This Unit

App | [App || App e Multicycle datapath
System software e Clock vs CPI
CIS 371 Mo | CPU| o » CPU performance equation
Computer Organization and Design ® Performance metrics
e Benchmarking
Unit 4: Performance & Multicycle
CIS 371 (Roth/Martin): Performance & Multicycle 1 CIS 371 (Roth/Martin): Performance & Multicycle 2

Readings 240 — 371

e P&H J D|
o Chapter 1.4 (for performance discussion) a
I-' Register }

Insn > 5'1:"862 d | thri
| vem p S il

e CIS 240: build something that works

e CIS 371: build something that works “well”
* “well” means “high-performance” but also cheap, low-power, etc.
o Mostly “high-performance”
¢ So, what is the performance of this?
e What is performance?

CIS 371 (Roth/Martin): Performance & Multicycle 3 CIS 371 (Roth/Martin): Performance & Multicycle 4

CPU Performance Equation

MIPS (performance metric, not the ISA)

e Multiple aspects to performance: helps to isolate them

e Latency = seconds / program =
e (insns / program) * (cycles / insn) * (seconds / cycle)

e Insns / program: dynamic insn count = f(program, compiler, ISA)

e Cycles / insn: CPI = f(program, compiler, ISA, micro-arch)
e Seconds / cycle: clock period = f(micro-arch, technology)

e For low latency (better performance) minimize all three
— Difficult: often pull against one another
o Example we have seen: RISC vs. CISC ISAs
+ RISC: low CPI/clock period, high insn count
%+ CISC: low insn count, high CPI/clock period

CIS 371 (Roth/Martin): Performance & Multicycle 5

Mhz (MegaHertz) and Ghz (GigaHertz)

e Factor out dynamic insn count, CPU equation becomes...
e Latency: seconds / insn = (cycles / insn) * (seconds / cycle)
e Throughput: insns / second = (insns / cycle) * (cycles / second)

e MIPS (millions of insns per second): insns / second * 106
¢ Cycles / second: clock frequency (in MHz)
e Example: CPI = 2, clock = 500 MHz (2ns period), what is MIPS?
e 0.5 * 500 MHz * 106 = 250 MIPS

e MIPS is okay for micro-architects
¢ Typically work in one ISA/one compiler, treat insn count as fixed

¢ Not okay for general public
¢ Processors with different ISAs/compilers have incomparable MIPS
o Wait, it gets worse...

CIS 371 (Roth/Martin): Performance & Multicycle 6

System Performance

e 1 Hertz = 1 cycle per second
1 Ghz is 1 cycle per nanosecond, 1 Ghz = 1000 Mhz

Micro-architects often ignore instruction count...

... but general public (mostly) also ignores CPI
¢ Equates clock frequency with performance!!

Which processor would you buy?

e Processor A: CPI = 2, clock = 5 GHz

e Processor B: CPI = 1, clock = 3 GHz

e Probably A, but B is faster (assuming same ISA/compiler)
Classic example

¢ 800 MHz PentiumlIII faster than 1 GHz Pentium4!

e Same ISA and compiler!
e Meta-point: danger of partial performance metrics!

CIS 371 (Roth/Martin): Performance & Multicycle 7

¢ Clock frequency implies processor “core” clock frequency
¢ Other system components have their own clocks (or not)
¢ E.g., increasing processor clock doesn't accelerate memory

e Example
e Processor A: CPIgre = 1, CPIyey = 1, proc. clock = 500 MHz (2ns)
o What is the speedup if we double processor clock frequency?
Base: CPI = 2 — IPC = 0.5 — MIPS = 250
New: CPI = 3 — IPC = 0.33 — MIPS = 333
¢ Clock *= 2 — CPIygy *= 2
Speedup = 333/250 = 1.33 << 2

e What about an infinite clock frequency?
¢ Only a 2X (factor of 2) speedup
¢ Example of Amdahl’s Law
CIS 371 (Roth/Martin): Performance & Multicycle 8

Amdahl’s Law

o Literally: total speedup limited by non-accelerated piece
o Example: can optimize 50% of program A
¢ Even “magic” optimization that makes this 50% disappear...
o ..only yields a 2X speedup

e For consumers: buy a balanced system

e For microarchitects: build a balanced system
¢ MCCF (Make Common Case Fast)
¢ Focus your efforts on things that matter

CIS 371 (Roth/Martin): Performance & Multicycle

Multi-cycle Operations

e Let’s allow long-latency operations take many cycles
¢ Calculation assumptions:

¢ Most instructions take 10 nanoseconds (ns)

¢ But multiply instruction takes 40ns

e Multiplies are 10% of all instructions
¢ Single-cycle datapath: 40ns clock period, 1 CPI

¢ 40ns per instruction

¢ 1/40ns = 0.025 billion instructions per second = 25 MIPS
e Multi-cycle datapath: 10ns clock period

e Average CPI = (90% * 1) + (10% *4)=1.3

¢ 13ns per instruction

e 1/13ns = 0.77 billion instructions per second = 77 MIPS

e Multi-cycle is 3 times (or 200%) faster than single-cycle

CIS 371 (Roth/Martin): Performance & Multicycle 11

Single-Cycle Datapath Performance

oD

Register |

File Data
P> s1s [em

¢ Goes against make common case fast (MCCF) principle
+ Low CPI: 1

— Long clock period: to accommodate slowest instruction
¢ Especially if multiply/divide are included

