
CIS371 (Roth/Martin): Datapath and Control 1

CIS 371
Computer Organization and Design

Unit 2: Single-Cycle Datapath and Control

CIS371 (Roth/Martin): Datapath and Control 2

This Unit: Single-Cycle Datapaths

•! Digital logic basics

•! Focus on useful components

•! Mapping an ISA to a datapath
•! MIPS example

•! Single-cycle control

CPU Mem I/O

System software

App App App

CIS371 (Roth/Martin): Datapath and Control 3

Readings

•! Digital logic
•! P&H, Appendix C (on CD)

•! Basic datapath

•! P&H, Chapter 4.1 – 4.4 (well-written, relates to lecture well)

CIS371 (Roth/Martin): Datapath and Control 4

So You Have an ISA…

•! … not useful without a piece of hardware to execute it

CIS371 (Roth/Martin): Datapath and Control 5

Implementing an ISA

•! Datapath: performs computation (registers, ALUs, etc.)
•! ISA specific: can implement every insn (single-cycle: in one pass!)

•! Control: determines which computation is performed
•! Routes data through datapath (which regs, which ALU op)

•! Fetch: get insn, translate opcode into control

•! Fetch ! Decode ! Execute “cycle”

PC
Insn

memory

Register

File

Data

Memory

control

datapath

fetch

CIS371 (Roth/Martin): Datapath and Control 6

Two Types of Components

•! Purely combinational: stateless computation
•! ALUs, muxes, control

•! Arbitrary Boolean functions

•! Combinational/sequential: storage
•! PC, insn/data memories, register file

•! Internally contain some combinational components

PC
Insn

memory

Register

File

Data

Memory

control

datapath

fetch

Digital Logic Review

CIS371 (Roth/Martin): Datapath and Control 7 CIS371 (Roth/Martin): Datapath and Control 8

Building Blocks: Logic Gates

•! Logic gates: implement Boolean functions

•! Basic gates: NOT, NAND, NOR

•! Underlying CMOS transistors are naturally inverting (= NOT)

•! NAND, NOR are “Boolean complete”

NAND NOR

XOR

NOT (INV)

A A’
A

B
(AB)’ (A+B)’

A

B

BUF OR AND

ANDNOT AND3

A A
A

B

A

B

A

B

A

B

A
B
C

AB

AB’ AB’+A’B

(A^B)

A+B

CIS371 (Roth/Martin): Datapath and Control 9

Boolean Functions and Truth Tables

•! Any Boolean function can be represented as a truth table

•! Truth table: point-wise input ! output mapping

•! Function is disjunction of all rows in which “Out” is 1

A,B,C ! Out
0,0,0 ! 0
0,0,1 ! 0
0,1,0 ! 0
0,1,1 ! 0
1,0,0 ! 0
1,0,1 ! 1
1,1,0 ! 1
1,1,1 ! 1

•! Example above: Out = AB’C + ABC’ + ABC

CIS371 (Roth/Martin): Datapath and Control 10

Truth Tables and PLAs

•! Implement Boolean function by implementing its truth table
•! Takes two levels of logic

•! Assumes inputs and inverses of inputs are available (usually are)

•! First level: ANDs (product terms)

•! Second level: ORs (sums of product terms)

•! PLA (programmable logic array)
•! Flexible circuit for doing this

CIS371 (Roth/Martin): Datapath and Control 11

PLA Example

•! PLA with 3 inputs, 2 outputs, and 4 product terms

•! Out0 = AB’C + ABC’ + ABC

A

B

C

Out0

Out1

Permanent

 connections

Programmable

 connections

 (unconnected)

CIS371 (Roth/Martin): Datapath and Control 12

Boolean Algebra

•! Boolean Algebra: rules for rewriting Boolean functions

•! Useful for simplifying Boolean functions

•! Simplifying = reducing gate count, reducing gate “levels”

•! Rules: similar to logic (0/1 = F/T)

