CIS 371
Computer Organization and Design

Unit 3: Arithmetic
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The Importance of Fast Addition
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¢ Addition of two numbers is most common operation
e Programs use addition frequently
¢ Loads and stores use addition for address calculation
¢ Branches use addition to test conditions and calculate targets
¢ All insns use addition to calculate default next PC
¢ Fast addition critical to high performance
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Review: Binary Integers

Fixed Width

e Computers represent integers in binary (base2)
3 =11, 4 = 100, 5 = 101, 30 = 11110
+ Natural since only two values are represented
* Addition, etc. take place as usual (carry the 1, etc.)

17 = 10001
+5 = 101
22 = 10110

¢ Some old machines use decimal (base10) with only 0/1
30 = 011 000
— Unnatural for digial logic, implementation complicated & slow
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What About Negative Integers?

¢ On pencil and paper, integers have infinite width

¢ In hardware, integers have fixed width
e N bits: 16, 32 or 64
e LSBis 20, MSB is 2\

e Range: 0 to 2N-1

e Numbers >2N represented using multiple fixed-width integers
¢ In software
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The Tao of 2C

¢ Sign/magnitude
¢ Unsigned plus one bit for sign
10 = 000001010, -10 = 100001010
+ Matches our intuition from “by hand” decimal arithmetic
Both 0 and -0
Addition is difficult
Range: —(2N1-1) to 2V-1-1

e Option II: two’s complement (2C)
¢ Leading Os mean positive number, leading 1s negative
10 = 00001010, -10 = 11110110
+ One representation for 0
+ Easy addition
e Range: —(2V1) to 2N-1-1
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e How did 2C come about?
e “Let's design a representation that makes addition easy”
o Think of subtracting 10 from 0 by hand
¢ Have to “borrow” 1s from some imaginary leading 1

0 100000000
-10 00001010
-10 = 011110110

¢ Now, add the conventional way...

-10 = 11110110
+10 = 00001010
0 = 100000000
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Still More On 2C

e What is the interpretation of 2C?
e Same as binary, except MSB represents —2N-1, not 2N-1
e —10 = 11110110 = —27+26425+24+22421
+ Extends to any width
e —10 = 110110 = —2°+24+22+21
o Why? 2N = 2*2N-1
o 25424422491 = (=2642%25)=25+24422421 = —264254 24422421

e Trick to negating a number quickly: =B = B’ + 1
e —(1) = (0001)'+1 =1110+1 =1111=-1
e —(-1) = (1111)'+1 = 0000+1 = 0001 = 1
e —(0) = (0000)+1 = 1111+1 = 0000 =0
¢ Think about why this works

CIS371 (Roth/Martin): Arithmetic 9

Binary Addition: Works the Same Way

1st Grade: Decimal Addition

1 111111
43 = 00101011
+29 = 00011101
72 = 01001000

Repeat N times
¢ Add least significant bits and any overflow from previous add
¢ Carry the overflow to next addition
¢ Shift two addends and sum one bit to the right

Sum of two N-bit numbers can yield an N+1 bit number

More steps (smaller base)

+ Each one is simpler (adding just 1 and 0)
¢ So simple we can do it in hardware
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1

43
+29

72

e Repeat N times
¢ Add least significant digits and any overflow from previous add
o Carry “overflow” to next addition
¢ Overflow: any digit other than least significant of sum
¢ Shift two addends and sum one digit to the right

e Sum of two N-digit numbers can yield an N+1 digit number
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The Half Adder

e How to add two binary integers in hardware?

e Start with adding two bits
* When all else fails ... look at truth table

= =N
HroOoRrow
H o oolo
oORr R Oon

lco
« S=A"B Ar—1S
e CO (carry out) = AB 5~ A
e This is called a half adder lco
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The Other Half

e We could chain half adders together, but to do that...
¢ Need to incorporate a carry out from previous adder

