
CIS 371 (Roth/Martin): Instruction Set Architectures 1

CIS 371
Computer Organization and Design

Unit 1: Instruction Set Architectures

CIS 371 (Roth/Martin): Instruction Set Architectures 2

Instruction Set Architecture (ISA)

•! What is an ISA?

•! And what is a good ISA?

•! Aspects of ISAs

•! RISC vs. CISC

•! Compatibility is a powerful force
•! Tricks: binary translation, µISAs

CPU Mem I/O

System software

App App App

CIS 371 (Roth/Martin): Instruction Set Architectures 3

Readings

•! Introduction

•! P+H, Chapter 1

•! ISAs

•! P+H, Chapter 2

CIS 371 (Roth/Martin): Instruction Set Architectures 4

What Is An ISA?

•! ISA (instruction set architecture)

•! A well-defined hardware/software interface

•! The “contract” between software and hardware

•! Functional definition of operations, modes, and storage
locations supported by hardware

•! Precise description of how to invoke, and access them

•! Not in the “contract”

•! How operations are implemented

•! Which operations are fast and which are slow and when

•! Which operations take more power and which take less

•! Instruction ! Insn

•! ‘Instruction’ is too long to write in slides

CIS 371 (Roth/Martin): Instruction Set Architectures 5

A Language Analogy for ISAs

•! Communication

•! Person-to-person ! software-to-hardware

•! Similar structure
•! Narrative ! program

•! Sentence ! insn

•! Verb ! operation (add, multiply, load, branch)

•! Noun ! data item (immediate, register value, memory value)

•! Adjective ! addressing mode

•! Many different languages, many different ISAs

•! Similar basic structure, details differ (sometimes greatly)

•! Key differences between languages and ISAs
•! Languages evolve organically, many ambiguities, inconsistencies

•! ISAs are explicitly engineered and extended, unambiguous

CIS 371 (Roth/Martin): Instruction Set Architectures 6

The Sequential Model

•! Implicit model of all modern ISAs
•! Often called VonNeuman, but in ENIAC before

•! Basic feature: the program counter (PC)
•! Defines total order on dynamic instruction

•! Next PC is PC++ unless insn says otherwise

•! Order and named storage define computation

•! Value flows from insn X to Y via storage A iff…

•! X names A as output, Y names A as input…

•! And Y after X in total order

•! Processor logically executes loop at left
•! Instruction execution assumed atomic

•! Instruction X finishes before insn X+1 starts

•! More parallel alternatives have been proposed

Fetch PC

Decode

Read Inputs

Execute

Write Output

Next PC

ISA Design Goals

CIS 371 (Roth/Martin): Instruction Set Architectures 7 CIS 371 (Roth/Martin): Instruction Set Architectures 8

What Is A Good ISA?

•! Lends itself to high-performance implementations

•! Every ISA can be implemented

•! Not every ISA can be implemented well

•! Background: CPU performance equation

•! Execution time: seconds/program

•! Convenient to factor into three pieces

•! (insns/program) * (cycles/insn) * (seconds/cycle)

•! Insns/program: dynamic insns executed

•! Seconds/cycle: clock period

•! Cycles/insn (CPI): hmmm…

•! For high performance all three factors should be low

CIS 371 (Roth/Martin): Instruction Set Architectures 9

Insns/Program: Compiler Optimizations

•! Compilers do two things

•! Translate high-level languages to assembly functionally
•! Deterministic and fast compile time (gcc –O0)

•! “Canonical”: not an active research area

•! CIS 341

•! “Optimize” generated assembly code
•! “Optimize”? Hard to prove optimality in a complex system

•! In systems: “optimize” means improve… hopefully

•! Involved and relatively slow compile time (gcc –O4)

•! Some aspects: reverse-engineer programmer intention

•! Not “canonical”: being actively researched

•! CIS 570

CIS 371 (Roth/Martin): Instruction Set Architectures 10

Compiler Optimizations

•! Primarily reduce insn count
•! Eliminate redundant computation, keep more things in registers

+!Registers are faster, fewer loads/stores

–! An ISA can make this difficult by having too few registers

•! But also…
•! Reduce branches and jumps (later)

•! Reduce cache misses (later)

•! Reduce dependences between nearby insns (later)