•! Identity: A1 = A, A+0 = A

•! 0/1: A0 = 0, A+1 = 1

•! Inverses: (A’)’ = A

•! Idempotency: AA = A, A+A = A

•! Tautology: AA’ = 0, A+A’ = 1

•! Commutativity: AB = BA, A+B = B+A

•! Associativity: A(BC) = (AB)C, A+(B+C) = (A+B)+C

•! Distributivity: A(B+C) = AB+AC, A+(BC) = (A+B)(A+C)

•! DeMorgan’s: (AB)’ = A’+B’, (A+B)’ = A’B’

CIS371 (Roth/Martin): Datapath and Control 13

Logic Minimization

•! Logic minimization
•! Iterative application of rules to reduce function to simplest form

•! There are tools for automatically doing this

•! Example below: function from slide #8

Out = AB’C + ABC’ + ABC

Out = A(B’C + BC’ + BC) // distributivity

Out = A(B’C + (BC’ + BC)) // associativity

Out = A(B’C + B(C’+C)) // distributivity (on B)

Out = A(B’C + B1) // tautology

Out = A(B’C + B) // 0/1

Out = A((B’+B)(C+B)) // distributivity (on +B)

Out = A(1(B+C)) // tautology

Out = A(B+C) // 0/1

CIS371 (Roth/Martin): Datapath and Control 14

Non-Arbitrary Boolean Functions

•! PLAs implement Boolean functions point-wise

•! E.g., represent f(X) = X+5 as [0!5, 1!6, 2!7, 3!8, …]

•! Mainly useful for “arbitrary” functions, no compact representation

•! Many useful Boolean functions are not arbitrary

•! Have a compact representation

•! E.g., represent f(X) = X+5 as X+5

•! Examples

•! Decoder

•! Multiplexer

•! Adder: e.g., X+5 (or more generally, X+Y)

CIS371 (Roth/Martin): Datapath and Control 15

Decoder

•! Decoder: converts binary integer to 1-hot representation

•! Binary representation of 0…2N–1: N bits

•! 1 hot representation of 0…2N–1: 2N bits

•! J represented as Jth bit 1, all other bits zero

•! Example below: 2-to-4 decoder

B[0]

B[1]
1H[0]

1H[1]

1H[2]

1H[3]

B 1H

CIS371 (Roth/Martin): Datapath and Control 16

Multiplexer (Mux)

•! Multiplexer (mux): selects output from N inputs

•! Example: 1-bit 4-to-1 mux

•! Not shown: N-bit 4-to-1 mux = N 1-bit 4-to-1 muxes + 1 decoder

A

O B

C

D

S (binary)

S (binary)

A

B

C

D

O

S (1-hot)

CIS371 (Roth/Martin): Datapath and Control 17

Adder

•! Adder: adds/subtracts two 2C binary integers

•! Half adder: adds two 1-bit “integers”, no carry-in

•! Full adder: adds three 1-bit “integers”, includes carry-in

•! Ripple-carry adder: N chained full adders add 2 N-bit integers

•! To subtract: negate B input, set bit 0 carry-in to 1

CIS371 (Roth/Martin): Datapath and Control 18

Full Adder

•! What is the logic for a full adder?
•! Look at truth table

CI A B ! C0 S
0 0 0 ! 0 0
0 0 1 ! 0 1
0 1 0 ! 0 1
0 1 1 ! 1 0
1 0 0 ! 0 1
1 0 1 ! 1 0
1 1 0 ! 1 0
1 1 1 ! 1 1

•! S = C’A’B + C’AB’ + CA’B’ + CAB = C ^ A ^ B

•! CO = C’AB + CA’B + CAB’ + CAB = CA + CB + AB

FA

B

S

CO

A

CI
A

B

S

CI

CO

CIS371 (Roth/Martin): Datapath and Control 19

N-bit Adder/Subtracter

S +/- FA
B1

S1 A1

FA
B0

S0 A0

FA
BN-1

SN-1 AN-1

1

…

0

+/–

+/–

B

A

•! More later when we cover arithmetic

CIS371 (Roth/Martin): Datapath and Control 20

Sequential Logic & Synchronous Systems

•! Processors are complex fine state machines (FSMs)
•! Combinational (compute) blocks separated by storage elements

•! State storage: memories, registers, etc.

