
CIS371 (Roth/Martin): Integer Arithmetic 1

CIS 371
Computer Organization and Design

Unit 4: Integer Arithmetic

CIS371 (Roth/Martin): Integer Arithmetic 2

This Unit: Integer Arithmetic

• A little review

• Binary + 2s complement

• Ripple-carry addition (RCA)

• Fast integer addition

• Carry-select (CSeA)

• Mention of Carry-lookahead (CLA)

• Shifters

• Integer multiplication

• Carry-save addition

• Division

CPUMem I/O

System software

AppApp App

CIS371 (Roth/Martin): Integer Arithmetic 3

Readings

• P+H

• Chapter 3

• Except 3.6 and 3.7: “floating point arithmetic”

• We’ll get to that next

CIS371 (Roth/Martin): Integer Arithmetic 4

The Importance of Fast Addition

• Addition of two 2C numbers is most common operation
• Programs use addition frequently

• Loads and stores use addition for address calculation

• Branches use addition to test conditions and calculate targets

• All insns use addition to calculate default next PC

• Fast addition critical to high performance

PC
Insn

Mem

Register

File
s1 s2 d

Data

Mem

+

4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile

CIS371 (Roth/Martin): Integer Arithmetic 5

Adder Delay and Clock Period

• Common case: add + “forward” value to consuming insn

• “forwarding”: enables dependent insns to execute back-to-back

• MCCF: make addition (+ latch) + “forward” the clock cycle

• “Pipeline” longer operations over multiple clock cycles

PC
Insn

Mem

Register

File
s1 s2 d

Data

Mem

+

4

TALU = T

CIS371 (Roth/Martin): Integer Arithmetic 6

Binary Integers

• Computers represent integers in binary (base2)
3 = 11, 4 = 100, 5 = 101, 30 = 11110

+ Natural since only two values are represented

• Addition, etc. take place as usual (carry the 1, etc.)

17 = 10001

+5 = 101

22 = 10110

• Some old machines use decimal (base10) with only 0/1
30 = 011 000

– Unnatural for digial logic, implementation complicated & slow

CIS371 (Roth/Martin): Integer Arithmetic 7

Fixed Width

• On pencil and paper, integers have infinite width

• In hardware, integers have fixed width

• N bits: 16, 32 or 64

• LSB is 20, MSB is 2N-1

• Range: 0 to 2N–1

• Numbers >2N represented using multiple fixed-width integers

• In software

CIS371 (Roth/Martin): Integer Arithmetic 8

What About Negative Integers?

• Sign/magnitude
• Unsigned plus one bit for sign

10 = 000001010, -10 = 100001010

+ Matches our intuition from “by hand” decimal arithmetic

– Both 0 and –0

– Addition is difficult

• Range: –(2N-1–1) to 2N-1–1

• Option II: two’s complement (2C)
• Leading 0s mean positive number, leading 1s negative

10 = 00001010, -10 = 11110110

+ One representation for 0

+ Easy addition

• Range: –(2N-1) to 2N-1–1

CIS371 (Roth/Martin): Integer Arithmetic 9

The Tao of 2C

• How did 2C come about?
• “Let’s design a representation that makes addition easy”

• Think of subtracting 10 from 0 by hand

• Have to “borrow” 1s from some imaginary leading 1

 0 = 100000000

-10 = 00001010

-10 = 011110110

• Now, add the conventional way…

-10 = 11110110

+10 = 00001010

 0 = 100000000

CIS371 (Roth/Martin): Integer Arithmetic 10

Still More On 2C

• What is the interpretation of 2C?