CAB=cC0S | CI
000= 00
001= 01 \ o
010= 01 [, . |CI
011= 10 A A ! S
100= 01 BT — _J|FA
101= 10 B T
110= 10 . CcO
111= 11
' co
e S=CAB+CAB'+CA'B'+CAB=C~A~B
e CO=CAB+CAB+CAB'+CAB=CA+CB + AB
e This is called a full adder
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Quantifying Adder Delay

¢ Combinational logic dominated by gate (transistor) delays
¢ Array storage dominated by wire delays
¢ Longest delay or “critical path” is what matters

¢ Can implement any combinational function in 2" logic levels
¢ 1 level of AND + 1 level of OR (PLA)
¢ NOTs are “free”: push to input (DeMorgan’s) or read from latch
e Example: delay(FullAdder) = 2
¢ d(CarryOut) = delay(AB + AC + BC)
e d(Sum) =d(A~ B~ C)=d(AB'C’' + ABC' + ABC' + ABC) = 2
¢ Note ‘" means Xor (just like in C & Java)

e Caveat: "2” assumes gates have few (<8 ?) inputs
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Ripple-Carry Adder

0
e N-bit ripple-carry adder |
e N 1-bit full adders “chained” together Al eal™ So
« CO, = CI,, CO, = CL,, etc. Bg T
*CL=0 ATl S
e COy_, is carry-out of entire adder B
e COy_; = 1 — “overflow” |
Al gal™ =2
_ B,
e Example: 16-bit ripple carry adder © T
e How fast is this?
e How fast is an N-bit ripple-carry adder? |
Ass— FA — Sis
o lco
CIS371 (Roth/Martin): Arithmetic 14
Ripple-Carry Adder Delay
0
* Longest path is to CO,s (or S;s) |
* d(COys) = 2 + MAX(d(A;5),d(B15),d(CLys)) S
e d(A;5) = d(Bys) = 0, d(Cl;5) = d(COy4) 0 T
e d(CO;5) = 2 +d(COy,) =2 + 2 + d(COy3) ... A N S,
 d(CO,;) = 32 B 1
A — S
e D(CO\_,) = 2N 52: FA 2
- Too slow! ? T
— Linear in number of bits
|
e Number of gates is also linear B15 FA "
15
lco
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Bad idea: a PLA-based Adder?

Theme: Hardware !'= Software

¢ If any function can be expressed as two-level logic...
¢ ..why not use a PLA for an entire 8-bit adder?
¢ Not small
e Approx. 215 AND gates, each with 216 inputs
e Then, 216 OR gates, each with 216 inputs
¢ Number of gates exponential in bit width!
o Not that fast, either
¢ An AND gate with 65 thousand inputs != 2-input AND gate
e Many-input gates made a tree of, say, 4-input gates
¢ 16-input gates would have at least 8 logic levels
e So, at least 16 levels of logic for a 16-bit PLA
e Even so, delay is still logarithmic in number of bits

e There are better (faster, smaller) ways
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Carry-Select Adder

17

e Hardware can do things that software fundamentally can't
¢ And vice versa (of course)

In hardware, it's easier to trade resources for latency

One example of this: speculation
¢ Slow computation is waiting for some slow input?
¢ Input one of two things?
¢ Compute with both (slow), choose right one later (fast)

Does this make sense in software? Not on a uni-processor
Difference? hardware is parallel, software is sequential
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Multi-Segment Carry-Select Adder

e Carry-select adder
¢ Do A;55+B,5.g twice, once assuming Cg (CO;) = 0, once = 1
¢ Choose the correct one when CO;, finally becomes available
+ Effectively cuts carry chain in half (break critical path)
— But adds mux

¢ Delay? -,
A
= Sl Sro
A 70 16
B150 S1es —
1500 116+ Ao I/S15—8
’ 8+
S e
I_’ coO 11— 16
Ass g~ 8+ /815’8 18
Bisa| [V
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—
e Multiple segments Avo 7 5+
o Example: 5, 5, 6 bit = 16 bit 540

e Hardware cost
o Still mostly linear (~2x)

