Instruction Set Architecture (ISA)

App | | App | | App o What is an ISA?
System software ¢ And what is a good ISA?

CIS 371 EI IE' - Aspects of ISAs

. . . e RISC vs. CISC
Computer Organization and Design « Compatibility is a powerful force

e Tricks: binary translation, uISAs

Unit 1: Instruction Set Architectures

CIS 371 (Roth/Martin): Instruction Set Architectures 1 CIS 371 (Roth/Martin): Instruction Set Architectures

Readings What Is An ISA?

e Introduction ¢ ISA (instruction set architecture)
e P+H, Chapter 1 * A well-defined hardware/software interface
¢ The “contract” between software and hardware
e ISAS « Functional definition of operations, modes, and storage

locations supported by hardware
¢ Precise description of how to invoke, and access them
¢ Not in the “contract”
e How operations are implemented
» Which operations are fast and which are slow and when
¢ Which operations take more power and which take less

e P+H, Chapter 2

e Instruction — Insn
¢ ‘Instruction’ is too long to write in slides

CIS 371 (Roth/Martin): Instruction Set Architectures 3 CIS 371 (Roth/Martin): Instruction Set Architectures

A Language Analogy for ISAs The Sequential Model

e Communication e Implicit model of all modern ISAs
* Person-to-person — software-to-hardware Fethh = J (?ften called VonNeuman, but in ENIAC before
e Similar structure —— ¢ Basic feature: the program counter (PC)
« Narrative — program ¢ Defines totql order on dyngmic instruction .
« Sentence —» insn Read Inputs e Next PC is PC++ unless insn says otherw!se
« Verb — operation (add, multiply, load, branch) Execute ¢ Order and named st.orage deﬁng computatlo.n
) o A Write Output * Value flows from insn X to Y via storage A iff...
¢ Noun — data item (immediate, register value, memory value) - « X names A as output, Y names A as input...
* Adjective — addressing mode exl e And Y after X in total order
 Many different languages, many different ISAs e Processor logically executes loop at left
¢ Similar basic structure, details differ (sometimes greatly) ¢ Instruction execution assumed atomic
o Key differences between languages and ISAs ¢ Instruction X finishes before insn X+1 starts
¢ Languages evolve organically, many ambiguities, inconsistencies)
¢ ISAs are explicitly engineered and extended, unambiguous * More parallel alternatives have been proposed
CIS 371 (Roth/Martin): Instruction Set Architectures 5 CIS 371 (Roth/Martin): Instruction Set Architectures 6

What Is A Good ISA?

¢ Lends itself to high-performance implementations
o Every ISA can be implemented
¢ Not every ISA can be implemented well

e Background: CPU performance equation
¢ Execution time: seconds/program
¢ Convenient to factor into three pieces
¢ (insns/program) * (cycles/insn) * (seconds/cycle)
¢ Insns/program: dynamic insns executed

ISA DeSign GoaIS « Seconds/cycle: clock period

¢ Cycles/insn (CPI): hmmm...

¢ For high performance all three factors should be low

CIS 371 (Roth/Martin): Instruction Set Architectures 7 CIS 371 (Roth/Martin): Instruction Set Architectures 8

Insns/Program: Compiler Optimizations

Compiler Optimizations

e Compilers do two things

¢ Translate high-level languages to assembly functionally
¢ Deterministic and fast compile time (gecc -00)
¢ “Canonical”: not an active research area
e CIS341

e “Optimize” generated assembly code
¢ “Optimize"? Hard to prove optimality in a complex system
¢ In systems: “optimize” means improve... hopefully
¢ Involved and relatively slow compile time (gcc -04)
e Some aspects: reverse-engineer programmer intention
¢ Not “canonical”: being actively researched
e CIS 570

CIS 371 (Roth/Martin): Instruction Set Architectures 9

Seconds/Cycle and Cycle/Insn: Hmmm...