• Same as binary, except MSB represents –2N–1, not 2N–1

• –10 = 11110110 = –27+26+25+24+22+21

+ Extends to any width

• –10 = 110110 = –25+24+22+21

• Why? 2N = 2*2N–1

• –25+24+22+21 = (–26+2*25)–25+24+22+21 = –26+25+24+22+21

• Trick to negating a number quickly: –B = B’ + 1

• –(1) = (0001)’+1 = 1110+1 = 1111 = –1

• –(–1) = (1111)’+1 = 0000+1 = 0001 = 1

• –(0) = (0000)’+1 = 1111+1 = 0000 = 0

• Think about why this works

CIS371 (Roth/Martin): Integer Arithmetic 11

1st Grade: Decimal Addition

 1

 43

+29

 72

• Repeat N times

• Add least significant digits and any overflow from previous add

• Carry “overflow” to next addition

• Overflow: any digit other than least significant of sum

• Shift two addends and sum one digit to the right

• Sum of two N-digit numbers can yield an N+1 digit number

CIS371 (Roth/Martin): Integer Arithmetic 12

Binary Addition: Works the Same Way

 1 111111

 43 = 00101011

+29 = 00011101

 72 = 01001000

• Repeat N times
• Add least significant bits and any overflow from previous add

• Carry the overflow to next addition

• Shift two addends and sum one bit to the right

• Sum of two N-bit numbers can yield an N+1 bit number

– More steps (smaller base)

+ Each one is simpler (adding just 1 and 0)
• So simple we can do it in hardware

CIS371 (Roth/Martin): Integer Arithmetic 13

The Half Adder

• How to add two binary integers in hardware?

• Start with adding two bits

• When all else fails ... look at truth table

A B = C0 S

0 0 = 0 0

0 1 = 0 1

1 0 = 0 1

1 1 = 1 0

• S = A^B

• CO (carry out) = AB

• This is called a half adder

HA

B

B

A

CO

S

S

CO

A

CIS371 (Roth/Martin): Integer Arithmetic 14

The Other Half

• We could chain half adders together, but to do that…
• Need to incorporate a carry out from previous adder

C A B = C0 S

0 0 0 = 0 0

0 0 1 = 0 1

0 1 0 = 0 1

0 1 1 = 1 0

1 0 0 = 0 1

1 0 1 = 1 0

1 1 0 = 1 0

1 1 1 = 1 1

• S = C’A’B + C’AB’ + CA’B’ + CAB = C ^ A ^ B

• CO = C’AB + CA’B + CAB’ + CAB = CA + CB + AB

• This is called a full adder

FA
B

S

CO

A
CI

A

B

S

CI

CO

CIS371 (Roth/Martin): Integer Arithmetic 15

Ripple-Carry Adder

• N-bit ripple-carry adder

• N 1-bit full adders “chained” together

• CO0 = CI1, CO1 = CI2, etc.

• CI0 = 0

• CON–1 is carry-out of entire adder

• CON–1 = 1 ! “overflow”

• Example: 16-bit ripple carry adder

• How fast is this?

• How fast is an N-bit ripple-carry adder?

FA
B1

S1A1

FA
B2

S2A2

FA
B0

S0A0

FA
B15

S15A15

CO

0

…

CIS371 (Roth/Martin): Integer Arithmetic 16

Quantifying Adder Delay

• Combinational logic dominated by gate (transistor) delays
• Array storage dominated by wire delays

• Longest delay or “Critical path” is what matters

• Can implement any combinational function in “2” logic levels
• 1 level of AND + 1 level of OR (PLA)

• NOTs are “free”: push to input (DeMorgan’s), read from latch

• Example: delay(FullAdder) = 2

• d(CarryOut) = delay(AB + AC + BC)

• d(Sum) = d(A ^ B ^ C) = d(AB’C’ + A’BC’ + ABC’ + ABC) = 2

• Note ‘^’ means Xor (just like in C & Java)

• Caveat: “2” assumes gates have few (<8 ?) inputs

CIS371 (Roth/Martin): Integer Arithmetic 17

Ripple-Carry Adder Delay

• Longest path is to CO15 (or S15)

• d(CO15) = 2 + MAX(d(A15),d(B15),d(CI15))

• d(A15) = d(B15) = 0, d(CI15) = d(CO14)

• d(CO15) = 2 + d(CO14) = 2 + 2 + d(CO13) …

• d(CO15) = 32

• D(CON–1) = 2N

– Too slow!