–! An ISA can make this difficult by having implicit dependences

•! How effective are these?
+! Can give 4X performance over unoptimized code

–! Collective wisdom of 40 years (“Proebsting’s Law”): 4% per year

•! Funny but … shouldn’t leave 4X performance on the table

CIS 371 (Roth/Martin): Instruction Set Architectures 11

Seconds/Cycle and Cycle/Insn: Hmmm…

•! For single-cycle datapath

•! Cycle/insn: 1 by definition

•! Seconds/cycle: proportional to “complexity of datapath”

•! ISA can make seconds/cycle high by requiring a complex datapath

CIS 371 (Roth/Martin): Instruction Set Architectures 12

Foreshadowing: Pipelining

•! Sequential model: insn X finishes before insn X+1 starts

•! An illusion designed to keep programmers sane

•! Pipelining: important performance technique

•! Hardware overlaps “processing iterations” for insns

–! Variable insn length/format makes pipelining difficult

–! Complex datapaths also make pipelining difficult (or clock slow)

•! More about this later

CIS 371 (Roth/Martin): Instruction Set Architectures 13

Instruction Granularity: RISC vs CISC

•! RISC (Reduced Instruction Set Computer) ISAs

•! Minimalist approach to an ISA: simple insns only

+! Low “cycles/insn” and “seconds/cycle”

–! Higher “insn/program”, but hopefully not as much

•! Rely on compiler optimizations

•! CISC (Complex Instruction Set Computing) ISAs
•! A more heavyweight approach: both simple and complex insns

+! Low “insns/program”

–! Higher “cycles/insn” and “seconds/cycle”

•! We have the technology to get around this problem

•! More on this later, but first ISA basics

Aspects of ISAs

CIS 371 (Roth/Martin): Instruction Set Architectures 14

CIS 371 (Roth/Martin): Instruction Set Architectures 15

Length and Format

•! Length

•! Fixed length

•! Most common is 32 bits

+!Simple implementation (next PC often just PC+4)

–! Code density: 32 bits to increment a register by 1

•! Variable length

+!Code density

•! x86 can do increment in one 8-bit instruction

–! Complex fetch (where does next instruction begin?)

•! Compromise: two lengths

•! E.g., MIPS16 or ARM’s Thumb

•! Encoding
•! A few simple encodings simplify decoder

•! x86 decoder one of nastiest pieces of logic

Fetch[PC]

Decode

Read Inputs

Execute

Write Output

Next PC

CIS 371 (Roth/Martin): Instruction Set Architectures 16

LC3/MIPS/x86 Length and Format

•! LC3: 2-byte insns, 3 formats (LC4 similar)

•! MIPS: 4-byte insns, 3 formats

•! x86: 1–16 byte insns

CIS 371 (Roth/Martin): Instruction Set Architectures 17

Operations and Datatypes

•! Datatypes
•! Software: attribute of data

•! Hardware: attribute of operation, data is just 0/1’s

•! All processors support
•! 2C integer arithmetic/logic (8/16/32/64-bit)

•! IEEE754 floating-point arithmetic (32/64 bit)

•! Intel has 80-bit floating-point

•! More recently, most processors support
•! “Packed-integer” insns, e.g., MMX

•! “Packed-fp” insns, e.g., SSE/SSE2

•! For multimedia, more about these later

•! Processor no longer (??) support
•! Decimal, other fixed-point arithmetic

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

CIS 371 (Roth/Martin): Instruction Set Architectures 18

LC4/MIPS/x86 Operations and Datatypes

•! LC4
•! 16-bit integer: add, and, not, sub, mul, div, or, xor, shifts

•! No floating-point

•! MIPS
•! 32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor

•! 32(64) bit floating-point: add, sub, mul, div

•! x86
•! 32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor

•! 80-bit floating-point: add, sub, mul, div, sqrt

•! 64-bit packed integer (MMX): padd, pmul…

•! 64(128)-bit packed floating-point (SSE/2): padd, pmul…

CIS 371 (Roth/Martin): Instruction Set Architectures 19

Where Does Data Live?

•! Memory

•! Fundamental storage space

•! Registers

•! Faster than memory, quite handy

•! Most processors have these too

•! Immediates
•! Values spelled out as bits in instructions

•! Input only

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

CIS 371 (Roth/Martin): Instruction Set Architectures 20

How Many Registers?

