This Unit: Single-Cycle Datapaths
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Computer Organization and Design « Single-cycle control

Unit 2: Single-Cycle Datapath and Control
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Readings So You Have an ISA...

e ... not useful without a piece of hardware to execute it
 Digital logic
¢ P&H, Appendix C (on CD)

e Basic datapath
e P&H, Chapter 4.1 — 4.4 (well-written, relates to lecture well)
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Implementing an ISA

Two Types of Components

h
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memory File Memory
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memory File Memory
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o : performs computation (registers, ALUs, etc.)
e ISA specific: can implement every insn (single-cycle: in one pass!)
Control: determines which computation is performed
¢ Routes data through datapath (which regs, which ALU op)

: get insn, translate opcode into control
. — Decode — “cycle”
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L L3

Digital Logic Review
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L o

¢ Purely combinational: stateless computation
e ALUs, muxes, control
¢ Arbitrary Boolean functions
. : storage
¢ PC, insn/data memories, register file
¢ Internally contain some combinational components
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Building Blocks: Logic Gates

¢ Logic gates: implement Boolean functions
¢ Basic gates: NOT, NAND, NOR
¢ Underlying CMOS transistors are naturally inverting (o = NOT)

NOT (INV) NAND NOR

D =)

¢ NAND, NOR are “Boolean complete”

v

BUF AND OR
B D 1D
B B
AND3 ANDNOT XOR

A A
B B

C
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Boolean Functions and Truth Tables

¢ Any Boolean function can be represented as a truth table
¢ Truth table: point-wise input — output mapping
¢ Function is disjunction of all rows in which “Out” is 1
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e Example above: Out = AB'C + ABC' + ABC
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PLA Example

Truth Tables and PLAs

e PLA with 3 inputs, 2 outputs, and 4 product terms
e Outd = AB'C + ABC’ + ABC

A ® ® ® Permanent
B LDC . @ @ connections
L L L
C LDC L 4 L 4 ®
* * * Programmable
connections
(unconnected)
@ 0
¢ L
@ .I t1
. . 1 1
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¢ Implement Boolean function by implementing its truth table
* Takes two levels of logic
¢ Assumes inputs and inverses of inputs are available (usually are)
o First level: ANDs (product terms)
¢ Second level: ORs (sums of product terms)

¢ PLA (programmable logic array)
¢ Flexible circuit for doing this
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Boolean Algebra

e Boolean Algebra: rules for rewriting Boolean functions

o Useful for simplifying Boolean functions

¢ Simplifying = reducing gate count, reducing gate “levels”
¢ Rules: similar to logic (0/1 = F/T)

¢ Identity: A1 = A A+0=A

¢« 0/1:A0=0,A+1=1

e Inverses: (A") = A

o Idempotency: AA = A, A+tA=A

e Tautology: AA'=0, A+A’ =1

o Commutativity: AB = BA, A+B = B+A

« Associativity: A(BC) = (AB)C, A+(B+C) = (A+B)+C

¢ Distributivity: A(B+C) = AB+AC, A+(BC) = (A+B)(A+C)

 DeMorgan’s: (AB)' = A'+B’, (A+B)' = A'B’
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Logic Minimization

¢ Logic minimization
¢ Iterative application of rules to reduce function to simplest form
¢ There are tools for automatically doing this
e Example below: function from slide #8

Out = AB'C + ABC' + ABC

Out = A(B'C + BC' + BC) // distributivity

Out = A(B'C + (BC' + BC)) // associativity

Out = A(B'C + B(C'+Q)) // distributivity (on B)

Out = A(B'C + B1) // tautology

Out = A(B'C + B) // 0/1

Out = A((B+B)(C+B)) // distributivity (on +B)

Out = A(1(B+Q)) // tautology

Out = A(B+C) /10/1
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Non-Arbitrary Boolean Functions

e Decoder: converts binary integer to 1-hot representation
¢ Binary representation of 0...2N-1: N bits
¢ 1 hot representation of 0...2N-1: 2N bits
» J represented as Jt bit 1, all other bits zero
o Example below: 2-to-4 decoder