– Linear in number of bits

• Number of gates is also linear

FA
B1

S1A1

FA
B2

S2A2

FA
B0

S0A0

FA
B15

S15A15

CO

0

…

CIS371 (Roth/Martin): Integer Arithmetic 18

Bad idea: a PLA-based Adder?

• If any function can be expressed as two-level logic…
• …why not use a PLA for an entire 8-bit adder?

• Not small
• Approx. 215 AND gates, each with 216 inputs

• Then, 216 OR gates, each with 216 inputs

• Number of gates exponential in bit width!

• Not that fast, either
• An AND gate with 65 thousand inputs != 2-input AND gate

• Many-input gates made a tree of, say, 4-input gates

• 16-input gates would have at least 8 logic levels

• So, at least 16 levels of logic for a 16-bit PLA

• Even so, delay is logarithmic in number of bits

• There are better (faster, smaller) ways

CIS371 (Roth/Martin): Integer Arithmetic 19

Theme: Hardware != Software

• Hardware can do things that software fundamentally can’t

• And vice versa (of course)

• In hardware, it’s easier to trade resources for latency

• One example of this: speculation

• Slow computation is waiting for some slow input?

• Input one of two things?

• Compute with both (slow), choose right one later (fast)

• Does this make sense in software? Not on a uni-processor

• Difference? hardware is parallel, software is sequential

CIS371 (Roth/Martin): Integer Arithmetic 20

Carry-Select Adder

• Carry-select adder

• Do A15-8+B15-8 twice, once assuming C8 (CO7) = 0, once = 1

• Choose the correct one when CO7 finally becomes available

+ Effectively cuts carry chain in half (break critical path)

– But adds mux

• Delay?

CO

8+
B7-0

S7-0

A7-0

0

8+
B15-8

S15-8A15-8

0

8+
B15-8

S15-8A15-8

1

16+

A15-0

0

B15-0

S15-0

S15-8

CO

16

16
18

CIS371 (Roth/Martin): Integer Arithmetic 21

Multi-Segment Carry-Select Adder

• Multiple segments

• Example: 5, 5, 6 bit = 16 bit

• Hardware cost

• Still mostly linear

• Compute each segment
with 0 and 1 carry-in

• Serial mux chain

• Delay

• 5-bit adder (10) +
Two muxes (4) = 14

5+
B4-0

S4-0

A4-0

0

5+
B9-5

S9-5A9-5

0

5+
B9-5

S8-5A9-5

1

S8-5

6+
B15-10

S15-10A15-10

0

6+
B15-10

S15-10A15-10

1

S15-10

CO

10

10

12

12

14

CIS371 (Roth/Martin): Integer Arithmetic 22

Carry-Select Adder Delay

• What is carry-select adder delay (two segment)?
• d(CO15) = MAX(d(CO15-8), d(CO7-0)) + 2

• d(CO15) = MAX(2*8, 2*8) + 2 = 18

• In general: 2*(N/2) + 2 = N+2 (vs 2N for RCA)

• What if we cut adder into 4 equal pieces?
• Would it be 2*(N/4) + 2 = 10? Not quite

• d(CO15) = MAX(d(CO15-12),d(CO11-0)) + 2

• d(CO15) = MAX(2*4, MAX(d(CO11-8),d(CO7-0)) + 2) + 2

• d(CO15) = MAX(2*4,MAX(2*4,MAX(d(CO7-4),d(CO3-0)) + 2) + 2) + 2

• d(CO15) = MAX(2*4,MAX(2*4,MAX(2*4,2*4) + 2) + 2) + 2

• d(CO15) = 2*4 + 3*2 = 14

• N-bit adder in M equal pieces: 2*(N/M) + (M–1)*2
• 16-bit adder in 8 parts: 2*(16/8) + 7*2 = 18

CIS371 (Roth/Martin): Integer Arithmetic 23

Another Option: Carry Lookahead

• Is carry-select adder as fast as we can go?