e Primarily reduce insn count
¢ Eliminate redundant computation, keep more things in registers
+ Registers are faster, fewer loads/stores
— An ISA can make this difficult by having too few registers

e But also...
¢ Reduce branches and jumps (later)
¢ Reduce cache misses (later)
¢ Reduce dependences between nearby insns (later)
— An ISA can make this difficult by having implicit dependences

e How effective are these?
+ Can give 4X performance over unoptimized code
— Collective wisdom of 40 years (“Proebsting’s Law"): 4% per year
¢ Funny but ... shouldn't leave 4X performance on the table

CIS 371 (Roth/Martin): Instruction Set Architectures 10

Foreshadowing: Pipelining

¢ For single-cycle datapath
¢ Cycle/insn: 1 by definition
e Seconds/cycle: proportional to “complexity of datapath”
¢ ISA can make seconds/cycle high by requiring a complex datapath

CIS 371 (Roth/Martin): Instruction Set Architectures 11

¢ Sequential model: insn X finishes before insn X+1 starts
¢ An illusion designed to keep programmers sane

¢ Pipelining: important performance technique
¢ Hardware overlaps “processing iterations” for insns
— Variable insn length/format makes pipelining difficult
— Complex datapaths also make pipelining difficult (or clock slow)
¢ More about this later

Insn0 Insnl Insn2 Insn3 Insn4 Insn5
Fetch
Decode Fetch
Read Inputs Decode Fetch
Write Output Execute Read Inputs Decode Fetch
Next Insn | |Write Output Execute Read Inputs Decode | Fetch
CIS 371 (Roth/Martin): Instruction Set Architectures 12

time

Instruction Granularity: RISC vs CISC

e RISC (Reduced Instruction Set Computer) ISAs
¢ Minimalist approach to an ISA: simple insns only
+ Low “cycles/insn” and “seconds/cycle”
— Higher “insn/program”, but hopefully not as much
¢ Rely on compiler optimizations

e CISC (Complex Instruction Set Computing) ISAs
¢ A more heavyweight approach: both simple and complex insns
+ Low “insns/program”
— Higher “cycles/insn” and “seconds/cycle”
¢ We have the technology to get around this problem

¢ More on this later, but first ISA basics

CIS 371 (Roth/Martin): Instruction Set Architectures 13

Length and Format

e Length

Fetet[PC] ¢ Fixed length

Decode ¢ Most common is 32 bits
Read Inputs + Simple implementation (next PC often just PC+4)

Execute — Code density: 32 bits to increment a register by 1
Write Output ¢ Variable length

LEEIHE + Code density

L * x86 can do increment in one 8-bit instruction

— Complex fetch (where does next instruction begin?)
o Compromise: two lengths
¢ E.g., MIPS16 or ARM’s Thumb
¢ Encoding
¢ A few simple encodings simplify decoder

» x86 decoder one of nastiest pieces of logic
CIS 371 (Roth/Martin): Instruction Set Architectures 15

Aspects of ISAs

CIS 371 (Roth/Martin): Instruction Set Architectures

14

LC3/MIPS/x86 Length and Format

e LC3: 2-byte insns, 3 formats (LC4 similar)

0-reg [Op(4) Offset(12) |
1-reg |Op(4)R(3) Offset(9) |
2-reg |0p(4)R(B)R(3)Offset(6)]
3-reg [Op@REBIREBIUEIRE)

e MIPS: 4-byte insns, 3 formats

R-type | Op(6) | Rs(5) | Ri(5) | Rd(5) | Sh(5) |Func(6)|

I-type | Op(6) | Rs(5)| Ri(5) | Immed(16)