¢ Compute each segment
with 0 and 1 carry-in

e Serial mux chain

e Delay
o 5-bit adder (10) +
Two muxes (4) = 14

CIS371 (Roth/Martin): Arithmetic 20



Carry-Select Adder Delay

e What is carry-select adder delay (two segment)?
* d(COy5) = MAX(d(COss56), d(CO74)) + 2
o d(CO;s) = MAX(2*8, 2*8) + 2 = 18
e Ingeneral: 2%¥(N/2) + 2 = N+2 (vs 2N for RCA)

e What if we cut adder into 4 equal pieces?
e Would it be 2*(N/4) + 2 = 10? Not quite
* d(COy5) = MAX(d(COys.15),d(CO; 1)) + 2
d(CO;5) = MAX(2*4, MAX(d(CO;,.4),d(CO,.0)) + 2) + 2
d(CO;5) = MAX(2*4,MAX(2*4,MAX(d(CO,.,),d(CO5,)) + 2) + 2) + 2
d(CO;5) = MAX(2*4,MAX(2*%4,MAX(2*4,2%4) + 2) + 2) + 2
d(COy5) = 2%4 + 3*2 = 14

¢ N-bit adder in M equal pieces: 2*(N/M) + (M—1)*2
e 16-bit adder in 8 parts: 2*(16/8) + 7¥2 = 18
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Carry Lookahead Adder (CLA)

Another Option: Carry Lookahead

¢ Calculate “propagate” and “generate” based on A, B
¢ Not based on carry in

¢ Is carry-select adder as fast as we can go?
¢ Nope

¢ Another approach to using additional resources
¢ Instead of redundantly computing sums assuming different carries
¢ Use redundancy to compute carries more quickly
e This approach is called carry lookahead (CLA)
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Adders In Real Processors

. . |
¢ Combine with tree structure Co | |
AO_. GO
: B,—| P
* Prior years: CLA covered Chm —2 g‘”’
. . 1-0
in great detail A—] G, C,
¢ Dozen slides or so B, —_P; ge“"
¢ Not this year C. L3 0320
AZ_. G2
B,— P, Gs,
o Take aways Caemr— ch-z
« Tree gives logarithmic delay Qs_’ Ss °
—_
 Reasonable area s 4 I
C, C,
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¢ Real processors super-optimize their adders
Ten or so different versions of CLA
Highly optimized versions of carry-select
Other gate techniques: carry-skip, conditional-sum
Sub-gate (transistor) techniques: Manchester carry chain
Combinations of different techniques

¢ Alpha 21264 uses CLA+CSeA+RippleCA

» Used a different levels

¢ Even more optimizations for incrementers
e Why?
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Subtraction: Addition’s Tricky Pal

6
5 PrefixTree ¢ Sign/magnitude subtraction is mental reverse addition
5 / ¢ 2C subtraction is addition
4 Carry Lookahead e How to subtract using an adder?
(é | / Carry Select ¢ 32-bit * sub AB = add A B . .
o 3 - u 64-bit * Negate B before adding (fast negation trick: =B = B’ + 1)
o m . - . . - ..
<, ".J / Ripple Carry e Isn't a subtraction then a negation and two additions?
23 ] / + No, an adder can implement A+B+1 by setting the carry-in to 1
1 %l e @
M 0
0 T ‘ ‘ ‘ y 1
0 20 40 60 80 100 A
Delay (FO4) B

NIV Area vs. delay of synthesized adders
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A 16-bit ALU Shift and Rotation Instructions

¢ Build an ALU with functions: add/sub, and, oz, ,Xor o Left/right shifts are useful...

o All of these already in CLA adder/subtracter o Fast multiplication/division by small constants (next)
e add A B, sub A B ... check ¢ Bit manipulation: extracting and setting individual bits in words
. is needed for subtraction
e and A B are.first level Gs « Right shifts
* or A Barefirst level Ps ? e Can be logical (shift in 0s) or arithmetic (shift in copies of MSB)
* xor A B? A srl 110011, 2 = 001100

* S = A"BNG I_ add sra 110011, 2 = 111100

-sum| e Caveat: sra is not equal to division by 2 of negative numbers
e What is still missing? g ] 7l
——EI—LF [P [ « Rotations are less useful...
¢ But almost “free” if shifter is there
& ¢ MIPS and LC4 have only shifts, x86 has shifts and rotations
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A Simple Shifter

Barrel Shifter

e The simplest 16-bit shifter: can only shift left by 1
¢ Implement using wires (no logic!)