B[0]
_.:jD-—AH[O]
B[] —-o1
| >——>1H[1]
¢ B
| K 1H12]
*
}_.1H[31_)_,_,_——"""/
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e PLAs implement Boolean functions point-wise
¢ E.g., represent f(X) = X+5 as [0—5, 16, 2—7, 3-8, ...]
¢ Mainly useful for “arbitrary” functions, no compact representation

e Many useful Boolean functions are not arbitrary
* Have a compact representation
¢ E.g., represent f(X) = X+5 as X+5
e Examples
¢ Decoder
¢ Multiplexer
e Adder: e.g., X+5 (or more generally, X+Y)
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Multiplexer (Mux)

e Multiplexer (mux): selects output from N inputs
e Example: 1-bit 4-to-1 mux
¢ Not shown: N-bit 4-to-1 mux = N 1-bit 4-to-1 muxes + 1 decoder
S (binary)

S (1-hot) T
U T S|(binary)
A A
B—
B o c— o
[~ D—
c
1k
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Adder

e Adder: adds/subtracts two 2C binary integers
¢ Half adder: adds two 1-bit “integers”, no carry-in
o Full adder: adds three 1-bit “integers”, includes carry-in
¢ Ripple-carry adder: N chained full adders add 2 N-bit integers
¢ To subtract: negate B input, set bit 0 carry-into 1
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N-bit Adder/Subtracter

Full Adder

0
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¢ More later when we cover arithmetic
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e What is the logic for a full adder?

e Look at truth table cl
CIAB —>COS
0 00—0 0 '—0—'\ S, -
0 01—-0 1 |

A ~ “
0 10—-0 1 _T | A_.1§
0 11-1 0 BT 7. _JFA
1 00—-0 1 B T
1 01—-1 0 co
1 10—-1 0
1 11-1 1
v co

e S=CAB+CAB'+CAB +CAB=C~A~"B
e CO=CAB + CA'B + CAB' + CAB =CA + CB + AB

CIS371 (Roth/Martin): Datapath and Control 18

Sequential Logic & Synchronous Systems

L Combinationa Storage J
Logic _~PElement
lock

e Processors are complex fine state machines (FSMs)
e Combinational (compute) blocks separated by storage elements
o State storage: memories, registers, etc.
¢ Synchronous systems
e Clock: global signal acts as write enable for all storage elements
¢ Typically marked as triangle
¢ All state elements write together, values move forward in lock-step
+ Simplifies design: design combinational blocks independently
e Aside: asynchronous systems
e Same thing, but ... no clock
¢ Values move forward using explicit handshaking

+ May have some advantages, but difficult to design
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Datapath Storage Elements

Cross-Coupled Inverters (CCIs)

J datapath  Cross-coupled inverters (CCIs)
:>>| * Primitive “storage element” for storing state
fetch ¢ Most storage arrays (redfile, caches) implemented this way
E ;DJ_ J e Where is the input and where is the output?
m__. Insn Data
memory Memory
i i
— control )
e Three main types of storage elements
* Singleton registers: PC Q’ Q
. : ISA registers —
. : insn/data memory
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S-R Latch D Latch
¢ S-R (set-reset) latch e D latch: S-R latch + ...
o Cross-coupled NOR gates R— Q o control that makes S=R=1 impossible
¢ Distinct inputs/outputs - E,.D — 0 D
Q 0,0 — oldQ —
S,R = Q S 0,1 — oldQ —Q
0,0 = o0ldQ ] 1,0 - 0
0,1 -0 1,1 - 1
1,0 - 1 R 0 « In other words E_|
1,1 - 0 | SR 0,D — oldQ
S 1,0 - D
e S=0, R=07 circuit degenerates to cross-coupled INVs ¢ In words D ue
e S=1, R=1? not very useful e WhenEis 1, Qgets D E_. DL

¢ Not really used ... except as component in something else
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e When E is 0, Q retains old value
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Timing Diagrams

¢ Voltage {0,1} diagrams for different nodes in system
¢ “Digitally stylized”: changes are vertical lines (instantaneous?)
¢ Reality is analog, changes are continuous and smooth

e Timing diagram for a D latch

£ | I [

D [ L1 I I L

Q [ L1 L
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D Flip-Flop

Triggering: Level vs. Edge

e D Flip-Flop: also called master-slave flip-flop
¢ Sequential D-latches D

Enabled by inverse signals DL| IDL
First latch open when E = 0 E | | ? f I

[o

Second latch open when E = 1

Overall effect?