J-type | Op(6) | Target(26)

e x86: 1-16 byte insns

lPrefix*(1-4)) op | OpExt* | ModrRM* |

SIB*

| Disp*(1-4) | Imm*(1-4) |

CIS 371 (Roth/Martin): Instruction Set Architectures

16

Operations and Datatypes

LC4/MIPS/x86 Operations and Datatypes

Fetch
Decode
Read Inputs
Execute
Write Output
Next Insn

[

e Datatypes
* Software: attribute of data
¢ Hardware: attribute of operation, data is just 0/1’s
¢ All processors support
¢ 2C integer arithmetic/logic (8/16/32/64-bit)
o IEEE754 floating-point arithmetic (32/64 bit)
o Intel has 80-bit floating-point
¢ More recently, most processors support
¢ “Packed-integer” insns, e.g., MMX
e “Packed-fp” insns, e.g., SSE/SSE2
e For multimedia, more about these later
e Processor no longer (??) support
¢ Decimal, other fixed-point arithmetic

CIS 371 (Roth/Martin): Instruction Set Architectures

Where Does Data Live?

17

o LC4
e 16-bit integer: add, and, not, sub, mul, div, or, xor, shifts
¢ No floating-point

o MIPS
e 32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor
o 32(64) bit floating-point: add, sub, mul, div

e Xx86
¢ 32(64) bit integer: add, sub, mul, div, shift, rotate, and, or, not, xor
¢ 80-bit floating-point: add, sub, mul, div, sqrt
¢ 64-bit packed integer (MMX): padd, pmul...
¢ 64(128)-bit packed floating-point (SSE/2): padd, pmul...

CIS 371 (Roth/Martin): Instruction Set Architectures 18

How Many Registers?

Fetch
Decode
Read Inputs

Write Output

¢ Memory
¢ Fundamental storage space

¢ Registers
¢ Faster than memory, quite handy
¢ Most processors have these too

e Immediates
¢ Values spelled out as bits in instructions
¢ Input only

CIS 371 (Roth/Martin): Instruction Set Architectures

19

¢ Registers faster than memory, have as many as possible?
* No
One reason registers are faster: there are fewer of them
e Small is fast (hardware truism)
Another: they are directly addressed (no address calc)
— More of them, means larger specifiers
— Fewer registers per instruction or indirect addressing
Not everything can be put in registers
o Structures, arrays, anything pointed-to
¢ Although compilers are getting better at putting more things in
More registers means more saving/restoring
Trend: more registers: 8 (x86)—32 (MIPS) —128 (IA64)
¢ 64-bit x86 has 16 64-bit integer and 16 128-bit FP registers

CIS 371 (Roth/Martin): Instruction Set Architectures 20

LC4/MIPS/x86 Registers

How Much Memory? Address Size

e LC4
¢ 8 16-bit integer registers
¢ No floating-point registers

e MIPS
e 32 32-bit integer registers ($0 hardwired to 0)
e 32 32-bit floating-point registers (or 16 64-bit registers)

e x86
* 8 8/16/32-bit integer registers (not general purpose)
¢ No floating-point registers!

e 64-bit x86
¢ 16 64-bit integer registers
e 16 128-bit floating-point registers

CIS 371 (Roth/Martin): Instruction Set Architectures 21

LC4/MIPS/x86 Memory Size

e What does "64-bit” in a 64-bit ISA mean?
e Support memory size of 264
o Alternative (wrong) definition: width of calculation operations
¢ Virtual address size
« Determines size of addressable (usable) memory
¢ Current 32-bit or 64-bit address spaces
¢ All ISAs moving to (if not already at) 64 bits
¢ Most critical, inescapable ISA design decision
e Too small? Will limit the lifetime of ISA
e May require nasty hacks to overcome (E.g., x86 segments)
* x86 evolution:
« 4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),
e 32-bit + protected memory (80386)
¢ 64-bit (AMD’s Opteron & Intel's EM64T Pentium4)
e All ISAs moving to 64 bits (if not already there)

CIS 371 (Roth/Martin): Instruction Set Architectures 22

How Are Memory Locations Specified?

e LC4
¢ 16-bit (216 16-bit words) x 2 (split data and instruction memory)

e MIPS
e 32-bit
e 64-bit

e x86
e 8086: 16-bit
o 80286: 24-bit
e 80386: 32-bit
¢ AMD Opteron/Athlon64, Intel’s newer Pentium4, Core 2: 64-bit