•! Synchronous systems
•! Clock: global signal acts as write enable for all storage elements

•! Typically marked as triangle

•! All state elements write together, values move forward in lock-step

+! Simplifies design: design combinational blocks independently

•! Aside: asynchronous systems
•! Same thing, but … no clock

•! Values move forward using explicit handshaking

±! May have some advantages, but difficult to design

Combinational

Logic

Storage

Element
Clock

CIS371 (Roth/Martin): Datapath and Control 21

Datapath Storage Elements

•! Three main types of storage elements

•! Singleton registers: PC

•! Register files: ISA registers

•! Memories: insn/data memory

PC
Insn

memory

Register

File

Data

Memory

control

datapath

fetch

CIS371 (Roth/Martin): Datapath and Control 22

Cross-Coupled Inverters (CCIs)

•! Cross-coupled inverters (CCIs)

•! Primitive “storage element” for storing state

•! Most storage arrays (regfile, caches) implemented this way

•! Where is the input and where is the output?

Q’ Q

CIS371 (Roth/Martin): Datapath and Control 23

S-R Latch

•! S-R (set-reset) latch

•! Cross-coupled NOR gates

•! Distinct inputs/outputs

S,R ! Q

0,0 ! oldQ

0,1 ! 0

1,0 ! 1

1,1 ! 0

•! S=0, R=0? circuit degenerates to cross-coupled INVs

•! S=1, R=1? not very useful

•! Not really used … except as component in something else

Q
R

S

SR

R

S

Q

Q’

CIS371 (Roth/Martin): Datapath and Control 24

D Latch

•! D latch: S-R latch + …

•! control that makes S=R=1 impossible

E,D ! Q

0,0 ! oldQ

0,1 ! oldQ

1,0 ! 0

1,1 ! 1

•! In other words

0,D ! oldQ

1,D ! D

•! In words

•! When E is 1, Q gets D

•! When E is 0, Q retains old value

Q

E

D

DL

D

E

Q

CIS371 (Roth/Martin): Datapath and Control 25

Timing Diagrams

•! Voltage {0,1} diagrams for different nodes in system

•! “Digitally stylized”: changes are vertical lines (instantaneous?)

•! Reality is analog, changes are continuous and smooth

•! Timing diagram for a D latch

E

D

Q

CIS371 (Roth/Martin): Datapath and Control 26

Triggering: Level vs. Edge

•! The D-latch is level-triggered

•! The latch is open for writing as long as E is 1

•! If D changes continuously, so does Q

–! May not be the functionality we want

•! Often easier to reason about an edge-triggered latch

•! The latch is open for writing only on E transition (0 ! 1 or 1 ! 0)

+! Don’t need to worry about fluctuations in value of D

E

D

Q

CIS371 (Roth/Martin): Datapath and Control 27

D Flip-Flop

•! D Flip-Flop: also called master-slave flip-flop

•! Sequential D-latches

•! Enabled by inverse signals

•! First latch open when E = 0

•! Second latch open when E = 1

•! Overall effect?

•! D FF latches D on 0!1 transition

•! E is the “clock” signal input

E

D

Q

DL

D

E

Q

DL

FF

D

E

Q

CIS371 (Roth/Martin): Datapath and Control 28

FFWE: FF with Separate Write Enable

•! FFWE: FF with separate write enable
•! FF D(ata) input is MUX of D and Q, WE selects

•! Alternative: FF E(nable) input is AND of CLK and WE

+!Fewer gates

–! Creates timing problems

!! Do not try to do logic on CLK in Verilog

!! No, really.

FFWE
D

Q

WE

FF

D Q

WE

CIS371 (Roth/Martin): Datapath and Control 29

Singleton Register

•! Register: one N-bit storage word
•! Non-multiplexed input/output: data buses write/read same word

•! Implementation: FFWE array with shared write-enable (WE)
•! FFs written on CLK edge if WE is 1 (or if there is no WE)

D Q

N N

WE

FFWE

FFWE

FFWE

D0

DN-1

D1

WE

Q0

Q1

QN-1

CIS371 (Roth/Martin): Datapath and Control 30

Register File

•! Register file: M N-bit storage words

•! Multiplexed input/output: data buses write/read “random” word

•! “Port”: set of buses for accessing a random word in array
•! Data bus (N-bits) + address bus (log2M-bits) + optional WE bit

•! P ports = P parallel and independent accesses

•! MIPS integer register file
•! 32 32-bit words, two read ports + one write port (why?)