¢ Slightly more complicated: can shift left by 1 or 0
¢ Implement using wires and a multiplexor (mux16_2to1)

0 A

— (0]

CIS371 (Roth/Martin): Arithmetic 29

3rd Grade: Decimal Multiplication

e What about shifting left by any amount 0-15?

e 16 consecutive “left-shift-by-1-or-0” blocks?
— Would take too long (how long?)
e Barrel shifter: 4 “shift-left-by-X-or-0" blocks (X = 1,2,4,8)

¢ What is the delay?
ﬂ ' >
shift[2] shift[1] shift[0]

e Similar barrel designs for right shifts and rotations

shift[3]

shift
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Binary Multiplication: Same Refrain

19 // multiplicand
* 12 // multiplier

38
+ 190
228 /[ product

o Start with product 0, repeat steps until no multiplier digits
o Multiply multiplicand by least significant multiplier digit
¢ Add to product
« Shift multiplicand one digit to the left (multiply by 10)
¢ Shift multiplier one digit to the right (divide by 10)

¢ Product of N-digit, M-digit numbers may have N+M digits
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19 = 010011 // multiplicand
* 12 = 001100 // multiplier
0 = 000000000000
0 = 000000000000
76 = 000001001100
152 = 000010011000
0 = 000000000000
+ 0 = 000000000000
228 = 000011100100 // product

+ Smaller base — more steps, each is simpler
¢ Multiply multiplicand by least significant multiplier digit
+ 0 or 1 — no actual multiplication, add multiplicand or not
¢ Add to total: we know how to do that
o Shift multiplicand left, multiplier right by one digit
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Software Multiplication

Hardware Multiply: Iterative

e Can implement this algorithm in software
e Inputs: md (multiplicand) and mr (multiplier)

int pd = 0; // product
int i = 0;
for (i = 0; i < 16 & mr '= 0; i++) {
if (mr & 1) {
pd = pd + md;
}

md = md << 1; // shift left
mr = mr >> 1; // shift right
}
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Hardware Multiply: Multiple Adders

— —

Multiplicand Multiplier
(32 bit) (16 bit)

v * Isb==1?
\/ 32+

<<1

Product
(32 bit) —

e Control: repeat 16 times
o If least significant bit of multiplier is 1...
¢ Then add multiplicand to product
o Shift multiplicand left by 1

« Shift multiplier right by 1
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Consecutive Addition

C<<

B+,
o

6+

e Multiply by N bits at a time using N adders
e Example: N=5, terms (P=product, C=multiplicand, M=multiplier)
e P=(M[0]?(C):0)+ (M[1]?(C<<1):0)+
(M[2] ? (C<<2):0) + (M[3] ? (C<<3):0) + ...
¢ Arrange like a tree to reduce gate delay critical path
e Delay? N2vs N*log N? Not that simple, depends on adder

e Approx “2N” versus "N + log N”, with optimization: O(log N
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BBy QB B RBeCao o 5 Nobit RC adders

—1_FA FA FA FA + 2 + d(add) gate delays

0 T D; T D, T Dy Tyl DyCpy

r‘ﬁj._rﬁﬁ__rﬁ_rﬁ_rﬁ ¢ M N-bit RC adders delay

7 T 7 T 7 ¢ Naive: O(M*N)
CO §; S; S; So e Actual: O(M+N)

AaBs DaAuBy DAB: DiAB Do o M N-bit Carry Select?
¢ Delay calculation tricky

FA FA-|‘I FA FA

WA VAR WA WA TS

e Carry Save Adder (CSA)
ﬁ?ﬁ.—rﬁh—r I?'\L|~—|_l7\L|‘—|_FA |‘J o 3-to-2 CSA tree + adder

v ! v ! v
CO 8, S, S, So e Delay: O(log M + log N)
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Hardware != Software: Part Deux