CIS 371 (Roth/Martin): Instruction Set Architectures 23

e Registers are specified directly
* Register names are short, can be encoded in instructions
¢ Some instructions implicitly read/write certain registers

e How are addresses specified?
¢ Addresses are as big or bigger than insns
¢ Addressing mode: how are insn bits converted to addresses?
¢ Think about: what high-level idiom addressing mode captures

CIS 371 (Roth/Martin): Instruction Set Architectures 24

Memory Addressing

MIPS Addressing Modes

e Addressing mode: way of specifying address
¢ Used in memory-memory or load/store instructions in register ISA
e Examples
¢ Register-Indirect: R1=mem[R2]
¢ Displacement: R1=mem[R2+immed]
¢ Index-base: R1=mem[R2+R3]
¢ Memory-indirect: R1=mem[mem[R2]]
¢ Auto-increment: R1=mem[R2], R2= R2+1
¢ Auto-indexing: R1=mem[R2+immed], R2=R2+immed
e Scaled: Rl1=mem[R2+R3*immedl+immed2]
¢ PC-relative: R1=mem[PC+imm]
¢ What high-level program idioms are these used for?
¢ What implementation impact? What impact on insn count?

CIS 371 (Roth/Martin): Instruction Set Architectures 25

LC4/MIPS/x86 Addressing Modes

e MIPS implements only displacement
e Why? Experiment on VAX (ISA with every mode) found distribution
e Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%
¢ 80% use small displacement or register indirect (displacement 0)

e I-type instructions: 16-bit displacement
¢ Is 16-bits enough?
¢ Yes? VAX experiment showed 1% accesses use displacement >16

I-type | Op(6) |Rs(5)| Rt(5)| Immed(16)

e SPARC adds Reg+Reg mode
e Why? What impact on both implementation and insn count?

CIS 371 (Roth/Martin): Instruction Set Architectures 26

Two More Addressing Issues

o MIPS
¢ Displacement: R1+offset (16-bit)
¢ Experiments showed this covered 80% of accesses on VAX
o LC4
¢ Displacement: R1+offset (6-bit)
e LC3 had two more modes:
+ PC-displacement: PC+offset (9-bit)
¢ Memory-indirect/PC-displacement: mem[[PC]+offset(9-bit)]

e x86 (MOV instructions)
¢ Absolute: zero + offset (8/16/32-bit)
¢ Register indirect: R1
¢ Indexed: R1+R2
¢ Displacement: R1+offset (8/16/32-bit)

¢ Scaled: R1 + (R2*Scale) + offset(8/16/32-bit) Scale=1,2,4,8

CIS 371 (Roth/Martin): Instruction Set Architectures 27

e Access alignment: address % size == 0?
¢ Aligned: load-word @XXXX00, load-half @XXXXXO
e Unaligned: load-word @XXXX10, load-half @XXXXX1
¢ Question: what to do with unaligned accesses (uncommon case)?
¢ Support in hardware? Makes all accesses slow
¢ Trap to software routine? Possibility
e Use regular instructions
e Load, shift, load, shift, and
¢ MIPS? ISA support: unaligned access using two instructions
1wl @XXXX10; lwr @XXXX10

¢ Endian-ness: arrangement of bytes in a word
¢ Big-endian: sensible order (e.g., MIPS, PowerPC)
¢ A 4-byte integer: *00000000 00000000 00000010 00000011" is 515

o Little-endian: reverse order (%
¢ A 4-byte integer: *00000011700000010 00000000 00000000 " is 515

¢ Why little endian? To be different? To be annoying? Nobody knows
CIS 371 (Roth/Martin): Instruction Set Architectures 28

How Many Explicit Operands / ALU Insn?