• Nope

• Another approach to using additional resources

• Instead of redundantly computing sums assuming different carries

• Use redundancy to compute carries more quickly

• This approach is called carry lookahead (CLA)

CIS371 (Roth/Martin): Integer Arithmetic 24

Carry Lookahead Adder (CLA)

• Calculate “propagate” and “generate” based on A, B

• Not based on carry in

• Combine with tree structure

• Prior years: CLA covered
in great detail

• Dozen slides or so

• Not this year

• Take aways

• Tree gives logarithmic delay

• Reasonable area

G0

P0 G1-0

P1-0

C1

G3-2

P3-2

C3

G3-0

P3-0

C2

G1

P1

G2

P2

G3

P3

A0

B0

A1

B1

A2

B2

A3

B3

C2

C0

C3

C1

C4
C4

CIS371 (Roth/Martin): Integer Arithmetic 25

Adders In Real Processors

• Real processors super-optimize their adders

• Ten or so different versions of CLA

• Highly optimized versions of carry-select

• Other gate techniques: carry-skip, conditional-sum

• Sub-gate (transistor) techniques: Manchester carry chain

• Combinations of different techniques

• Alpha 21264 uses CLA+CSeA+RCA

• Used a different levels

• Even more optimizations for incrementers

• Why?

CIS371 (Roth/Martin): Integer Arithmetic 26

Subtraction: Addition’s Tricky Pal

• Sign/magnitude subtraction is mental reverse addition

• 2C subtraction is addition

• How to subtract using an adder?
• sub A B = add A -B

• Negate B before adding (fast negation trick: –B = B’ + 1)

• Isn’t a subtraction then a negation and two additions?

+ No, an adder can implement A+B+1 by setting the carry-in to 1

~

B

A
1

0

CIS371 (Roth/Martin): Integer Arithmetic 27

A 16-bit ALU

• Build an ALU with functions: add/sub, and, or, not,xor

• All of these already in CLA adder/subtracter

• add A B, sub A B … check

• not B is needed for subtraction

• and A B are first level Gs

• or A B are first level Ps

• xor A B?

• Si = Ai^Bi^Ci

• What is still missing?

&

G

~
|

P

Add

-sum

B

A

1

0

^

^

CIS371 (Roth/Martin): Integer Arithmetic 28

Shift and Rotation Instructions

• Left/right shifts are useful…

• Fast multiplication/division by small constants (next)

• Bit manipulation: extracting and setting individual bits in words

• Right shifts

• Can be logical (shift in 0s) or arithmetic (shift in copies of MSB)

 srl 110011, 2 = 001100

 sra 110011, 2 = 111100

• Caveat: sra is not equal to division by 2 of negative numbers

• Rotations are less useful…

• But almost “free” if shifter is there

• MIPS and P37X have only shifts, x86 has shifts and rotations

CIS371 (Roth/Martin): Integer Arithmetic 29

A Simple Shifter

• The simplest 16-bit shifter: can only shift left by 1

• Implement using wires (no logic!)

• Slightly more complicated: can shift left by 1 or 0

• Implement using wires and a multiplexor (mux16_2to1)

A

A0

A15

0

A <<1 A <<1

O

O
O

CIS371 (Roth/Martin): Integer Arithmetic 30

Barrel Shifter

• What about shifting left by any amount 0–15?

• 16 consecutive “left-shift-by-1-or-0” blocks?
– Would take too long (how long?)

• Barrel shifter: 4 “shift-left-by-X-or-0” blocks (X = 1,2,4,8)
• What is the delay?