¢ D FF latches D on 0—1 transition D_. -
e Eis the “clock” signal input E—'
E | I [
D [ [ 1 I I [
Q |
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E [ | I
D [ L 1
Q . L

e The D-latch is level-triggered
¢ The latch is open for writing as long as E is 1
¢ If D changes continuously, so does Q
— May not be the functionality we want
e Often easier to reason about an edge-triggered latch
¢ The latch is open for writing only on E transition (0 — 1 or 1 — 0)

+ Don't need to worry about fluctuations in value of D
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FFwe: FF with Separate Write Enable

e FF,,:: FF with separate write enable
¢ FF D(ata) input is MUX of D and Q, WE selects

FF

EF e

WE '

¢ Alternative: FF E(nable) input is AND of CLK and WE
+ Fewer gates
— Creates timing problems
= Do not try to do logic on CLK in Verilog
= No, really.
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Singleton Register

Register File

Dy~ [ Qo
FFud
S
N N D, == S
o7 [ e
L *
> Dy __9N-1
FFud
¢ Register: one N-bit storage word WE

¢ Non-multiplexed input/output: data buses write/read same word
e Implementation: FF array with shared write-enable (WE)
¢ FFs written on CLK edge if WE is 1 (or if there is no WE)
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Register File (Port) Implementation

RegDestVal \ RegSource1Val

Register File \RegSource2Val

T T T
WE RD RS1 RS2

e Register file: M N-bit storage words
e Multiplexed input/output: data buses write/read “random” word

e "Port”: set of buses for accessing a random word in array
e Data bus (N-bits) + address bus (log,M-bits) + optional WE bit
e P ports = P parallel and independent accesses

e MIPS integer register file
e 32 32-bit words, two read ports + one write port (why?)
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Add a Read Port

A

e Register file with four registers
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hhd

+RsS1

e Output of each register into 4tol mux (RSrc1Val)
e RS1 is select input of RSrc1Val mux
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Add Another Read Port

B
@
@

&SJ’CZV&H
D \ D \ D | - :}RSrmVal

RS21RS1

e Output of each register into another 4tol mux (RSrc2Val)
e RS2 is select input of RSrc2Val mux
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Another Useful Component: Memory

DATAIN \DATAOUT
Memory
ADDRES
>
WE |

e Register file: M N-bit storage words
¢ Few words (< 256), many ports, dedicated read and write ports
¢ Synchronous

e Memory: M N-bit storage words, yet not a register file
e Many words (> 1024), few ports (1, 2), shared read/write ports

¢ Leads to different implementation choices

e Lots of circuit tricks and such
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Add a Write Port

RDestVa ﬁ ﬁ ﬁ —~
L RSrc2Val
5 () |Rsrctval
7 e
\1}
WE| -RD RS2TRS1
e Input RegDestVal into each register
¢ Enable only one register’s WE: (Decoded RD) & (WE)
e What if we needed two write ports?
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MIPS Datapath & Control
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Unified vs Split Memory Architecture Datapath for MIPS ISA

:>>'J datapath e Registers in MIPS are $0, $2... $31
fetch . . .
L E ¢ Consider only the following instructions
: add $1,$2,$3 $1 = $2 + $3 (add)
BC addi §1,2,%3 $1 =2 + $3 (add immed)
T I 1w $1,4($3) $1 = Memory[4+$3] (load)
C control ) sw $1,4($3) h-llemory[4+$3] = 81 (store)
l beq $1,$2,PC_relative_ target (branch equal)
| Insn/Data Memory | j absolute_target (unconditional jump)
¢ Unified architecture: unified insn/data memory ,
« LC3, MIPS, every other ISA * Why only these? -
 Harvard architecture: split insn/data memories ¢ Most other instructions are the same from datapath viewpoint
. LC4 ¢ The one’s that aren't are left for you to figure out
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Start With Fetch First Instruction: add

Insn Register
Mem File

P> s1s2 d

Voo

Al N
R-type [ Op(6) NRSENIRIEIIREE) Func(6)

¢ PC and instruction memory (Harvard architecture, for now) ¢ Add register file and ALU
¢ A +4 incrementer computes default next instruction PC
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Second Instruction: addi

P Insn Register
C Mem File
P i P> s1s2 d
I-type | Op(6) P& R ed(16

¢ Destination register can now be either Rd or Rt
¢ Add sign extension unit and mux into second ALU input
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Fourth Instruction: sw

Third Instruction: Iw

P Insn __. Register
C Mem File
P P P> s1s2 d
I-type | Op(6) P& R ed(16

¢ Add data memory, address is ALU output
¢ Add register write data mux to select memory output or ALU output
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Fifth Instruction: beq

P Insn __. Register Data
C Mem File Mem
P i P> s1s2 d
e 6
I-type | Op(6) P& R ed(16

