right)=2$
- Note '^' means Xor (just like in C \& Java)
- Caveat: "2" assumes gates have few (<8 ?) inputs

Ripple-Carry Adder Delay

- Longest path is to CO_{15} (or S_{15})
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=2+\operatorname{MAX}\left(\mathrm{d}\left(\mathrm{A}_{15}\right) \mathrm{d}\left(\mathrm{B}_{15}\right) \mathrm{d}\left(\mathrm{CI}_{15}\right)\right)$
- $\mathrm{d}\left(\mathrm{A}_{15}\right)=\mathrm{d}\left(\mathrm{B}_{15}\right)=0, \mathrm{~d}\left(\mathrm{CI}_{15}\right)=\mathrm{d}\left(\mathrm{CO}_{14}\right)$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=2+\mathrm{d}\left(\mathrm{CO}_{14}\right)=2+2+\mathrm{d}\left(\mathrm{CO}_{13}\right) \ldots$
- $d\left(\mathrm{CO}_{15}\right)=32$
- $\mathrm{D}\left(\mathrm{CO}_{\mathrm{N}-1}\right)=2 \mathrm{~N}$
- Too slow!
- Linear in number of bits
- Number of gates is also linear

Theme: Hardware != Software

- Hardware can do things that software fundamentally can't
- And vice versa (of course)
- In hardware, it's easier to trade resources for latency
- One example of this: speculation
- Slow computation is waiting for some slow input?
- Input one of two things?
- Compute with both (slow), choose right one later (fast)
- Does this make sense in software? Not on a uni-processor
- Difference? hardware is parallel, software is sequential

Bad idea: a PLA-based Adder?

- If any function can be expressed as two-level logic...
- ...why not use a PLA for an entire 8 -bit adder?
- Not small
- Approx. 2^{15} AND gates, each with 2^{16} inputs
- Then, 2^{16} OR gates, each with 2^{16} inputs
- Number of gates exponential in bit width!
- Not that fast, either
- An AND gate with 65 thousand inputs != 2-input AND gate
- Many-input gates made a tree of, say, 4-input gates
- 16-input gates would have at least 8 logic levels
- So, at least 16 levels of logic for a 16-bit PLA
- Even so, delay is logarithmic in number of bits
- There are better (faster, smaller) ways

CIS371 (Roth/Martin): Integer Arithmetic

Carry-Select Adder

- Carry-select adder
- Do $\mathrm{A}_{15-8}+\mathrm{B}_{15-8}$ twice, once assuming $\mathrm{C}_{8}\left(\mathrm{CO}_{7}\right)=0$, once $=1$
- Choose the correct one when CO_{7} finally becomes available
+ Effectively cuts carry chain in half (break critical path)
- But adds mux
- Delay?

CIS371 (Roth/Martin): Integer Arithmetic

Multi-Segment Carry-Select Adder

- Multiple segments
- Example: 5, 5, 6 bit = 16 bit
- Hardware cost
- Still mostly linear
- Compute each segment with 0 and 1 carry-in
- Serial mux chain
- Delay
- 5-bit adder (10) + Two muxes (4) = 14

CIS371 (Roth/Martin): Integer Arithmetic

Another Option: Carry Lookahead

- Is carry-select adder as fast as we can go?
- Nope
- Another approach to using additional resources
- Instead of redundantly computing sums assuming different carries
- Use redundancy to compute carries more quickly
- This approach is called carry lookahead (CLA)

Carry-Select Adder Delay

- What is carry-select adder delay (two segment)?
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\mathrm{MAX}\left(\mathrm{d}\left(\mathrm{CO}_{15-8}\right), \mathrm{d}\left(\mathrm{CO}_{7-0}\right)\right)+2$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\operatorname{MAX}(2 * 8,2 * 8)+2=18$
- In general: $2 *(\mathbf{N} / 2)+2=\mathbf{N}+2$ (vs 2N for RCA)
- What if we cut adder into 4 equal pieces?
- Would it be $2^{*}(\mathrm{~N} / 4)+2=10$? Not quite
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\operatorname{MAX}\left(\mathrm{d}\left(\mathrm{CO}_{15-12}\right), \mathrm{d}\left(\mathrm{CO}_{11-0}\right)\right)+2$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\operatorname{MAX}\left(2 * 4, \operatorname{MAX}\left(\mathrm{~d}\left(\mathrm{CO}_{11-8}\right), \mathrm{d}\left(\mathrm{CO}_{7-0}\right)\right)+2\right)+2$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\operatorname{MAX}\left(2 * 4, \operatorname{MAX}\left(2 * 4, \operatorname{MAX}\left(\mathrm{~d}\left(\mathrm{CO}_{7-4}\right), \mathrm{d}\left(\mathrm{CO}_{3-0}\right)\right)+2\right)+2\right)+2$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=\operatorname{MAX}(2 * 4, \operatorname{MAX}(2 * 4, \operatorname{MAX}(2 * 4,2 * 4)+2)+2)+2$
- $\mathrm{d}\left(\mathrm{CO}_{15}\right)=2 * 4+3 * 2=14$
- N -bit adder in M equal pieces: $\mathbf{2 *}^{*}(\mathrm{~N} / \mathrm{M})+(\mathrm{M}-\mathbf{1}) * \mathbf{2}$
- 16-bit adder in 8 parts: $2^{*}(16 / 8)+7 * 2=18$