• Similar barrel designs for right shifts and rotations

<<4<<8 <<2 <<1

A O

shift

shift[3] shift[2] shift[1] shift[0]

CIS371 (Roth/Martin): Integer Arithmetic 31

3rd Grade: Decimal Multiplication

 19 // multiplicand

* 12 // multiplier
 38

+ 190

 228 // product

• Start with product 0, repeat steps until no multiplier digits

• Multiply multiplicand by least significant multiplier digit

• Add to product

• Shift multiplicand one digit to the left (multiply by 10)

• Shift multiplier one digit to the right (divide by 10)

• Product of N-digit, M-digit numbers may have N+M digits

CIS371 (Roth/Martin): Integer Arithmetic 32

Binary Multiplication: Same Refrain

 19 = 010011 // multiplicand
* 12 = 001100 // multiplier
 0 = 000000000000

 0 = 000000000000

 76 = 000001001100

 152 = 000010011000

 0 = 000000000000

+ 0 = 000000000000

 228 = 000011100100 // product

± Smaller base ! more steps, each is simpler
• Multiply multiplicand by least significant multiplier digit

+ 0 or 1 ! no actual multiplication, add multiplicand or not

• Add to total: we know how to do that

• Shift multiplicand left, multiplier right by one digit

CIS371 (Roth/Martin): Integer Arithmetic 33

Software Multiplication

• Can implement this algorithm in software

• Inputs: md (multiplicand) and mr (multiplier)

int pd = 0; // product

int i = 0;

for (i = 0; i < 16 && mr != 0; i++) {

if (mr & 1) {

 pd = pd + md;

}

md = md << 1; // shift left

mr = mr >> 1; // shift right

}

CIS371 (Roth/Martin): Integer Arithmetic 34

Strength Reduction

• Strength reduction: compilers will do this (sort of)
A * 4 = A << 2

A / 8 = A >> 3

A * 5 = (A << 2) + A

• Useful for address calculation: all basic data types are 2M in size

int A[100];

&A[N] = A+(N*sizeof(int)) = A+N*4 = A+N<<2

CIS371 (Roth/Martin): Integer Arithmetic 35

Hardware Multiply

• Control: repeat 16 times

• LSB(multiplier) == 1 ? Add multiplicand to product

• Shift multiplicand left by 1

• Shift multiplier right by 1

Multiplicand

32<<1

Multiplier

16>>1

Product

32

i++ < 1632+
32

we

lsb==1?
shift

CIS371 (Roth/Martin): Integer Arithmetic 36

Aside: Shift Registers

• Shift register: shift in place by constant quantity

• Useful for multipliers and a few other things

4<<1

I

O

O

WE

SEL

4

<< 1

I

CIS371 (Roth/Martin): Integer Arithmetic 37

Multiplying Negative Numbers

• Just works as long as…

• Right shifts are arithmetic and not logical

• If addition overflows, remember overflow bit and shift it in

• Try it out for yourself (at home)

CIS371 (Roth/Martin): Integer Arithmetic 38

Another Approach: Multiple Adders

• Multiply by N bits at a time using N adders

• Example: N=5, terms (P=product, C=multiplicand, M=multiplier)

• P = (M[0] ? (C) : 0) + (M[1] ? (C<<1) : 0) +

 (M[2] ? (C<<2) : 0) + (M[3] ? (C<<3) : 0) + …

• Arrange like a tree to reduce gate delay critical path (clock period)

1
6

+

1
6

+

1
6

+

1
6

+

C

C<<1

C<<2

C<<3

C<<4

P

1
6

+

1
6

+

1
6

+
1

6
+

C

C<<1

C<<3

C<<2
P

C<<4

0

0

0

0

0 0

0

0

0

0

CIS371 (Roth/Martin): Integer Arithmetic 39

Hardware != Software: Part Deux

• Recall: hardware is parallel, software is sequential

• Exploit: evaluate independent sub-expressions in parallel

• Example I: S = A + B + C + D

• Software? 3 steps: (1) S1 = A+B, (2) S2 = S1+C, (3) S = S2+D

+ Hardware? 2 steps: (1) S1 = A+B, S2=C+D, (2) S = S1+S2

• Example II: S = A + B + C

• Software? 2 steps: (1) S1 = A+B, (2) S = S1+C

• Hardware? 2 steps: (1) S1 = A+B (2) S = S1+C

+ Actually hardware can do this in 1.2 steps!