e Operand model: how many explicit operands / ALU insn?
¢ 3: general-purpose
add R1,R2,R3 means [R1] = [R2] + [R3] (MIPS uses this)
e 2: multiple explicit accumulators (output doubles as input)
add R1,R2 means [R1] = [R1] + [R2] (x86 uses this)
¢ 1: one implicit accumulator
add R1 means ACC = ACC + [R1]
¢ 0: hardware stack
add means STK[TOS++] = STK[--TOS] + STK[--TOS]
e 4+: useful only in special situations
e Examples show register operands...
¢ But operands can be memory addresses, or mixed register/memory
¢ ISAs with register-only ALU insns are “load-store”

CIS 371 (Roth/Martin): Instruction Set Architectures 29

Operand Model Pros and Cons

How Do Values Get From/To Memory?

e Metric I: static code size
¢ Want: many Implicit operands (stack), high level insns

¢ Metric II: data memory traffic
¢ Want: as many long-lived operands in on-chip storage (load-store)

e Metric III: CPI
« Want: short latencies, little variability (load-store)

e CPI and data memory traffic more important these days
¢ In most niches

e Trend: most new ISAs are load-store or hybrids
CIS 371 (Roth/Martin): Instruction Set Architectures 31

e How do values move from/to memory (primary storage)...
o ... to/from registers/accumulator/stack?
¢ Assume displacement addressing for these examples

e Registers: load/store
load rl, 8(r2) means[R1] = mem[[R2] + 8]
store rl, 8(r2) means mem[[R2] + 8] = [R1]
¢ Accumulator: load/store
load 8(r2) means ACC = mem[[R2] + 8]
store 8 (r2) means mem[[R2] + 8] = ACC
e Stack: push/pop
push 8 (r2) means STK[TOS++]= mem[[R2] + 8]
pop 8(r2) means mem[[R2] + 8] = STK[TOS--]

CIS 371 (Roth/Martin): Instruction Set Architectures 30

LC4/MIPS/x86 Operand Models

e LC4
o Integer: 8 general-purpose registers, load-store
¢ Floating-point: none

o MIPS
o Integer/floating-point: 32 general-purpose registers, load-store

e x86
o Integer (8 registers) reg-reg, reg-mem, mem-reg, but no mem-mem
« Floating point: stack (why x86 floating-point lagged for years)
¢ Note: integer push, pop for managing software stack
* Note: also reg-mem and mem-mem string functions in hardware
o x86-64
o Integer/floating-point: 16 registers

CIS 371 (Roth/Martin): Instruction Set Architectures 32

Control Transfers

e Default next-PC is PC + sizeof(current insn)

Fetch
Decode | |® Branches and jumps can change that
Read Inputs o Otherwise dynamic program == static program
Execute « Not useful
Write Output
e Computing targets: where to jump to
¢ For all branches and jumps
o Absolute / PC-relative / indirect
¢ Testing conditions: whether to jump at all
¢ For (conditional) branches only
¢ Compare-branch / condition-codes / condition registers
CIS 371 (Roth/Martin): Instruction Set Architectures 33

Control Transfers II: Testing Conditions

Control Transfers I: Computing Targets

e Compare and branch insns
branch-less-than R1,10, target
+ Simple
— Two ALUs: one for condition, one for target address
— Extra latency
o Implicit condition codes (x86, LC4)
subtract R2,R1,10 // sets “negative” CC
branch-neg target
+ Condition codes set “for free”
— Implicit dependence is tricky
¢ Conditions in regs, separate branch (MIPS)
set-less-than R2,R1,10
branch-not-equal-zero R2,target
— Additional insns
+ one ALU per insn, explicit dependence
CIS 371 (Roth/Martin): Instruction Set Architectures 35

e The issues
¢ How far (statically) do you need to jump?

