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CIS 371 
Computer Organization and Design 

Unit 2: Single-Cycle Datapath and Control 
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This Unit: Single-Cycle Datapaths 

•! Digital logic basics 

•! Focus on useful components 

•! Mapping an ISA to a datapath 
•! MIPS example 

•! Single-cycle control 

CPU Mem I/O 

System software 
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Readings 

•! Digital logic 
•! P&H, Appendix C (on CD) 

•! Basic datapath 

•! P&H, Chapter 4.1 – 4.4   (well-written, relates to lecture well) 
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So You Have an ISA… 

•! … not useful without a piece of hardware to execute it 
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Implementing an ISA 

•! Datapath: performs computation (registers, ALUs, etc.) 
•! ISA specific: can implement every insn (single-cycle: in one pass!) 

•! Control: determines which computation is performed  
•! Routes data through datapath (which regs, which ALU op) 

•! Fetch: get insn, translate opcode into control 

•! Fetch ! Decode ! Execute “cycle” 

PC 
Insn 

memory 

Register 

File 

Data 

Memory 

control 

datapath 

fetch 

CIS371 (Roth/Martin): Datapath and Control 6 

Two Types of Components 

•! Purely combinational: stateless computation 
•! ALUs, muxes, control 

•! Arbitrary Boolean functions 

•! Combinational/sequential: storage 
•! PC, insn/data memories, register file 

•! Internally contain some combinational components 
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Digital Logic Review 
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Building Blocks: Logic Gates 

•! Logic gates: implement Boolean functions 

•! Basic gates: NOT, NAND, NOR 

•! Underlying CMOS transistors are naturally inverting (   = NOT) 

•! NAND, NOR are “Boolean complete” 
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Boolean Functions and Truth Tables 

•! Any Boolean function can be represented as a truth table 

•! Truth table: point-wise input ! output mapping 

•! Function is disjunction of all rows in which “Out” is 1 

A,B,C ! Out 
0,0,0 ! 0 
0,0,1 ! 0 
0,1,0 ! 0 
0,1,1 ! 0 
1,0,0 ! 0 
1,0,1 ! 1 
1,1,0 ! 1 
1,1,1 ! 1 

•! Example above: Out = AB’C + ABC’ + ABC 
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Truth Tables and PLAs 

•! Implement Boolean function by implementing its truth table 
•! Takes two levels of logic 

•! Assumes inputs and inverses of inputs are available (usually are) 

•! First level: ANDs (product terms) 

•! Second level: ORs (sums of product terms) 

•! PLA (programmable logic array) 
•! Flexible circuit for doing this 
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PLA Example 

•! PLA with 3 inputs, 2 outputs, and 4 product terms 

•! Out0 = AB’C + ABC’ + ABC 
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Boolean Algebra 

•! Boolean Algebra: rules for rewriting Boolean functions 

•! Useful for simplifying Boolean functions 

•! Simplifying = reducing gate count, reducing gate “levels” 

•! Rules: similar to logic (0/1 = F/T) 

•! Identity: A1 = A, A+0 = A 

•! 0/1: A0 = 0, A+1 = 1 

•! Inverses: (A’)’ = A  

•! Idempotency: AA = A, A+A = A 

•! Tautology: AA’ = 0, A+A’ = 1 

•! Commutativity: AB = BA, A+B = B+A 

•! Associativity: A(BC) = (AB)C, A+(B+C) = (A+B)+C 

•! Distributivity: A(B+C) = AB+AC, A+(BC) = (A+B)(A+C) 

•! DeMorgan’s: (AB)’ = A’+B’, (A+B)’ = A’B’ 
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Logic Minimization 

•! Logic minimization 
•! Iterative application of rules to reduce function to simplest form 

•! There are tools for automatically doing this 

•! Example below: function from slide #8 

Out = AB’C + ABC’ + ABC 

Out = A(B’C + BC’ + BC)       // distributivity 

Out = A(B’C + (BC’ + BC))     // associativity 

Out = A(B’C + B(C’+C))         // distributivity (on B) 