•! Registers faster than memory, have as many as possible?
•! No

•! One reason registers are faster: there are fewer of them
•! Small is fast (hardware truism)

•! Another: they are directly addressed (no address calc)
–! More of them, means larger specifiers

–! Fewer registers per instruction or indirect addressing

•! Not everything can be put in registers
•! Structures, arrays, anything pointed-to

•! Although compilers are getting better at putting more things in

–! More registers means more saving/restoring

•! Trend: more registers: 8 (x86)!32 (MIPS) !128 (IA64)
•! 64-bit x86 has 16 64-bit integer and 16 128-bit FP registers

CIS 371 (Roth/Martin): Instruction Set Architectures 21

LC4/MIPS/x86 Registers

•! LC4
•! 8 16-bit integer registers

•! No floating-point registers

•! MIPS
•! 32 32-bit integer registers ($0 hardwired to 0)

•! 32 32-bit floating-point registers (or 16 64-bit registers)

•! x86
•! 8 8/16/32-bit integer registers (not general purpose)

•! No floating-point registers!

•! 64-bit x86
•! 16 64-bit integer registers

•! 16 128-bit floating-point registers

CIS 371 (Roth/Martin): Instruction Set Architectures 22

How Much Memory? Address Size

•! What does “64-bit” in a 64-bit ISA mean?
•! Support memory size of 264

•! Alternative (wrong) definition: width of calculation operations

•! Virtual address size
•! Determines size of addressable (usable) memory

•! Current 32-bit or 64-bit address spaces

•! All ISAs moving to (if not already at) 64 bits

•! Most critical, inescapable ISA design decision

•! Too small? Will limit the lifetime of ISA

•! May require nasty hacks to overcome (E.g., x86 segments)

•! x86 evolution:

•! 4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),

•! 32-bit + protected memory (80386)

•! 64-bit (AMD’s Opteron & Intel’s EM64T Pentium4)

•! All ISAs moving to 64 bits (if not already there)

CIS 371 (Roth/Martin): Instruction Set Architectures 23

LC4/MIPS/x86 Memory Size

•! LC4

•! 16-bit (216 16-bit words) x 2 (split data and instruction memory)

•! MIPS

•! 32-bit

•! 64-bit

•! x86

•! 8086: 16-bit

•! 80286: 24-bit

•! 80386: 32-bit

•! AMD Opteron/Athlon64, Intel’s newer Pentium4, Core 2: 64-bit

CIS 371 (Roth/Martin): Instruction Set Architectures 24

How Are Memory Locations Specified?

•! Registers are specified directly

•! Register names are short, can be encoded in instructions

•! Some instructions implicitly read/write certain registers

•! How are addresses specified?

•! Addresses are as big or bigger than insns

•! Addressing mode: how are insn bits converted to addresses?

•! Think about: what high-level idiom addressing mode captures

CIS 371 (Roth/Martin): Instruction Set Architectures 25

Memory Addressing

•! Addressing mode: way of specifying address

•! Used in memory-memory or load/store instructions in register ISA

•! Examples
•! Register-Indirect: R1=mem[R2]

•! Displacement: R1=mem[R2+immed]

•! Index-base: R1=mem[R2+R3]

•! Memory-indirect: R1=mem[mem[R2]]

•! Auto-increment: R1=mem[R2], R2= R2+1

•! Auto-indexing: R1=mem[R2+immed], R2=R2+immed

•! Scaled: R1=mem[R2+R3*immed1+immed2]

•! PC-relative: R1=mem[PC+imm]

•! What high-level program idioms are these used for?

•! What implementation impact? What impact on insn count?

CIS 371 (Roth/Martin): Instruction Set Architectures 26

MIPS Addressing Modes

•! MIPS implements only displacement

•! Why? Experiment on VAX (ISA with every mode) found distribution

•! Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%

•! 80% use small displacement or register indirect (displacement 0)

•! I-type instructions: 16-bit displacement

•! Is 16-bits enough?

•! Yes? VAX experiment showed 1% accesses use displacement >16

•! SPARC adds Reg+Reg mode
•! Why? What impact on both implementation and insn count?