¢ Not far within procedure, further from one procedure to another

* Do you need to jump to a different place each time?
¢ PC-relative
¢ Position-independent within procedure
¢ Used for branches and jumps within a procedure
e Absolute
¢ Position independent outside procedure
¢ Used for procedure calls
e Indirect (target found in register)
¢ Needed for jumping to dynamic targets
¢ Used for returns, dynamic procedure calls, switch statements

CIS 371 (Roth/Martin): Instruction Set Architectures 34

LC4, MIPS, x86 Control Transfers

e LC4
¢ 9-bit offset PC-relative branches/jumps (uses condition codes)
e 11-bit offset PC-relative calls and indirect calls

e MIPS

* 16-bit offset PC-relative conditional branches (uses register for condition)
e Simple banches

e Compare two registers: beq, bne

e Compare reg to zero: bgtz, bgez, bltz, blez

+ Don't need adder for these, cover 80% of cases
o Explicit “set condition into registers”: s1t, sltu, slti, sltiu, etc.
e 26-bit target absolute jumps and function calls

e x86
o 8-bit offset PC-relative branches (uses condition codes)
» Explicit compare instructions to set condition codes
* 8/16-bit target absolute jumps and function calls (within segment)
¢ Far jumps and calls (change code segment) for longer jumps

CIS 371 (Roth/Martin): Instruction Set Architectures 36

Later: ISA Include Support For...

¢ Operating systems & memory protection
¢ Privileged mode
e System call (TRAP)
¢ Exceptions & interrupts
o Interacting with I/O devices

e Multiprocessor support
* “Atomic” operations for synchronization

¢ Data-level parallelism
¢ Pack many values into a wide register
e Intel’s SSE2: four 32-bit float-point values into 128-bit register
¢ Define parallel operations (four “adds” in one cycle)

CIS 371 (Roth/Martin): Instruction Set Architectures 37

RISC and CISC

e RISC: reduced-instruction set computer
¢ Coined by Patterson in early 80’s
¢ Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM 801
(Cocke)
» Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC
e CISC: complex-instruction set computer
e Term didn't exist before “RISC”
¢ Examples: x86, VAX, Motorola 68000, etc.

¢ Philosophical war (one of several) started in mid 1980’s
¢ RISC “won” the technology battles
¢ CISC won the high-end commercial war (1990s to today)
» Compatibility a stronger force than anyone (but Intel) thought
¢ RISC won the embedded computing war

CIS 371 (Roth/Martin): Instruction Set Architectures 39

The RISC vs. CISC Debate

CIS 371 (Roth/Martin): Instruction Set Architectures 38

The Setup

e Pre 1980
¢ Bad compilers (so assembly written by hand)
e Complex, high-level ISAs (easier to write assembly)
¢ Slow multi-chip micro-programmed implementations
« Vicious feedback loop

e Around 1982
¢ Moore’s Law makes single-chip microprocessor possible...
¢ ...but only for small, simple ISAs
¢ Performance advantage of this “integration” was compelling
¢ Compilers had to get involved in a big way
e RISC manifesto: create ISAs that...
+ Simplify single-chip implementation
+ Facilitate optimizing compilation

CIS 371 (Roth/Martin): Instruction Set Architectures 40

The RISC Tenets

¢ Single-cycle execution
e CISC: many multicycle operations
¢ Hardwired control
e CISC: microcoded multi-cycle operations
¢ Load/store architecture
e CISC: register-memory and memory-memory
* Few memory addressing modes
e CISC: many modes
¢ Fixed instruction format
e CISC: many formats and lengths
¢ Reliance on compiler optimizations
e CISC: hand assemble to get good performance
* Many registers (compilers are better at using them)
e CISC: few registers

CIS 371 (Roth/Martin): Instruction Set Architectures 41

The Debate

CISCs and RISCs

e RISC argument
e CISC is fundamentally handicapped

¢ For a given technology, RISC implementation will be better (faster)

¢ Current technology enables single-chip RISC

¢ When it enables single-chip CISC, RISC will be pipelined

¢ When it enables pipelined CISC, RISC will have caches

¢ When it enables CISC with caches, RISC will have next thing...

e CISC rebuttal
¢ CISC flaws not fundamental, can be fixed with more transistors
¢ Moore’s Law will narrow the RISC/CISC gap (true)
¢ Good pipeline: RISC = 100K transistors, CISC = 300K
e By 1995: 2M+ transistors had evened playing field
» Software costs dominate, compatibility is paramount