CIS371 (Roth/Martin): Integer Arithmetic

Carry Lookahead Adder (CLA)

- Calculate "propagate" and "generate" based on A, B
- Not based on carry in
- Combine with tree structure
- Prior years: CLA covered in great detail
- Dozen slides or so
- Not this year
- Take aways
- Tree gives logarithmic delay
- Reasonable area

Adders In Real Processors

- Real processors super-optimize their adders
- Ten or so different versions of CLA
- Highly optimized versions of carry-select
- Other gate techniques: carry-skip, conditional-sum
- Sub-gate (transistor) techniques: Manchester carry chain
- Combinations of different techniques
- Alpha 21264 uses CLA+CSeA+RCA
- Used a different levels
- Even more optimizations for incrementers
- Why?

Subtraction: Addition's Tricky Pal

- Sign/magnitude subtraction is mental reverse addition
- 2C subtraction is addition
- How to subtract using an adder?
- sub A B = add A -B
- Negate B before adding (fast negation trick: $-B=B^{\prime}+1$)
- Isn't a subtraction then a negation and two additions?
+ No, an adder can implement $A+B+1$ by setting the carry-in to 1

CIS371 (Roth/Martin): Integer Arithmetic
26

A 16-bit ALU

- Build an ALU with functions: add/sub, and, or, not, xor
- All of these already in CLA adder/subtracter
- add A B, sub A B ... check
- not B is needed for subtraction
- and A B are first level Gs
- or A B are first level Ps
- xor A B?
- $S_{i}=A_{i} \wedge B_{i} \wedge C_{i}$

$$
\text { sra } 110011,2=111100
$$

- What is still missing?

Shift and Rotation Instructions

- Left/right shifts are useful...
- Fast multiplication/division by small constants (next)
- Bit manipulation: extracting and setting individual bits in words
- Right shifts
- Can be logical (shift in Os) or arithmetic (shift in copies of MSB)

$$
\text { srl } 110011,2=001100
$$

- Caveat: sra is not equal to division by 2 of negative numbers
- Rotations are less useful..
- But almost "free" if shifter is there
- MIPS and P37X have only shifts, x86 has shifts and rotations

A Simple Shifter

- The simplest 16 -bit shifter: can only shift left by 1
- Implement using wires (no logic!)
- Slightly more complicated: can shift left by 1 or 0
- Implement using wires and a multiplexor (mux16_2to1)

CIS371 (Roth/Martin): Integer Arithmetic

3rd Grade: Decimal Multiplication

19 // multiplicand
$\times \quad 12$
38
$+\quad 190$
228

- Start with product 0 , repeat steps until no multiplier digits
- Multiply multiplicand by least significant multiplier digit
- Add to product
- Shift multiplicand one digit to the left (multiply by 10)
- Shift multiplier one digit to the right (divide by 10)
- Product of N-digit, M-digit numbers may have N+M digits

Barrel Shifter

- What about shifting left by any amount $0-15$?
- 16 consecutive "left-shift-by-1-or-0" blocks?
- Would take too long (how long?)
- Barrel shifter: 4 "shift-left-by-X-or-0" blocks (X = 1,2,4,8)
- What is the delay?

- Similar barrel designs for right shifts and rotations

CIS371 (Roth/Martin): Integer Arithmetic
30

Binary Multiplication: Same Refrain

19	$=$	010011	$/ /$ multiplicand
$* \quad 12$	$=$	001100	$/ /$ multiplier
0	$=000000000000$		
0	$=00000000000$		
76	$=00001001100$		
152	$=000010011000$		
0	$=00000000000$		
+0	$=000000000000$		

\pm Smaller base \rightarrow more steps, each is simpler

- Multiply multiplicand by least significant multiplier digit +0 or $1 \rightarrow$ no actual multiplication, add multiplicand or not
- Add to total: we know how to do that
- Shift multiplicand left, multiplier right by one digit

Software Multiplication

- Can implement this algorithm in software
- Inputs: md (multiplicand) and mr (multiplier)

```
int pd = 0; // product
int i = 0;
for (i = 0; i< < % &&mr != 0; i++) {
    if (mr & 1) {
        pd = pd + md;
    }
    md = md << 1; // shift left
    mr = mr >> 1; // shift right
}
```