Out = A(B’C + B1)                 // tautology 

Out = A(B’C + B)                  // 0/1 

Out = A((B’+B)(C+B))           // distributivity (on +B) 

Out = A(1(B+C))                   // tautology 

Out = A(B+C)                       // 0/1 
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Non-Arbitrary Boolean Functions 

•! PLAs implement Boolean functions point-wise 

•! E.g., represent f(X) = X+5 as [0!5, 1!6, 2!7, 3!8, …] 

•! Mainly useful for “arbitrary” functions, no compact representation 

•! Many useful Boolean functions are not arbitrary 

•! Have a compact representation 

•! E.g., represent f(X) = X+5 as X+5 

•! Examples 

•! Decoder 

•! Multiplexer 

•! Adder: e.g., X+5 (or more generally, X+Y) 
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Decoder 

•! Decoder: converts binary integer to 1-hot representation 

•! Binary representation of 0…2N–1: N bits 

•! 1 hot representation of 0…2N–1: 2N bits 

•! J represented as Jth bit 1, all other bits zero 

•! Example below: 2-to-4 decoder 
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Multiplexer (Mux) 

•! Multiplexer (mux): selects output from N inputs 

•! Example: 1-bit 4-to-1 mux 

•! Not shown: N-bit 4-to-1 mux = N 1-bit 4-to-1 muxes + 1 decoder 

A 

O B 

C 

D 

S (binary) 

S (binary) 

A 

B 

C 

D 

O 

S (1-hot) 



CIS371 (Roth/Martin): Datapath and Control 17 

Adder 

•! Adder: adds/subtracts two 2C binary integers 

•! Half adder: adds two 1-bit “integers”, no carry-in 

•! Full adder: adds three 1-bit “integers”, includes carry-in 

•! Ripple-carry adder: N chained full adders add 2 N-bit integers 

•! To subtract: negate B input, set bit 0 carry-in to 1 
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Full Adder 

•! What is the logic for a full adder? 
•! Look at truth table 

CI A B ! C0 S 
0  0 0 ! 0  0 
0  0 1 ! 0  1 
0  1 0 ! 0  1 
0  1 1 ! 1  0 
1  0 0 ! 0  1 
1  0 1 ! 1  0 
1  1 0 ! 1  0 
1  1 1 ! 1  1 

•! S = C’A’B + C’AB’ + CA’B’ + CAB = C ^ A ^ B 

•! CO = C’AB + CA’B + CAB’ + CAB = CA + CB + AB 
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N-bit Adder/Subtracter 
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•! More later when we cover arithmetic 
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Sequential Logic & Synchronous Systems 

•! Processors are complex fine state machines (FSMs) 
•! Combinational (compute) blocks separated by storage elements 

•! State storage: memories, registers, etc. 

•! Synchronous systems 
•! Clock: global signal acts as write enable for all storage elements 

•! Typically marked as triangle 

•! All state elements write together, values move forward in lock-step 

+! Simplifies design: design combinational blocks independently 

•! Aside: asynchronous systems 
•! Same thing, but … no clock 

•! Values move forward using explicit handshaking 

±! May have some advantages, but difficult to design 
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Datapath Storage Elements 

•! Three main types of storage elements 

•! Singleton registers: PC 

•! Register files: ISA registers 

•! Memories: insn/data memory 

PC 
Insn 

memory 

Register 

File 

Data 

Memory 

control 

datapath 

fetch 

CIS371 (Roth/Martin): Datapath and Control 22 

Cross-Coupled Inverters (CCIs) 

•! Cross-coupled inverters (CCIs) 

•! Primitive “storage element” for storing state 

•! Most storage arrays (regfile, caches) implemented this way 

•! Where is the input and where is the output? 