CIS 371 (Roth/Martin): Instruction Set Architectures 27

LC4/MIPS/x86 Addressing Modes

•! MIPS
•! Displacement: R1+offset (16-bit)

•! Experiments showed this covered 80% of accesses on VAX

•! LC4
•! Displacement: R1+offset (6-bit)

•! LC3 had two more modes:
•! PC-displacement: PC+offset (9-bit)

•! Memory-indirect/PC-displacement: mem[[PC]+offset(9-bit)]

•! x86 (MOV instructions)
•! Absolute: zero + offset (8/16/32-bit)

•! Register indirect: R1

•! Indexed: R1+R2

•! Displacement: R1+offset (8/16/32-bit)

•! Scaled: R1 + (R2*Scale) + offset(8/16/32-bit) Scale = 1, 2, 4, 8

CIS 371 (Roth/Martin): Instruction Set Architectures 28

Two More Addressing Issues

•! Access alignment: address % size == 0?

•! Aligned: load-word @XXXX00, load-half @XXXXX0

•! Unaligned: load-word @XXXX10, load-half @XXXXX1

•! Question: what to do with unaligned accesses (uncommon case)?

•! Support in hardware? Makes all accesses slow

•! Trap to software routine? Possibility

•! Use regular instructions

•! Load, shift, load, shift, and

•! MIPS? ISA support: unaligned access using two instructions

lwl @XXXX10; lwr @XXXX10

•! Endian-ness: arrangement of bytes in a word
•! Big-endian: sensible order (e.g., MIPS, PowerPC)

•! A 4-byte integer: “00000000 00000000 00000010 00000011” is 515

•! Little-endian: reverse order (e.g., x86)

•! A 4-byte integer: “00000011 00000010 00000000 00000000 ” is 515

•! Why little endian? To be different? To be annoying? Nobody knows

CIS 371 (Roth/Martin): Instruction Set Architectures 29

How Many Explicit Operands / ALU Insn?

•! Operand model: how many explicit operands / ALU insn?

•! 3: general-purpose

add R1,R2,R3 means [R1] = [R2] + [R3] (MIPS uses this)

•! 2: multiple explicit accumulators (output doubles as input)

add R1,R2 means [R1] = [R1] + [R2] (x86 uses this)

•! 1: one implicit accumulator

add R1 means ACC = ACC + [R1]

•! 0: hardware stack

add means STK[TOS++] = STK[--TOS] + STK[--TOS]

•! 4+: useful only in special situations

•! Examples show register operands…

•! But operands can be memory addresses, or mixed register/memory

•! ISAs with register-only ALU insns are “load-store”

CIS 371 (Roth/Martin): Instruction Set Architectures 30

How Do Values Get From/To Memory?

•! How do values move from/to memory (primary storage)…

•! … to/from registers/accumulator/stack?

•! Assume displacement addressing for these examples

•! Registers: load/store

load r1, 8(r2) means [R1] = mem[[R2] + 8]

store r1, 8(r2) means mem[[R2] + 8] = [R1]

•! Accumulator: load/store

load 8(r2) means ACC = mem[[R2] + 8]

store 8(r2) means mem[[R2] + 8] = ACC

•! Stack: push/pop
push 8(r2) means STK[TOS++]= mem[[R2] + 8]

pop 8(r2) means mem[[R2] + 8] = STK[TOS--]

CIS 371 (Roth/Martin): Instruction Set Architectures 31

Operand Model Pros and Cons

•! Metric I: static code size

•! Want: many Implicit operands (stack), high level insns

•! Metric II: data memory traffic

•! Want: as many long-lived operands in on-chip storage (load-store)

•! Metric III: CPI

•! Want: short latencies, little variability (load-store)

•! CPI and data memory traffic more important these days

•! In most niches

•! Trend: most new ISAs are load-store or hybrids
CIS 371 (Roth/Martin): Instruction Set Architectures 32

LC4/MIPS/x86 Operand Models

•! LC4

•! Integer: 8 general-purpose registers, load-store

•! Floating-point: none

•! MIPS
•! Integer/floating-point: 32 general-purpose registers, load-store

•! x86

•! Integer (8 registers) reg-reg, reg-mem, mem-reg, but no mem-mem

•! Floating point: stack (why x86 floating-point lagged for years)

•! Note: integer push, pop for managing software stack

•! Note: also reg-mem and mem-mem string functions in hardware

•! x86-64
•! Integer/floating-point: 16 registers

CIS 371 (Roth/Martin): Instruction Set Architectures 33

Control Transfers

•! Default next-PC is PC + sizeof(current insn)

•! Branches and jumps can change that

•! Otherwise dynamic program == static program

•! Not useful

•! Computing targets: where to jump to

•! For all branches and jumps

•! Absolute / PC-relative / indirect

•! Testing conditions: whether to jump at all

•! For (conditional) branches only

•! Compare-branch / condition-codes / condition registers

Fetch

Decode

Read Inputs

Execute

Write Output

Next Insn

CIS 371 (Roth/Martin): Instruction Set Architectures 34

Control Transfers I: Computing Targets

•! The issues

•! How far (statically) do you need to jump?