CIS 371 (Roth/Martin): Instruction Set Architectures 43

e The CISCs: x86, VAX (Virtual Address eXtension to PDP-11)
¢ Variable length instructions: 1-321 bytes!!!
e 14 GPRs + PC + stack-pointer + condition codes
o Data sizes: 8, 16, 32, 64, 128 bit, decimal, string
¢ Memory-memory instructions for all data sizes
e Special insns: cre, insque, poly£, and a cast of hundreds
» x86: "Difficult to explain and impossible to love”

e The RISCs: MIPS, PA-RISC, SPARC, PowerPC, Alpha
e 32-bit instructions
32 integer registers, 32 floating point registers, load-store
64-bit virtual address space
Few addressing modes (Alpha has one, SPARC/PowerPC have more)
Why so many basically similar ISAs? Everyone wanted their own

CIS 371 (Roth/Martin): Instruction Set Architectures 42

Compatibility

¢ No-one buys new hardware... if it requires new software
o Intel greatly benefited from this (IBM, too)
¢ ISA must remain compatible, no matter what
» x86 one of the worst designed ISAs EVER, but survives
¢ As does IBM'’s 360/370 (the first “ISA family™)
e Backward compatibility
¢ New processors must support old programs (can't drop features)
¢ Very important
e Forward (upward) compatibility
¢ Old processors must support new programs (with software help)
¢ New processors redefine only previously-illegal opcodes
» Allow software to detect support for specific new instructions
¢ Old processors emulate new instructions in low-level software

CIS 371 (Roth/Martin): Instruction Set Architectures 44

Intel’s Compatibility Trick: RISC Inside

e 1993: Intel wanted out-of-order execution in Pentium Pro
¢ Hard to do with a coarse grain ISA like x86
e Solution? Translate x86 to RISC pops in hardware
push $eax
becomes (we think, uops are proprietary)
store $eax [S$esp-4]
addi $esp,$esp,-4
+ Processor maintains x86 ISA externally for compatibility
+ But executes RISC pISA internally for implementability
¢ Given translator, x86 almost as easy to implement as RISC
¢ Intel implemented out-of-order before any RISC company
¢ Also, 000 also benefits x86 more (because ISA limits compiler)
¢ Idea co-opted by other x86 companies: AMD and Transmeta

CIS 371 (Roth/Martin): Instruction Set Architectures 45

Translation and Virtual ISAs

More About Micro-ops

e New compatibility interface: ISA + translation software

¢ Binary-translation: transform static image, run native

¢ Emulation: unmodified image, interpret each dynamic insn
o Typically optimized with just-in-time (JIT) compilation

e Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86)

¢ Performance overheads reasonable (many recent advances)

e Transmeta’s “code morphing” translation layer
¢ Performed with a software layer below OS

« Looks like x86 to the OS & applications, different ISA underneath
¢ Virtual ISAs: designed for translation, not direct execution
¢ Target for high-level compiler (one per language)
* Source for low-level translator (one per ISA)
¢ Goals: Portability (abstract hardware nastiness), flexibility over time

e Examples: Java Bytecodes, C# CLR (Common Language Runtime)
CIS 371 (Roth/Martin): Instruction Set Architectures 47

¢ Even better? Two forms of hardware translation
¢ Hard-coded logic: fast, but complex
e Table: slow, but “off to the side”, doesn't complicate rest of machine

e x86: average 1.6 uops / x86 insn
¢ Logic for common insns that translate into 1-4 uops
¢ Table for rare insns that translate into 5+ pops

e x86-64: average 1.1 pops / x86 insn
* More registers (can pass parameters too), fewer pushes/pops
e Core2: logic for 1-2 uops, Table for 3+ pops?

