
CIS 371 (Roth/Martin): Performance & Multicycle 1

CIS 371
Computer Organization and Design

Unit 4: Performance & Multicycle

CIS 371 (Roth/Martin): Performance & Multicycle 2

This Unit

•! Multicycle datapath

•! Clock vs CPI

•! CPU performance equation

•! Performance metrics

•! Benchmarking

CPU Mem I/O

System software

App App App

CIS 371 (Roth/Martin): Performance & Multicycle 3

Readings

•! P&H

•! Chapter 1.4 (for performance discussion)

CIS 371 (Roth/Martin): Performance & Multicycle 4

240 ! 371

•! CIS 240: build something that works

•! CIS 371: build something that works “well”
•! “well” means “high-performance” but also cheap, low-power, etc.

•! Mostly “high-performance”

•! So, what is the performance of this?

•! What is performance?

PC Insn

Mem

Register

File
s1 s2 d

Data

Mem

+

4

CIS 371 (Roth/Martin): Performance & Multicycle 5

CPU Performance Equation

•! Multiple aspects to performance: helps to isolate them

•! Latency = seconds / program =

•! (insns / program) * (cycles / insn) * (seconds / cycle)

•! Insns / program: dynamic insn count = f(program, compiler, ISA)

•! Cycles / insn: CPI = f(program, compiler, ISA, micro-arch)

•! Seconds / cycle: clock period = f(micro-arch, technology)

•! For low latency (better performance) minimize all three
–! Difficult: often pull against one another

•! Example we have seen: RISC vs. CISC ISAs

±!RISC: low CPI/clock period, high insn count

±!CISC: low insn count, high CPI/clock period

CIS 371 (Roth/Martin): Performance & Multicycle 6

MIPS (performance metric, not the ISA)

•! Factor out dynamic insn count, CPU equation becomes…
•! Latency: seconds / insn = (cycles / insn) * (seconds / cycle)

•! Throughput: insns / second = (insns / cycle) * (cycles / second)

•! MIPS (millions of insns per second): insns / second * 10-6

•! Cycles / second: clock frequency (in MHz)

•! Example: CPI = 2, clock = 500 MHz (2ns period), what is MIPS?

•! 0.5 * 500 MHz * 10-6 = 250 MIPS

•! MIPS is okay for micro-architects
•! Typically work in one ISA/one compiler, treat insn count as fixed

•! Not okay for general public
•! Processors with different ISAs/compilers have incomparable MIPS

•! Wait, it gets worse…

CIS 371 (Roth/Martin): Performance & Multicycle 7

Mhz (MegaHertz) and Ghz (GigaHertz)

•! 1 Hertz = 1 cycle per second
1 Ghz is 1 cycle per nanosecond, 1 Ghz = 1000 Mhz

•! Micro-architects often ignore instruction count…

•! … but general public (mostly) also ignores CPI
•! Equates clock frequency with performance!!

•! Which processor would you buy?
•! Processor A: CPI = 2, clock = 5 GHz

•! Processor B: CPI = 1, clock = 3 GHz

•! Probably A, but B is faster (assuming same ISA/compiler)

•! Classic example
•! 800 MHz PentiumIII faster than 1 GHz Pentium4!

•! Same ISA and compiler!

•! Meta-point: danger of partial performance metrics!

CIS 371 (Roth/Martin): Performance & Multicycle 8

System Performance

•! Clock frequency implies processor “core” clock frequency
•! Other system components have their own clocks (or not)

•! E.g., increasing processor clock doesn’t accelerate memory

•! Example
•! Processor A: CPICORE = 1, CPIMEM = 1, proc. clock = 500 MHz (2ns)

•! What is the speedup if we double processor clock frequency?

•! Base: CPI = 2 ! IPC = 0.5 ! MIPS = 250

•! New: CPI = 3 ! IPC = 0.33 ! MIPS = 333

•! Clock *= 2 ! CPIMEM *= 2

•! Speedup = 333/250 = 1.33 << 2

•! What about an infinite clock frequency?
•! Only a 2X (factor of 2) speedup

•! Example of Amdahl’s Law

CIS 371 (Roth/Martin): Performance & Multicycle 9

Amdahl’s Law

•! Literally: total speedup limited by non-accelerated piece

•! Example: can optimize 50% of program A

•! Even “magic” optimization that makes this 50% disappear…

•! …only yields a 2X speedup

•! For consumers: buy a balanced system

•! For microarchitects: build a balanced system
•! MCCF (Make Common Case Fast)

•! Focus your efforts on things that matter

CIS 371 (Roth/Martin): Performance & Multicycle 10

Single-Cycle Datapath Performance

•! Goes against make common case fast (MCCF) principle
+! Low CPI: 1

–! Long clock period: to accommodate slowest instruction

•! Especially if multiply/divide are included

P

C

Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

Multi-cycle Operations

•! Let’s allow long-latency operations take many cycles

•! Calculation assumptions:
•! Most instructions take 10 nanoseconds (ns)