•! Not far within procedure, further from one procedure to another

•! Do you need to jump to a different place each time?

•! PC-relative

•! Position-independent within procedure

•! Used for branches and jumps within a procedure

•! Absolute

•! Position independent outside procedure

•! Used for procedure calls

•! Indirect (target found in register)
•! Needed for jumping to dynamic targets

•! Used for returns, dynamic procedure calls, switch statements

CIS 371 (Roth/Martin): Instruction Set Architectures 35

Control Transfers II: Testing Conditions

•! Compare and branch insns
branch-less-than R1,10,target

+! Simple

–! Two ALUs: one for condition, one for target address

–! Extra latency

•! Implicit condition codes (x86, LC4)
subtract R2,R1,10 // sets “negative” CC

branch-neg target

+! Condition codes set “for free”

–! Implicit dependence is tricky

•! Conditions in regs, separate branch (MIPS)
set-less-than R2,R1,10

branch-not-equal-zero R2,target

–! Additional insns

+! one ALU per insn, explicit dependence

CIS 371 (Roth/Martin): Instruction Set Architectures 36

LC4, MIPS, x86 Control Transfers

•! LC4
•! 9-bit offset PC-relative branches/jumps (uses condition codes)

•! 11-bit offset PC-relative calls and indirect calls

•! MIPS
•! 16-bit offset PC-relative conditional branches (uses register for condition)

•! Simple banches

•! Compare two registers: beq, bne
•! Compare reg to zero: bgtz, bgez, bltz, blez

+!Don’t need adder for these, cover 80% of cases
•! Explicit “set condition into registers”: slt, sltu, slti, sltiu, etc.

•! 26-bit target absolute jumps and function calls

•! x86
•! 8-bit offset PC-relative branches (uses condition codes)
•! Explicit compare instructions to set condition codes

•! 8/16-bit target absolute jumps and function calls (within segment)
•! Far jumps and calls (change code segment) for longer jumps

Later: ISA Include Support For…

•! Operating systems & memory protection

•! Privileged mode

•! System call (TRAP)

•! Exceptions & interrupts

•! Interacting with I/O devices

•! Multiprocessor support
•! “Atomic” operations for synchronization

•! Data-level parallelism
•! Pack many values into a wide register

•! Intel’s SSE2: four 32-bit float-point values into 128-bit register

•! Define parallel operations (four “adds” in one cycle)

CIS 371 (Roth/Martin): Instruction Set Architectures 37

The RISC vs. CISC Debate

CIS 371 (Roth/Martin): Instruction Set Architectures 38

CIS 371 (Roth/Martin): Instruction Set Architectures 39

RISC and CISC

•! RISC: reduced-instruction set computer
•! Coined by Patterson in early 80’s

•! Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM 801
(Cocke)

•! Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

•! CISC: complex-instruction set computer
•! Term didn’t exist before “RISC”

•! Examples: x86, VAX, Motorola 68000, etc.

•! Philosophical war (one of several) started in mid 1980’s
•! RISC “won” the technology battles

•! CISC won the high-end commercial war (1990s to today)

•! Compatibility a stronger force than anyone (but Intel) thought

•! RISC won the embedded computing war

CIS 371 (Roth/Martin): Instruction Set Architectures 40

The Setup

•! Pre 1980

•! Bad compilers (so assembly written by hand)

•! Complex, high-level ISAs (easier to write assembly)

•! Slow multi-chip micro-programmed implementations

•! Vicious feedback loop

•! Around 1982

•! Moore’s Law makes single-chip microprocessor possible…

•! …but only for small, simple ISAs

•! Performance advantage of this “integration” was compelling

•! Compilers had to get involved in a big way

•! RISC manifesto: create ISAs that…
•! Simplify single-chip implementation

•! Facilitate optimizing compilation

CIS 371 (Roth/Martin): Instruction Set Architectures 41

The RISC Tenets

•! Single-cycle execution

•! CISC: many multicycle operations

•! Hardwired control

•! CISC: microcoded multi-cycle operations

•! Load/store architecture

•! CISC: register-memory and memory-memory

•! Few memory addressing modes

•! CISC: many modes

•! Fixed instruction format

•! CISC: many formats and lengths

•! Reliance on compiler optimizations

•! CISC: hand assemble to get good performance

•! Many registers (compilers are better at using them)

•! CISC: few registers

CIS 371 (Roth/Martin): Instruction Set Architectures 42

CISCs and RISCs

•! The CISCs: x86, VAX (Virtual Address eXtension to PDP-11)

•! Variable length instructions: 1-321 bytes!!!