• Sub-expression parallelism exists below 16-bit addition level

CIS371 (Roth/Martin): Integer Arithmetic 40

Partial Sums/Carries

• Observe: carry-outs don’t have to be chained immediately

• Can be saved for later and added back in

 00111 = 7

+00011 = 3

 00100 // partial sums (sums without carrries)

+00110 // partial carries (carries without sums)

 01010 = 10

• Partial sums/carries use simple half-adders, not full-adders

+ Aren’t “chained” ! can be done in two levels of logic

– Must sum partial sums/carries eventually, and this sum is chained

• d(CS-adder) = 2 + d(normal-adder)

• What is the point?

CIS371 (Roth/Martin): Integer Arithmetic 41

Three Input Addition

• Observe: only 0/1 carry-out possible even if 3 bits added
 00111 = 7

 00011 = 3

+00010 = 2

 00110 // partial sums (sums without carrries)

+00110 // partial carries (carries without sums)

 01100 = 12

• Partial sums/carries use full adders

+ Still aren’t “chained” ! can be done in two levels of logic

• The point is delay(CS-adder) = 2 + delay(normal-adder)…

• …even for adding 3 numbers!

• 2 + delay(normal-adder) < 2 * delay(normal-adder)

CIS371 (Roth/Martin): Integer Arithmetic 42

Carry Save Addition (CSA)

• Carry save addition (CSA): delay(N adds) < N*d(1 add)

• Enabling observation: unconventional view of full adder

• 3 inputs (A,B,Cin) ! 2 outputs (S,Cout)

• If adding two numbers, only thing to do is chain Cout to Cin+1

• But what if we are adding three numbers (A+B+D)?

• One option: back-to-back conventional adders

• (A,B,CinT) ! (T,CoutT), chain CoutT to CinT+1

• (T,D,CinS) ! (S,CoutS), chain CoutS to CinS+1

• Notice: we have three independent inputs to feed first adder

• (A,B,D) ! (T,CoutT), no chaining (CSA: 2 gate levels)

• T: A+B+D partial sum

• CoutT: A+B+D partial carry

• (T,CoutT,CinS) ! (S,CoutS), chain CoutS to CinS+1

CIS371 (Roth/Martin): Integer Arithmetic 43

Carry Save Addition (CSA)

• 2 RC adders

+ 2 + d(add) gate delays

– d(add) is really long

• CSA+RC adder

• 2 + d(add)

• Subtraction works too

• ?

FA FA FA FA

FA FA FA FAFA

A0A1A2A3

S0S1S2S3

D0D1D2D3

B0B1B2B3

CO

CD0

FA FA FA FA

FA FA FAFA

A0A1A2A3

S0S1S2S3

D0D1D2D3 B0B1B2B3

CO

CB0

0

0

T3 T2 T1 T0

FA

CB0 CD0T0T1T2T3

CIS371 (Roth/Martin): Integer Arithmetic 44

Carry Save Addition (CSA)

• 2 general adders

– 2 * d(add) gate delays

+ d(add) may be fast

• CSA+general adder

+ 2 + d(add) gate levels

+ d(add) may be fast

Any adder (carry-select, CLA, …)

Any adder (carry-select, CLA, …)

A0A1A2A3

S0S1S2S3

D0D1D2D3

B0B1B2B3

CO

CD0

Any adder (carry-select, CLA, …)

FA FA FA FA

A0A1A2A3

S0S1S2S3

D0D1D2D3 B0B1B2B3

CO

CB0

0

0

T3 T2 T1 T0

CB0 CD0T0T1T2T3

CIS371 (Roth/Martin): Integer Arithmetic 45

CSA Tree Multiplier

• Use 3-to-2 CSA adders

• Build a tree structure

• 16-bit

• Start: 16 bits

• 1st: 5*(3->2)+1 = 11

• 2nd: 3*(3->2)+2 = 8

• 3rd: 2*(3->2)+2 = 6

• 4th: 2*(3->2)+0 = 4

• 5th: …

• Called a “Wallace Tree”

C
S

A

C
S

A

C
S

A
C

S
A

C

C<<1

C<<3

C<<2

P
C<<4

0

0

0

0

0

C<<5
0

C
S

A

C<<6

C<<7

0

0

C<<8
0

C
S

A

C
S

A

CIS371 (Roth/Martin): Integer Arithmetic 46

Multiplier Latency and Clock Period

• Question

• If adder latency determines clock period…

• And adder latency is N gate delays…

• How can a K gate delay CSA multiplier fit in 1 cycle?