Register File

RegSource1Val

RegSource2Val

RegDestVal

RD WE RS1 RS2

CIS371 (Roth/Martin): Datapath and Control 31

Register File (Port) Implementation

•! Register file with four registers

CIS371 (Roth/Martin): Datapath and Control 32

Add a Read Port

•! Output of each register into 4to1 mux (RSrc1Val)

•! RS1 is select input of RSrc1Val mux

RS1

RSrc1Val

CIS371 (Roth/Martin): Datapath and Control 33

Add Another Read Port

•! Output of each register into another 4to1 mux (RSrc2Val)

•! RS2 is select input of RSrc2Val mux

RS1

RSrc1Val

RSrc2Val

RS2

CIS371 (Roth/Martin): Datapath and Control 34

Add a Write Port

•! Input RegDestVal into each register

•! Enable only one register’s WE: (Decoded RD) & (WE)

•! What if we needed two write ports?

RS1

RSrc1Val

RSrc2Val

RS2 RD WE

RDestVal

CIS371 (Roth/Martin): Datapath and Control 35

Another Useful Component: Memory

•! Register file: M N-bit storage words

•! Few words (< 256), many ports, dedicated read and write ports

•! Synchronous

•! Memory: M N-bit storage words, yet not a register file

•! Many words (> 1024), few ports (1, 2), shared read/write ports

•! Leads to different implementation choices

•! Lots of circuit tricks and such

Memory

DATAOUT DATAIN

WE

ADDRESS

MIPS Datapath & Control

CIS371 (Roth/Martin): Datapath and Control 36

CIS371 (Roth/Martin): Datapath and Control 37

Unified vs Split Memory Architecture

•! Unified architecture: unified insn/data memory
•! LC3, MIPS, every other ISA

•! Harvard architecture: split insn/data memories
•! LC4

PC
Register

File

Insn/Data Memory

control

datapath

fetch

CIS371 (Roth/Martin): Datapath and Control 38

Datapath for MIPS ISA

•! Registers in MIPS are $0, $2… $31

•! Consider only the following instructions

add $1,$2,$3 $1 = $2 + $3 (add)

addi $1,2,$3 $1 = 2 + $3 (add immed)

lw $1,4($3) $1 = Memory[4+$3] (load)

sw $1,4($3) Memory[4+$3] = $1 (store)

beq $1,$2,PC_relative_target (branch equal)

j absolute_target (unconditional jump)

•! Why only these?

•! Most other instructions are the same from datapath viewpoint

•! The one’s that aren’t are left for you to figure out

CIS371 (Roth/Martin): Datapath and Control 39

Start With Fetch

•! PC and instruction memory (Harvard architecture, for now)

•! A +4 incrementer computes default next instruction PC

P

C

Insn

Mem

+

4

CIS371 (Roth/Martin): Datapath and Control 40

First Instruction: add

•! Add register file and ALU

P

C

Insn

Mem

Register

File

s1 s2 d

+

4

CIS371 (Roth/Martin): Datapath and Control 41

Second Instruction: addi

•! Destination register can now be either Rd or Rt

•! Add sign extension unit and mux into second ALU input

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

+

4

CIS371 (Roth/Martin): Datapath and Control 42

Third Instruction: lw

•! Add data memory, address is ALU output

•! Add register write data mux to select memory output or ALU output

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

CIS371 (Roth/Martin): Datapath and Control 43

Fourth Instruction: sw

•! Add path from second input register to data memory data input

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

CIS371 (Roth/Martin): Datapath and Control 44

Fifth Instruction: beq

•! Add left shift unit and adder to compute PC-relative branch target

•! Add PC input mux to select PC+4 or branch target

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2

z

CIS371 (Roth/Martin): Datapath and Control 45

Sixth Instruction: j

•! Add shifter to compute left shift of 26-bit immediate

•! Add additional PC input mux for jump target

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

CIS371 (Roth/Martin): Datapath and Control 46

“Continuous Read” Datapath Timing

•! Works because writes (PC, RegFile, DMem) are independent

•! And because no read logically follows any write

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

Read IMem Read Registers Read DMEM Write DMEM
Write Registers

Write PC

Time

CIS371 (Roth/Martin): Datapath and Control 47

What Is Control?