Q’ Q 
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S-R Latch 

•! S-R (set-reset) latch 

•! Cross-coupled NOR gates 

•! Distinct inputs/outputs 

S,R ! Q 

0,0 ! oldQ 

0,1 ! 0 

1,0 ! 1 

1,1 ! 0 

•! S=0, R=0? circuit degenerates to cross-coupled INVs 

•! S=1, R=1? not very useful 

•! Not really used … except as component in something else 
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D Latch 

•! D latch: S-R latch + … 

•! control that makes S=R=1 impossible 

E,D ! Q 

0,0 ! oldQ 

0,1 ! oldQ 

1,0 ! 0 

1,1 ! 1 

•! In other words 

0,D ! oldQ 

1,D ! D 

•! In words 

•! When E is 1, Q gets D 

•! When E is 0, Q retains old value 
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Timing Diagrams 

•! Voltage {0,1} diagrams for different nodes in system 

•! “Digitally stylized”: changes are vertical lines (instantaneous?) 

•! Reality is analog, changes are continuous and smooth 

•! Timing diagram for a D latch 

E 

D 

Q 

CIS371 (Roth/Martin): Datapath and Control 26 

Triggering: Level vs. Edge 

•! The D-latch is level-triggered 

•! The latch is open for writing as long as E is 1 

•! If D changes continuously, so does Q 

–! May not be the functionality we want 

•! Often easier to reason about an edge-triggered latch 

•! The latch is open for writing only on E transition (0 ! 1 or 1 ! 0) 

+! Don’t need to worry about fluctuations in value of D 
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D Flip-Flop 

•! D Flip-Flop: also called master-slave flip-flop 

•! Sequential D-latches 

•! Enabled by inverse signals 

•! First latch open when E = 0 

•! Second latch open when E = 1 

•! Overall effect? 

•! D FF latches D on 0!1 transition 

•! E is the “clock” signal input 
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FFWE: FF with Separate Write Enable 

•! FFWE: FF with separate write enable 
•! FF D(ata) input is MUX of D and Q, WE selects 

•! Alternative: FF E(nable) input is AND of CLK and WE 

+!Fewer gates 

–! Creates timing problems 

!! Do not try to do logic on CLK in Verilog 

!! No, really. 
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Singleton Register 

•! Register: one N-bit storage word 
•! Non-multiplexed input/output: data buses write/read same word 

•! Implementation: FFWE array with shared write-enable (WE) 
•! FFs written on CLK edge if WE is 1 (or if there is no WE) 
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Register File 

•! Register file: M N-bit storage words 

•! Multiplexed input/output: data buses write/read “random” word 

•! “Port”: set of buses for accessing a random word in array 
•! Data bus (N-bits) + address bus (log2M-bits) + optional WE bit 

•! P ports = P parallel and independent accesses 

•! MIPS integer register file 
•! 32 32-bit words, two read ports + one write port (why?) 
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Register File (Port) Implementation 

•! Register file with four registers 
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Add a Read Port 

•! Output of each register into 4to1 mux (RSrc1Val) 

•! RS1 is select input of RSrc1Val mux 

RS1 

RSrc1Val 
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Add Another Read Port 

•! Output of each register into another 4to1 mux (RSrc2Val) 

•! RS2 is select input of RSrc2Val mux 
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Add a Write Port 

•! Input RegDestVal into each register 

•! Enable only one register’s WE: (Decoded RD) & (WE)  

•! What if we needed two write ports? 
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RSrc2Val 
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Another Useful Component: Memory 

•! Register file: M N-bit storage words 

•! Few words (< 256), many ports, dedicated read and write ports 

•! Synchronous 

•! Memory: M N-bit storage words, yet not a register file 

•! Many words (> 1024), few ports (1, 2), shared read/write ports 

•! Leads to different implementation choices 

•! Lots of circuit tricks and such 
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Unified vs Split Memory Architecture 

•! Unified architecture: unified insn/data memory 
•! LC3, MIPS, every other ISA  

•! Harvard architecture: split insn/data memories 
•! LC4 
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Datapath for MIPS ISA 

•! Registers in MIPS are $0, $2… $31 

•! Consider only the following instructions 

add $1,$2,$3      $1 = $2 + $3       (add) 

addi $1,2,$3      $1 = 2 + $3        (add immed) 

lw $1,4($3)       $1 = Memory[4+$3]  (load) 

sw $1,4($3)       Memory[4+$3] = $1  (store) 

beq $1,$2,PC_relative_target  (branch equal) 

j absolute_target       (unconditional jump) 

•! Why only these? 