•! 14 GPRs + PC + stack-pointer + condition codes

•! Data sizes: 8, 16, 32, 64, 128 bit, decimal, string

•! Memory-memory instructions for all data sizes

•! Special insns: crc, insque, polyf, and a cast of hundreds

•! x86: “Difficult to explain and impossible to love”

•! The RISCs: MIPS, PA-RISC, SPARC, PowerPC, Alpha
•! 32-bit instructions

•! 32 integer registers, 32 floating point registers, load-store

•! 64-bit virtual address space

•! Few addressing modes (Alpha has one, SPARC/PowerPC have more)

•! Why so many basically similar ISAs? Everyone wanted their own

CIS 371 (Roth/Martin): Instruction Set Architectures 43

The Debate

•! RISC argument
•! CISC is fundamentally handicapped

•! For a given technology, RISC implementation will be better (faster)

•! Current technology enables single-chip RISC

•! When it enables single-chip CISC, RISC will be pipelined

•! When it enables pipelined CISC, RISC will have caches

•! When it enables CISC with caches, RISC will have next thing...

•! CISC rebuttal
•! CISC flaws not fundamental, can be fixed with more transistors

•! Moore’s Law will narrow the RISC/CISC gap (true)

•! Good pipeline: RISC = 100K transistors, CISC = 300K

•! By 1995: 2M+ transistors had evened playing field

•! Software costs dominate, compatibility is paramount

CIS 371 (Roth/Martin): Instruction Set Architectures 44

Compatibility

•! No-one buys new hardware… if it requires new software

•! Intel greatly benefited from this (IBM, too)

•! ISA must remain compatible, no matter what

•! x86 one of the worst designed ISAs EVER, but survives

•! As does IBM’s 360/370 (the first “ISA family”)

•! Backward compatibility

•! New processors must support old programs (can’t drop features)

•! Very important

•! Forward (upward) compatibility

•! Old processors must support new programs (with software help)

•! New processors redefine only previously-illegal opcodes

•! Allow software to detect support for specific new instructions

•! Old processors emulate new instructions in low-level software

CIS 371 (Roth/Martin): Instruction Set Architectures 45

Intel’s Compatibility Trick: RISC Inside

•! 1993: Intel wanted out-of-order execution in Pentium Pro

•! Hard to do with a coarse grain ISA like x86

•! Solution? Translate x86 to RISC µops in hardware
push $eax

becomes (we think, uops are proprietary)

store $eax [$esp-4]

addi $esp,$esp,-4

+! Processor maintains x86 ISA externally for compatibility

+! But executes RISC µISA internally for implementability

•! Given translator, x86 almost as easy to implement as RISC

•! Intel implemented out-of-order before any RISC company

•! Also, OoO also benefits x86 more (because ISA limits compiler)

•! Idea co-opted by other x86 companies: AMD and Transmeta

CIS 371 (Roth/Martin): Instruction Set Architectures 46

More About Micro-ops

•! Even better? Two forms of hardware translation

•! Hard-coded logic: fast, but complex

•! Table: slow, but “off to the side”, doesn’t complicate rest of machine

•! x86: average 1.6 µops / x86 insn

•! Logic for common insns that translate into 1–4 µops

•! Table for rare insns that translate into 5+ µops

•! x86-64: average 1.1 µops / x86 insn
•! More registers (can pass parameters too), fewer pushes/pops

•! Core2: logic for 1–2 µops, Table for 3+ µops?