Hardware Multiply

- Control: repeat 16 times
- LSB(multiplier) == 1 ? Add multiplicand to product
- Shift multiplicand left by 1
- Shift multiplier right by 1

Strength Reduction

- Strength reduction: compilers will do this (sort of)
$A * 4=A \ll 2$
A/8=A>>3
$A * 5=(A<2)+A$
- Useful for address calculation: all basic data types are 2^{M} in size int A[100];
$\& A[N]=A+(N *$ sizeof(int) $)=A+N * 4=A+N \ll 2$

Aside: Shift Registers

- Shift register: shift in place by constant quantity
- Useful for multipliers and a few other things

Multiplying Negative Numbers

- Just works as long as...
- Right shifts are arithmetic and not logical
- If addition overflows, remember overflow bit and shift it in
- Try it out for yourself (at home)

Hardware != Software: Part Deux

- Recall: hardware is parallel, software is sequential
- Exploit: evaluate independent sub-expressions in parallel
- Example I: $S=A+B+C+D$
- Software? 3 steps: (1) $S 1=A+B,(2) S 2=S 1+C,(3) S=S 2+D$
+ Hardware? 2 steps: (1) $S 1=A+B, S 2=C+D,(2) S=S 1+S 2$
- Example II: $\mathrm{S}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
- Software? 2 steps: (1) $S 1=A+B,(2) S=S 1+C$
- Hardware? 2 steps: (1) S1 = A+B (2) S = S1+C
+ Actually hardware can do this in 1.2 steps!
- Sub-expression parallelism exists below 16-bit addition level

Another Approach: Multiple Adders

- Multiply by N bits at a time using N adders
- Example: $\mathrm{N}=5$, terms ($\mathrm{P}=$ product, $\mathrm{C}=$ multiplicand, $\mathrm{M}=$ multiplier)
- $\mathrm{P}=(\mathrm{M}[0]$? $(\mathrm{C}): 0)+(\mathrm{M}[1]$? $(\mathrm{C} \ll 1): 0)+$

$$
(M[2] ?(C \ll 2): 0)+(M[3] ?(C \ll 3): 0)+\ldots
$$

- Arrange like a tree to reduce gate delay critical path (clock period)

Partial Sums/Carries

- Observe: carry-outs don't have to be chained immediately
- Can be saved for later and added back in $00111=7$
$+00011=3$
00100 // partial sums (sums without carrries)
+00110 // partial carries (carries without sums)
$01010=10$
- Partial sums/carries use simple half-adders, not full-adders
+ Aren't "chained" \rightarrow can be done in two levels of logic
- Must sum partial sums/carries eventually, and this sum is chained
- d(CS-adder) $=2+\mathrm{d}$ (normal-adder)
- What is the point?

Three Input Addition

- Observe: only $0 / 1$ carry-out possible even if 3 bits added

$00111=$	7
$00011=$	3
+00010	$=2$
00110	
+00110	
01100	$=12$

- Partial sums/carries use full adders
+ Still aren't "chained" \rightarrow can be done in two levels of logic
- The point is delay(CS-adder) $=2+$ delay(normal-adder)...
- ...even for adding 3 numbers!
- 2 + delay(normal-adder) < 2 * delay(normal-adder)

Carry Save Addition (CSA)

- CSA+RC adder
- $2+\mathrm{d}$ (add)
- Subtraction works too
- ?

CIS371 (Roth/Martin): Integer Arithmetic

Carry Save Addition (CSA)

- Carry save addition (CSA): delay(N adds) < N*d(1 add)
- Enabling observation: unconventional view of full adder
- 3 inputs ($\mathrm{A}, \mathrm{B}, \mathrm{C}_{\text {in }}$) $\rightarrow 2$ outputs ($\mathrm{S}, \mathrm{C}_{\text {out }}$)
- If adding two numbers, only thing to do is chain $\mathrm{C}_{\text {out }}$ to $\mathrm{C}_{\text {in }+1}$
- But what if we are adding three numbers $(\mathrm{A}+\mathrm{B}+\mathrm{D})$?
- One option: back-to-back conventional adders
- $\left(\mathrm{A}, \mathrm{B}, \mathrm{C}_{\text {int }}\right) \rightarrow\left(\mathrm{T}, \mathrm{C}_{\text {out }}\right)$, chain $\mathrm{C}_{\text {outt }}$ to $\mathrm{C}_{\text {int }+1}$
- $\left(T, D, C_{\text {ins }}\right) \rightarrow\left(S, C_{\text {outs }}\right)$, chain $\mathrm{C}_{\text {outs }}$ to $\mathrm{C}_{\text {ins }}+1$
- Notice: we have three independent inputs to feed first adder
- ($\mathrm{A}, \mathrm{B}, \mathrm{D}) \rightarrow\left(\mathrm{T}, \mathrm{C}_{\text {out }}\right)$, no chaining (CSA: 2 gate levels)
- $\mathrm{T}: \mathrm{A}+\mathrm{B}+\mathrm{D}$ partial sum
- $\mathrm{C}_{\text {out }}: \mathrm{A}+\mathrm{B}+\mathrm{D}$ partial carry
- $\left(\mathrm{T}, \mathrm{C}_{\text {out }}, \mathrm{C}_{\mathrm{ins}}\right) \rightarrow\left(\mathrm{S}, \mathrm{C}_{\text {out }}\right)$, chain $\mathrm{C}_{\text {outs }}$ to $\mathrm{C}_{\text {ins }}$ +1