• And K > N

• Answer

• ?

CIS371 (Roth/Martin): Integer Arithmetic 47

4th Grade: Decimal Division

 9 // quotient

 3 |29 // divisor | dividend
 -27

 2 // remainder

• Shift divisor left (multiply by 10) until MSB lines up with dividend’s

• Repeat until remaining dividend (remainder) < divisor

• Find largest single digit q such that (q*divisor) < dividend

• Set LSB of quotient to q

• Subtract (q*divisor) from dividend

• Shift quotient left by one digit (multiply by 10)

• Shift divisor right by one digit (divide by 10)

CIS371 (Roth/Martin): Integer Arithmetic 48

Binary Division

 1001 = 9

3 |29 = 0011 |011101

 -24 = - 011000

 5 = 000101

 - 3 = - 000011

 2 = 000010

CIS371 (Roth/Martin): Integer Arithmetic 49

Binary Division Hardware

• Same as decimal division, except (again)

– More individual steps (base is smaller)

+ Each step is simpler

• Find largest bit q such that (q*divisor) < dividend

• q = 0 or 1

• Subtract (q*divisor) from dividend

• q = 0 or 1 ! no actual multiplication, subtract divisor or not

• Complication: largest q such that (q*divisor) < dividend

• How do you know if (1*divisor) < dividend?

• Human can “eyeball” this

• Computer does not have eyeballs

• Subtract and see if result is negative

CIS371 (Roth/Martin): Integer Arithmetic 50

Software Divide Algorithm

• Can implement this algorithm in software

• Inputs: dividend and divisor

for (int i = 0; i < 32; i++) {
!!remainder = (remainder << 1) | (dividend >> 31);
!!if (remainder >= divisor) {
!!!!quotient = (quotient << 1) | 1;
!!!!remainder = remainder - divisor;
!!} else {
 quotient = quotient << 1
 }
!!dividend = dividend << 1;
}

CIS371 (Roth/Martin): Integer Arithmetic 51

Divide Example

• Input: Divisor = 00011 , Dividend = 11101

Step Remainder Quotient Remainder Dividend

 0 00000 00000 00000 11101

 1 00001 00000 00001 11010

 2 00011 00001 00000 10100

 3 00001 00010 00001 01000

 4 00010 00100 00001 10000

 5 00101 01001 00010 00000

• Result: Quotient: 1001, Remainder: 10

CIS371 (Roth/Martin): Integer Arithmetic 52

Divider Circuit

Divisor

Quotient

Remainder

Sub >=0

msb

Dividend

Shift in 0 or 1

Shift in 0 or 1

Shift in 0

• N cycles for n-bit divide

CIS371 (Roth/Martin): Integer Arithmetic 53

• Latency in cycles of common arithmetic operations

• Source: Software Optimization Guide for AMD Family 10h
Processors, Dec 2007
• Intel “Core 2” chips similar

• Divide is variable latency based on the size of the dividend
• Detect number of leading zeros, then divide

Arithmetic Latencies

23 to 8714 to 40Divide

53Multiply

11Add/Subtract

Int 64Int 32

CIS371 (Roth/Martin): Integer Arithmetic 54

Summary

• Integer addition

• Most timing-critical operation in datapath

• Hardware != software

• exploit sub-addition parallelism

• Fast addition

• Carry-select: parallelism in sum

• Carry-lookahead: parallelism/hierarchy in carry

• Multiplication

• Carry-save: parallelisms in three-inputs

• Division

• Next up: Floating point

CPUMem I/O

System software

AppApp App