•! Most other instructions are the same from datapath viewpoint 

•! The one’s that aren’t are left for you to figure out 
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Start With Fetch 

•! PC and instruction memory (Harvard architecture, for now) 

•! A +4 incrementer computes default next instruction PC 
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First Instruction: add 

•! Add register file and ALU 
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Second Instruction: addi 

•! Destination register can now be either Rd or Rt 

•! Add sign extension unit and mux into second ALU input 
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Third Instruction: lw 

•! Add data memory, address is ALU output 

•! Add register write data mux to select memory output or ALU output 
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Fourth Instruction: sw 

•! Add path from second input register to data memory data input 
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Fifth Instruction: beq 

•! Add left shift unit and adder to compute PC-relative branch target 

•! Add PC input mux to select PC+4 or branch target 
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Sixth Instruction: j 

•! Add shifter to compute left shift of 26-bit immediate 

•! Add additional PC input mux for jump target 
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“Continuous Read” Datapath Timing 

•! Works because writes (PC, RegFile, DMem) are independent 

•! And because no read logically follows any write 
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What Is Control? 

•! 9 signals control flow of data through this datapath 

•! MUX selectors, or register/memory write enable signals 

•! A real datapath has 300-500 control signals  

P 

C 

Insn 

Mem 

Register 

File 

S 

X 

s1 s2 d 

Data 

Mem 

a 

d 

+ 

4 

<< 

2 
<< 

2 

Rwe 

ALUinB 

DMwe 

JP 

ALUop 

BR 

Rwd 

Rdst 

CIS371 (Roth/Martin): Datapath and Control 48 

Example: Control for add 
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Example: Control for sw 

•! Difference between sw and add is 5 signals 

•! 3 if you don’t count the X (don’t care) signals 
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Example: Control for beq 

•! Difference between sw and beq is only 4 signals 
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How Is Control Implemented? 
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Implementing Control 

•! Each instruction has a unique set of control signals 

•! Most are function of opcode 

•! Some may be encoded in the instruction itself 

•! E.g., the ALUop signal is some portion of the MIPS Func field 

+!Simplifies controller implementation 

•! Requires careful ISA design 
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Control Implementation: ROM 

•! ROM (read only memory): like a RAM but unwritable 

•! Bits in data words are control signals 

•! Lines indexed by opcode 

•! Example: ROM control for 6-insn MIPS datapath 

•! X is “don’t care” 

BR JP ALUinB ALUop DMwe Rwe Rdst Rwd 

add 0 0 0 0 0 1 0 0 

addi 0 0 1 0 0 1 1 0 

lw 0 0 1 0 0 1 1 1 

sw 0 0 1 0 1 0 X X 

beq 1 0 0 1 0 0 X X 

j 0 1 0 0 0 0 X X 

opcode 
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Control Implementation: Logic 

•! Real machines have 100+ insns 300+ control signals 

•! 30,000+ control bits (~4KB) 

–! Not huge, but hard to make faster than datapath (important!) 

•! Alternative: logic gates or “random logic” (unstructured) 

•! Exploits the observation: many signals have few 1s or few 0s 

•! Example: random logic control for 6-insn MIPS datapath 
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Datapath and Control Timing 
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Single-Cycle Datapath Performance 

•! One instruction per cycle (1 IPC or 1 CPI) 

•! Clock cycle time proportional to worst-case logic delay 
•! In this datapath: insn fetch, decode, register read, ALU, data memory 

access, write register 

•! Can we do better? 

P 

C 

Insn 

Mem 

Register 

File 

S 

X 

s1 s2 d 
Data 

Mem 

a 

d 

+ 

4 

<< 

2 



CIS371 (Roth/Martin): Datapath and Control 57 

Foreshadowing: Pipelined Datapath 

•! Split datapath into multiple stages 

•! Assembly line analogy 

•! 5 stages results in up to 5x clock & performance improvement 
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Summary 

•! Digital logic review 

•! Single-cycle datapath and control 

•! Next up:  
•! Arithmetic 

•! Performance & metrics 
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