Carry Save Addition (CSA)

- CSA+general adder
$+2+\mathrm{d}$ (add) gate levels $+\mathrm{d}($ add $)$ may be fast

CIS371 (Roth/Martin): Integer Arithmetic

CSA Tree Multiplier

- Use 3-to-2 CSA adders
- Build a tree structure
- 16-bit
- Start: 16 bits
- 1st: $5^{*}(3->2)+1=11$
- 2nd: $3 *(3->2)+2=8$
- 3rd: $2 *(3->2)+2=6$
- 4th: $2 *(3->2)+0=4$
- 5th: ...
- Called a "Wallace Tree"

CIS371 (Roth/Martin): Integer Arithmetic

4th Grade: Decimal Division

	$\underline{9}$
3	// quotient
$\frac{129}{-27}$	$/ /$ divisor I dividend
2	$/ /$ remainder

- Shift divisor left (multiply by 10) until MSB lines up with dividend's
- Repeat until remaining dividend (remainder) < divisor
- Find largest single digit q such that (q*divisor) < dividend
- Set LSB of quotient to q
- Subtract (q^{*} divisor) from dividend
- Shift quotient left by one digit (multiply by 10)
- Shift divisor right by one digit (divide by 10)

Multiplier Latency and Clock Period

- Question
- If adder latency determines clock period...
- And adder latency is N gate delays...
- How can a K gate delay CSA multiplier fit in 1 cycle? - And K > N
- Answer
- ?

Binary Division

3 | $3 \overline{129}$ | $=0011 \frac{1001}{1011101}$ | $=\underline{9}$ |
| ---: | :--- | ---: |
| -24 | $=$ | -011000 |
| 5 | $=$ | |
| -3 | $=000101$ | |
| 2 | $=$ | -000011 |
| | 000010 | |

Binary Division Hardware

- Same as decimal division, except (again)
- More individual steps (base is smaller)
+ Each step is simpler
- Find largest bit q such that (q^{*} divisor) < dividend

$$
\text { - } q=0 \text { or } 1
$$

- Subtract (q^{*} divisor) from dividend
- $\mathrm{q}=0$ or $1 \rightarrow$ no actual multiplication, subtract divisor or not
- Complication: largest q such that (q^{*} divisor) < dividend
- How do you know if (1 *divisor) < dividend?
- Human can "eyeball" this
- Computer does not have eyeballs
- Subtract and see if result is negative

Divide Example

- Input: Divisor $=00011$, Dividend $=11101$

Step	Remainder	Quotient	Remainder	Dividend
0	00000	00000	00000	11101
1	0000	00000	00001	11010
2	00011	00001	0000	10100
3	00001	00010	00001	01000
4	00010	00100	00001	10000
5	00101	01001	00010	00000

- Result: Quotient: 1001, Remainder: 10

Software Divide Algorithm

- Can implement this algorithm in software
- Inputs: dividend and divisor

```
for (int i = 0; i < 32; i++) {
    remainder = (remainder << 1) | (dividend >> 31);
    if (remainder >= divisor) {
            quotient = (quotient << 1) | 1;
            remainder = remainder - divisor;
    } else {
        quotient = quotient << 1
    }
    dividend = dividend << 1;
}
```

Divider Circuit

- N cycles for n -bit divide

CIS371 (Roth/Martin): Integer Arithmetic

Arithmetic Latencies

- Latency in cycles of common arithmetic operations
- Source: Software Optimization Guide for AMD Family 10h Processors, Dec 2007
- Intel "Core 2" chips similar

	Int 32	Int 64
Add/Subtract	1	1
Multiply	3	5
Divide	14 to 40	23 to 87

- Divide is variable latency based on the size of the dividend - Detect number of leading zeros, then divide

Summary

- Integer addition
- Most timing-critical operation in datapath
- Hardware != software
- exploit sub-addition parallelism
- Fast addition
- Carry-select: parallelism in sum
- Carry-lookahead: parallelism/hierarchy in carry
- Multiplication
- Carry-save: parallelisms in three-inputs
- Division
- Next up: Floating point