•! More recent: “macro-op fusion” and “micro-op fusion”
•! Intel’s recent processors fuse certain instruction pairs

CIS 371 (Roth/Martin): Instruction Set Architectures 47

Translation and Virtual ISAs

•! New compatibility interface: ISA + translation software

•! Binary-translation: transform static image, run native

•! Emulation: unmodified image, interpret each dynamic insn

•! Typically optimized with just-in-time (JIT) compilation

•! Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86)

•! Performance overheads reasonable (many recent advances)

•! Transmeta’s “code morphing” translation layer

•! Performed with a software layer below OS

•! Looks like x86 to the OS & applications, different ISA underneath

•! Virtual ISAs: designed for translation, not direct execution

•! Target for high-level compiler (one per language)

•! Source for low-level translator (one per ISA)

•! Goals: Portability (abstract hardware nastiness), flexibility over time

•! Examples: Java Bytecodes, C# CLR (Common Language Runtime)
CIS 371 (Roth/Martin): Instruction Set Architectures 48

Ultimate Compatibility Trick

•! Support old ISA by…

•! …having a simple processor for that ISA somewhere in the system

•! How first Itanium supported x86 code

•! x86 processor (comparable to Pentium) on chip

•! How PlayStation2 supported PlayStation games

•! Used PlayStation processor for I/O chip & emulation

CIS 371 (Roth/Martin): Instruction Set Architectures 49

Current Winner (Revenue): CISC

•! x86 was first 16-bit chip by ~2 years
•! IBM put it into its PCs because there was no competing choice

•! Rest is historical inertia and “financial feedback”

•! x86 is most difficult ISA to implement and do it fast but…

•! Because Intel sells the most non-embedded processors…

•! It has the most money…

•! Which it uses to hire more and better engineers…

•! Which it uses to maintain competitive performance …

•! And given competitive performance, compatibility wins…

•! So Intel sells the most non-embedded processors…

•! AMD as a competitor keeps pressure on x86 performance

•! Moore’s law has helped Intel in a big way
•! Most engineering problems can be solved with more transistors

CIS 371 (Roth/Martin): Instruction Set Architectures 50

Current Winner (Volume): RISC

•! ARM (Acorn RISC Machine ! Advanced RISC Machine)

•! First ARM chip in mid-1980s (from Acorn Computer Ltd).

•! 1.2 billion units sold in 2004 (>50% of all 32/64-bit CPUs)

•! Low-power and embedded devices (iPod, for example)

•! Significance of embedded? ISA Compatibility less powerful force

•! 32-bit RISC ISA

•! 16 registers, PC is one of them

•! Many addressing modes, e.g., auto increment

•! Condition codes, each instruction can be conditional

•! Multiple implementations

•! X-scale (design was DEC’s, bought by Intel, sold to Marvel)

•! Others: Freescale (was Motorola), Texas Instruments,
STMicroelectronics, Samsung, Sharp, Philips, etc.

CIS 371 (Roth/Martin): Instruction Set Architectures 51

Aside: Post-RISC -- VLIW and EPIC

•! ISAs explicitly targeted for multiple-issue (superscalar) cores

•! VLIW: Very Long Insn Word

•! Later rebranded as “EPIC”: Explicitly Parallel Insn Computing

•! Intel/HP IA64 (Itanium): 2000

•! EPIC: 128-bit 3-operation bundles

•! 128 64-bit registers

+! Some neat features: Full predication, explicit cache control

•! Predication: every instruction is conditional (to avoid branches)

–! But lots of difficult to use baggage as well: software speculation

•! Every new ISA feature suggested in last two decades

–! Relies on younger (less mature) compiler technology

–! Not doing well commercially

CIS 371 (Roth/Martin): Instruction Set Architectures 52

Redux: Are ISAs Important?

•! Does “quality” of ISA actually matter?

•! Not for performance (mostly)

•! Mostly comes as a design complexity issue

•! Insn/program: everything is compiled, compilers are good

•! Cycles/insn and seconds/cycle: µISA, many other tricks

•! What about power efficiency?

•! Maybe

•! ARMs are most power efficient today..

•! …but Intel is moving x86 that way (e.g, Intel’s Atom)

•! Does “nastiness” of ISA matter?

•! Mostly no, only compiler writers and hardware designers see it

•! Even compatibility is not what it used to be
•! Software emulation

CIS 371 (Roth/Martin): Instruction Set Architectures 53

Summary

•! What is an ISA?

•! A functional contract

•! All ISAs are basically the same
•! But many design choices in details

•! Two “philosophies”: CISC/RISC

•! Good ISA enables high-performance
•! At least doesn’t get in the way

•! Compatibility is a powerful force

•! Tricks: binary translation, µISAs

•! Next: single-cycle datapath/control

CPU Mem I/O

System software

App App App