¢ More recent: “macro-op fusion” and “micro-op fusion”

¢ Intel’s recent processors fuse certain instruction pairs
CIS 371 (Roth/Martin): Instruction Set Architectures 46

Ultimate Compatibility Trick

e Support old ISA by...
¢ ...having a simple processor for that ISA somewhere in the system
¢ How first Itanium supported x86 code
¢ x86 processor (comparable to Pentium) on chip
¢ How PlayStation2 supported PlayStation games
¢ Used PlayStation processor for I/O chip & emulation

CIS 371 (Roth/Martin): Instruction Set Architectures 48

Current Winner (Revenue): CISC

Current Winner (Volume): RISC

e x86 was first 16-bit chip by ~2 years
e IBM put it into its PCs because there was no competing choice
o Rest is historical inertia and “financial feedback”
» x86 is most difficult ISA to implement and do it fast but...
¢ Because Intel sells the most non-embedded processors...
o It has the most money...
¢ Which it uses to hire more and better engineers...
¢ Which it uses to maintain competitive performance ...

¢ And given competitive performance, compatibility wins...

¢ So Intel sells the most non-embedded processors...
e AMD as a competitor keeps pressure on x86 performance

e Moore’s law has helped Intel in a big way
* Most engineering problems can be solved with more transistors

CIS 371 (Roth/Martin): Instruction Set Architectures 49

Aside: Post-RISC -- VLIW and EPIC

e ARM (Acorn RISC Machine — Advanced RISC Machine)
¢ First ARM chip in mid-1980s (from Acorn Computer Ltd).
¢ 1.2 billion units sold in 2004 (>50% of all 32/64-bit CPUs)
¢ Low-power and embedded devices (iPod, for example)

« Significance of embedded? ISA Compatibility less powerful force

e 32-bit RISC ISA
e 16 registers, PC is one of them
¢ Many addressing modes, e.g., auto increment
¢ Condition codes, each instruction can be conditional
¢ Multiple implementations
¢ X-scale (design was DEC's, bought by Intel, sold to Marvel)

o Others: Freescale (was Motorola), Texas Instruments,
STMicroelectronics, Samsung, Sharp, Philips, etc.

CIS 371 (Roth/Martin): Instruction Set Architectures 50

Redux: Are ISAs Important?

e ISAs explicitly targeted for multiple-issue (superscalar) cores

e VLIW: Very Long Insn Word
¢ Later rebranded as “EPIC”: Explicitly Parallel Insn Computing

e Intel/HP IA64 (Itanium): 2000
e EPIC: 128-bit 3-operation bundles
e 128 64-bit registers
+ Some neat features: Full predication, explicit cache control
e Predication: every instruction is conditional (to avoid branches)
But lots of difficult to use baggage as well: software speculation
¢ Every new ISA feature suggested in last two decades
Relies on younger (less mature) compiler technology
Not doing well commercially

CIS 371 (Roth/Martin): Instruction Set Architectures 51

e Does “quality” of ISA actually matter?
¢ Not for performance (mostly)
¢ Mostly comes as a design complexity issue
¢ Insn/program: everything is compiled, compilers are good
¢ Cycles/insn and seconds/cycle: uISA, many other tricks
« What about power efficiency?
e Maybe
¢ ARMs are most power efficient today..
e ...but Intel is moving x86 that way (e.g, Intel’s Atom)
¢ Does “nastiness” of ISA matter?
¢ Mostly no, only compiler writers and hardware designers see it
e Even compatibility is not what it used to be
¢ Software emulation

CIS 371 (Roth/Martin): Instruction Set Architectures 52

Summary

App | | App | | App What is an ISA?
System software ¢ A functional contract

_I I_I All ISAs are basically the same
Mem||cPU || 11O

¢ But many design choices in details
e Two “philosophies”: CISC/RISC

Good ISA enables high-performance
o At least doesn't get in the way

Compatibility is a powerful force
e Tricks: binary translation, ulSAs

Next: single-cycle datapath/control

CIS 371 (Roth/Martin): Instruction Set Architectures 53