¢ Add path from second input register to data memory data input
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3 =10

P Insn | | Register b Data
C Mem File Mem
P - P> s1s2 d [

I-type | Op(6) P& R ed(16

o Add left shift unit and adder to compute PC-relative branch target
e Add PC input mux to select PC+4 or branch target
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Sixth Instruction: j

“Continuous Read” Datapath Timing

o

P Insn __. Register Data
C Mem File Mem
P - P s1s2 d [

5 _’\J '
J-type | Op(6) | Immead(26)

o Add shifter to compute left shift of 26-bit immediate
¢ Add additional PC input mux for jump target
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What Is Control?

+

4
P Insn __’ Register Data
C Mem File Mem
P P> P> s1s2 d |
Time —— § =
I

Read IMem Read Registers Read DMEM  Write DMEM
Write Registers
Write PC

e Works because writes (PC, RegFile, DMem) are independent
¢ And because no read logically follows any write
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Example: Control for add

:'\li BR

P Insn __. Register Data
C Mem File Mem | Rwd
P - P> s1s2 d [

RVI/e ﬁj -’@_’WJ ALLJop DMwe
Rdst ALUinB
¢ 9 signals control flow of data through this datapath

e MUX selectors, or register/memory write enable signals
¢ A real datapath has 300-500 control signals
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Register

File
s1s2 d

Rwd=0

ALUop=0ppwe=0

Rdst=1 ALUInB=0
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Example: Control for sw Example: Control for beq

Register
File
s1s2 d

Register

File Rwd=X

s1s2 d

ALUop=0ppwe=1 ALUop=1ppMwe=0

Rdst=X ALUInB=1 Rdst=X ALUInB=0

« Difference between sw and add is 5 signals ¢ Difference between sw and begq is only 4 signals

¢ 3 if you don't count the X (don't care) signals
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How Is Control Implemented? Implementing Control

e Each instruction has a unique set of control signals

0 BR
—-@—b * Most are function of opcode

8 @ JP e Some may be encoded in the instruction itself

¢ E.g., the ALUop signal is some portion of the MIPS Func field
| + Simplifies controller implementation
P Insn | | Register * Requires careful ISA design
C Mem File d
P - P> s1s2 d [
Rwe
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Control Implementation: ROM Control Implementation: Logic

e ROM (read only memory): like a RAM but unwritable ¢ Real machines have 100+ insns 300+ control signals
¢ Bits in data words are control signals ¢ 30,000+ control bits (~4KB)
¢ Lines indexed by opcode — Not huge, but hard to make faster than datapath (important!)
» Example: ROM control for 6-insn MIPS datapath ¢ Alternative: logic gates or “random logic” (unstructured)

e Xis “dont care” o Exploits the observation: many signals have few 1s or few 0s

e Example: random logic control for 6-insn MIPS datapath

BR| JP | ALUInB | ALUop | DMwe | Rwe | Rdst | Rwd
— add| 0| O 0 0 0 1 0 0 addi ° °
— addi| 0| O 1 0 0 1 1 0 lw o ®
opcode > lw| 0| O 1 0 0 1 1 1 > swW r

— sw| 0] © 1 0 1 0 X X 3 be T

L . beq| 1] o 0 1 0 0 X X § v

—> jl o 1 0 0 0 0 X X v 8

BR JP DMwe Rwe Rwd Rdst ALUop ALUinB
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Datapath and Control Timing Single-Cycle Datapath Performance

+

P Insn __’ Register Data
C Mem File Mem
3 = P sis2 d [ | Register
@_ File Data
P> s1s [ em
0 ol RO ando 0Q T N
Time —»

One instruction per cycle (1 IPC or 1 CPI)

Read IMem Read Registers Read DMEM  Write DMEMT  Clock cycle time proportional to worst-case logic delay
(Read Control ROM) Write Registers ¢ In this datapath: insn fetch, decode, register read, ALU, data memory
Write PC access, write register

¢ Can we do better?
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Foreshadowing: Pipelined Datapath Summary

h App | [ Aop || Aop | * Digital logic review
N System software ¢ Single-cycle datapath and control
3
L * Next up:
el L] Insn Register . e Arithmetic
Mem File 0 Datal I2 ¢ Performance & metrics
P P> s1s : em

¢ Split datapath into multiple stages

¢ Assembly line analogy

¢ 5 stages results in up to 5x clock & performance improvement
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