•! 9 signals control flow of data through this datapath

•! MUX selectors, or register/memory write enable signals

•! A real datapath has 300-500 control signals

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

CIS371 (Roth/Martin): Datapath and Control 48

Example: Control for add

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

BR=0

JP=0

Rwd=0

DMwe=0 ALUop=0

ALUinB=0 Rdst=1

Rwe=1

CIS371 (Roth/Martin): Datapath and Control 49

Example: Control for sw

•! Difference between sw and add is 5 signals

•! 3 if you don’t count the X (don’t care) signals

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe=0

ALUinB=1

DMwe=1

JP=0

ALUop=0

BR=0

Rwd=X

Rdst=X

CIS371 (Roth/Martin): Datapath and Control 50

Example: Control for beq

•! Difference between sw and beq is only 4 signals

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe=0

ALUinB=0

DMwe=0

JP=0

ALUop=1

BR=1

Rwd=X

Rdst=X

CIS371 (Roth/Martin): Datapath and Control 51

How Is Control Implemented?

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

<<

2
<<

2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

Control?

CIS371 (Roth/Martin): Datapath and Control 52

Implementing Control

•! Each instruction has a unique set of control signals

•! Most are function of opcode

•! Some may be encoded in the instruction itself

•! E.g., the ALUop signal is some portion of the MIPS Func field

+!Simplifies controller implementation

•! Requires careful ISA design

CIS371 (Roth/Martin): Datapath and Control 53

Control Implementation: ROM

•! ROM (read only memory): like a RAM but unwritable

•! Bits in data words are control signals

•! Lines indexed by opcode

•! Example: ROM control for 6-insn MIPS datapath

•! X is “don’t care”

BR JP ALUinB ALUop DMwe Rwe Rdst Rwd

add 0 0 0 0 0 1 0 0

addi 0 0 1 0 0 1 1 0

lw 0 0 1 0 0 1 1 1

sw 0 0 1 0 1 0 X X

beq 1 0 0 1 0 0 X X

j 0 1 0 0 0 0 X X

opcode

CIS371 (Roth/Martin): Datapath and Control 54

Control Implementation: Logic

•! Real machines have 100+ insns 300+ control signals

•! 30,000+ control bits (~4KB)

–! Not huge, but hard to make faster than datapath (important!)

•! Alternative: logic gates or “random logic” (unstructured)

•! Exploits the observation: many signals have few 1s or few 0s

•! Example: random logic control for 6-insn MIPS datapath

ALUinB

o
p
c
o
d
e

add

addi

lw

sw

beq

j

BR JP DMwe Rwd Rdst ALUop Rwe

CIS371 (Roth/Martin): Datapath and Control 55

Datapath and Control Timing

P

C

Insn

Mem

Register

File

S

X

s1 s2 d

Data

Mem

a

d

+

4

Control ROM/random logic

Read IMem Read Registers

(Read Control ROM)

Read DMEM Write DMEM
Write Registers

Write PC

Time

CIS371 (Roth/Martin): Datapath and Control 56

Single-Cycle Datapath Performance

•! One instruction per cycle (1 IPC or 1 CPI)

•! Clock cycle time proportional to worst-case logic delay
•! In this datapath: insn fetch, decode, register read, ALU, data memory

access, write register

•! Can we do better?

P

C

Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

CIS371 (Roth/Martin): Datapath and Control 57

Foreshadowing: Pipelined Datapath

•! Split datapath into multiple stages

•! Assembly line analogy

•! 5 stages results in up to 5x clock & performance improvement

PC
Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

CIS371 (Roth/Martin): Datapath and Control 58

Summary

•! Digital logic review

•! Single-cycle datapath and control

•! Next up:
•! Arithmetic

•! Performance & metrics

CPU Mem I/O

System software

App App App