Aside: Strength Reduction

e Recall: hardware is parallel, software is sequential
¢ Exploit: evaluate independent sub-expressions in parallel

e ExampleI: S=A+B+C+D
e Software? 3 steps: (1) S1 = A+B, (2) S2 = S1+C, (3) S = S2+D
+ Hardware? 2 steps: (1) S1 = A+B, S2=C+D, (2) S = S1+S2

e ExampleIl: S=A+B+C
o Software? 2 steps: (1) S1 = A+B, (2) S = S1+C
e Hardware? 2 steps: (1) S1 = A+B (2) S = S1+C
+ Actually hardware can do this in 1.2 steps!
e Sub-expression parallelism exists below 16-bit addition level
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4th Grade: Decimal Division

e Strength reduction: compilers will do this (sort of)

A * 4 =1AA<<2
A/ 8=AaA>3
A*5=(A<<2) +A

o Useful for address calculation: all basic data types are 2M in size
int A[100];
S&A[N] = A+ (N*sizeof (int)) = A+N*4 = A+N<<2
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Binary Division

_9 // quotient
3 129 // divisor | dividend
=27
2 // remainder

¢ Shift divisor left (multiply by 10) until MSB lines up with dividend’s
¢ Repeat until remaining dividend (remainder) < divisor

 Find largest single digit q such that (g*divisor) < dividend

¢ Set LSB of quotient to q

¢ Subtract (g*divisor) from dividend

« Shift quotient left by one digit (multiply by 10)

 Shift divisor right by one digit (divide by 10)
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o 1001 =9
3 |29 = 0011 |011101
-24 = - 011000
5 = 000101
- 3= - 000011
2 = 000010
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Binary Division Hardware Software Divide Algorithm

e Same as decimal division, except (again) e Can implement this algorithm in software
— More individual steps (base is smaller) e Inputs: dividend and divisor
+ Each step is simpler
¢ Find largest bit q such that (g*divisor) < dividend for (int i = 0; i < 32; i++) {
eq=0o0r1 remainder = (remainder << 1) | (dividend >> 31);
e Subtract (g*divisor) from dividend if (remainder >= divisor) {
g =0 or 1 — no actual multiplication, subtract divisor or not quotient = (quotient << 1) | 1;
remainder = remainder - divisor;
I - - } else {
e Complication: largest g such that (g*divisor) < dividend quotient = quotient << 1
e How do you know if (1*divisor) < dividend? }

e Human can “eyeball” this dividend = dividend << 1;

¢ Computer does not have eyeballs }
¢ Subtract and see if result is negative
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Divide Example Divider Circuit
e Input: Divisor = 00011 , Dividend = 11101 Divisor ;
ﬂ Quotient
Step Remainder Quotient Remainder Dividend ‘
0 00000 00000 1101
1 00001 0 00001 1101
2 00011 01 00000 101
3 00001 010 00001 01
4 00010 0100 00001 1 | Remainder | Sh ]
5 00101 01001 00010
e Result: Quotient: 1001, Remainder: 10 Shift in 0

¢ N cycles for n-bit divide
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Arithmetic Latencies

e Latency in cycles of common arithmetic operations
e Source: Software Optimization Guide for AMD Family 10h

Processors, Dec 2007
* Intel “Core 2” chips similar

Int 32 Int 64
Add/Subtract 1 1
Multiply 3 5
Divide 14to 40| 23 to 87

» Divide is variable latency based on the size of the dividend
» Detect number of leading zeros, then divide
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Summary

App||App||App d

System software

Mem 110
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Integer addition
¢ Most timing-critical operation in datapath
e Hardware != software
¢ Exploit sub-addition parallelism

Fast addition
e Carry-select: parallelism in sum

Multiplication
¢ Chains and trees of additions

Division

Next up: Floating point