CIS 371 (Roth/Martin): Performance & Multicycle 10

Fine-Grained Multi-Cycle Datapath

s3

Register u

File _H Data S5
P> s1s I 33 em
s5T @ [,
s3 s4

e Multi-cycle datapath: attacks high clock period
¢ Cut datapath into multiple stages (5 here), isolate using FFs
¢ Finite state machine (FSM) control “walks” insns through
+ Insns can skip stages and exit early (memory ops vs alu ops)
CIS 371 (Roth/Martin): Performance & Multicycle 12

Multi-Cycle Datapath Performance

Multicycle Performance

))

= | |Insn N Register u

ol [Mem File Data
= >T sis —H | em

¢ Opposite performance split of single-cycle datapath

+ Short clock period
— High CPI

CIS 371 (Roth/Martin): Performance & Multicycle 13

Processor Performance and Workloads

Q: what does performance of a chip mean?

A: nothing, there must be some associated workload
¢ Workload: set of tasks someone (you) cares about

Benchmarks: standard workloads
¢ Used to compare performance across machines
o Either are or highly representative of actual programs people run

Micro-benchmarks: non-standard non-workloads

« Tiny programs used to isolate certain aspects of performance
¢ Not representative of complex behaviors of real applications
e Examples: binary tree search, towers-of-hanoi, 8-queens, etc.

CIS 371 (Roth/Martin): Performance & Multicycle 15

e Assumptions
¢ 30% loads, 5ns
e 10% stores, 5ns
¢ 50% adds, 4ns
¢ 10% multiplies, 20ns
¢ Single-cycle datapath: 20ns clock period, 1 CPI
e 20ns per instruction or 50 MIPS
¢ Simple multi-cycle datapath: 5ns clock
e CPI =(90% * 1) + (10% * 4) = 1.3
e 6.5ns per instruction or 153 MIPS
¢ Fine-grained multi-cycle datapath: 1ns clock
e CPI = (30% * 5) + (10% * 5) + (50% * 4) + (10% * 20) =
1.5+405+2+2=6CPI

e 6ns per instruction or 166 MIPS
CIS 371 (Roth/Martin): Performance & Multicycle 14

SPEC Benchmarks

e SPEC: Standard Performance Evaluation Corporation
L[]
e Consortium that collects, standardizes, and distributes benchmarks
Suites for CPU, Java, I/0, Web, Mail, OpenMP (multithreaded), etc.
Updated every few years: so companies don't target benchmarks
Post SPECmark results for different processors
¢ 1 number that represents performance for entire suite

CPU 2006: 29 CPU-intensive C/C++/Fortran programs
 “integer”: bzip2, gcc, perl, hmmer (genomics), h264, etc.
» “floating-point”: wrf (weather), povray, sphynx3 (speech), etc.

e TPC: Transaction Processing Council
e Like SPEC, but for web/database server workloads
¢ Much heavier on memory, I/O, network, than on CPU
¢ Doesn't give you the source code, only a ‘description’
CIS 371 (Roth/Martin): Performance & Multicycle 16

SPECmark

Mean (Average) Performance Numbers

Reference machine: Sun SPARC 10

Latency SPECmark
¢ For each benchmark
¢ Take odd number of samples: on both machines
¢ Choose median
¢ Take latency ratio (Sun SPARC 10 / your machine)
* Take “geometric mean” of ratios over all benchmarks
Throughput SPECmark
e Run multiple benchmarks in parallel on multiple-processor system

Recent SPECmark latency leaders
e SPECint: Intel 2.3 GHz Core2 Extreme (3119)
e SPECfp: IBM 2.1 GHz Power5+ (4051)

CIS 371 (Roth/Martin): Performance & Multicycle 17

How Can We Make Common Case Fast?

If we don’t know what CC is?

How is CPI actually measured?

¢ Execution time: time (Unix): wall clock / CPU + system

e CPI = CPU time / (clock frequency * dynamic insn count)
How is dynamic insn count measured?

* Hardware event counters

More useful is CPI breakdown (CPI, CPIygy, €tc.)

¢ So we know what performance problems are and what to fix

¢ Hardware event counters:
+ Accurate
— Can't measure everything or evaluate modifications

¢ Cycle-level micro-architecture simulation: e.g., SimpleScalar
+ Measure exactly what you want, evaluate potential fixes
— Burden of accuracy is on the simulator writer

CIS 371 (Roth/Martin): Performance & Multicycle 19

e Arithmetic: (1/N) * 3,_, \ Latency(P)
¢ For units that are proportional to time (e.g., latency)

e You can add latencies, but not throughputs
o Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)
¢ Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)
¢ 1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour
* Average is not 60 miles/hour
e Harmonic: N/ 3,_; y 1/Throughput(P)
¢ For units that are inversely proportional to time (e.g., throughput)

e Geometric: “V[,_, y Speedup(P)
¢ For unitless quantities (e.g., speedups)

CIS 371 (Roth/Martin): Performance & Multicycle 18
Summary
App | | App | | App e Multicycle datapath
System software e Clock vs CPI
Mern | CPU | /o ¢ CPU performance .equatlon
¢ Performance metrics
e Benchmarking
CIS 371 (Roth/Martin): Performance & Multicycle 20