•! But multiply instruction takes 40ns

•! Multiplies are 10% of all instructions

•! Single-cycle datapath: 40ns clock period, 1 CPI
•! 40ns per instruction

•! 1/40ns = 0.025 billion instructions per second = 25 MIPS

•! Multi-cycle datapath: 10ns clock period
•! Average CPI = (90% * 1) + (10% * 4) = 1.3

•! 13ns per instruction

•! 1/13ns = 0.77 billion instructions per second = 77 MIPS

•! Multi-cycle is 3 times (or 200%) faster than single-cycle

CIS 371 (Roth/Martin): Performance & Multicycle 11 CIS 371 (Roth/Martin): Performance & Multicycle 12

Fine-Grained Multi-Cycle Datapath

•! Multi-cycle datapath: attacks high clock period

•! Cut datapath into multiple stages (5 here), isolate using FFs

•! Finite state machine (FSM) control “walks” insns through

+! Insns can skip stages and exit early (memory ops vs alu ops)

P

C

Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

I

R D O

B

A

s3

s3

s3 s4

s5

s5 s5

CIS 371 (Roth/Martin): Performance & Multicycle 13

Multi-Cycle Datapath Performance

•! Opposite performance split of single-cycle datapath

+! Short clock period

–! High CPI

P

C

Insn

Mem

Register

File

S

X

s1 s2 d
Data

Mem

a

d

+

4

<<

2

I

R D O

B

A

Multicycle Performance

•! Assumptions

•! 30% loads, 5ns

•! 10% stores, 5ns

•! 50% adds, 4ns

•! 10% multiplies, 20ns

•! Single-cycle datapath: 20ns clock period, 1 CPI

•! 20ns per instruction or 50 MIPS

•! Simple multi-cycle datapath: 5ns clock

•! CPI = (90% * 1) + (10% * 4) = 1.3

•! 6.5ns per instruction or 153 MIPS

•! Fine-grained multi-cycle datapath: 1ns clock
•! CPI = (30% * 5) + (10% * 5) + (50% * 4) + (10% * 20) =

 1.5 + 0.5 + 2 + 2 = 6 CPI

•! 6ns per instruction or 166 MIPS
CIS 371 (Roth/Martin): Performance & Multicycle 14

CIS 371 (Roth/Martin): Performance & Multicycle 15

Processor Performance and Workloads

•! Q: what does performance of a chip mean?

•! A: nothing, there must be some associated workload
•! Workload: set of tasks someone (you) cares about

•! Benchmarks: standard workloads

•! Used to compare performance across machines

•! Either are or highly representative of actual programs people run

•! Micro-benchmarks: non-standard non-workloads
•! Tiny programs used to isolate certain aspects of performance

•! Not representative of complex behaviors of real applications

•! Examples: binary tree search, towers-of-hanoi, 8-queens, etc.

CIS 371 (Roth/Martin): Performance & Multicycle 16

SPEC Benchmarks

•! SPEC: Standard Performance Evaluation Corporation
•! http://www.spec.org/

•! Consortium that collects, standardizes, and distributes benchmarks

•! Suites for CPU, Java, I/O, Web, Mail, OpenMP (multithreaded), etc.

•! Updated every few years: so companies don’t target benchmarks

•! Post SPECmark results for different processors

•! 1 number that represents performance for entire suite

•! CPU 2006: 29 CPU-intensive C/C++/Fortran programs

•! “integer”: bzip2, gcc, perl, hmmer (genomics), h264, etc.

•! “floating-point”: wrf (weather), povray, sphynx3 (speech), etc.

•! TPC: Transaction Processing Council
•! Like SPEC, but for web/database server workloads

•! Much heavier on memory, I/O, network, than on CPU

•! Doesn’t give you the source code, only a ‘description’

CIS 371 (Roth/Martin): Performance & Multicycle 17

SPECmark

•! Reference machine: Sun SPARC 10

•! Latency SPECmark
•! For each benchmark

•! Take odd number of samples: on both machines

•! Choose median

•! Take latency ratio (Sun SPARC 10 / your machine)

•! Take “geometric mean” of ratios over all benchmarks

•! Throughput SPECmark

•! Run multiple benchmarks in parallel on multiple-processor system

•! Recent SPECmark latency leaders
•! SPECint: Intel 2.3 GHz Core2 Extreme (3119)

•! SPECfp: IBM 2.1 GHz Power5+ (4051)

CIS 371 (Roth/Martin): Performance & Multicycle 18

Mean (Average) Performance Numbers

•! Arithmetic: (1/N) * !P=1..N Latency(P)
•! For units that are proportional to time (e.g., latency)

•! You can add latencies, but not throughputs
•! Latency(P1+P2,A) = Latency(P1,A) + Latency(P2,A)

•! Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A)

•! 1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour

•! Average is not 60 miles/hour

•! Harmonic: N / !P=1..N 1/Throughput(P)
•! For units that are inversely proportional to time (e.g., throughput)

•! Geometric: N"#P=1..N Speedup(P)
•! For unitless quantities (e.g., speedups)

CIS 371 (Roth/Martin): Performance & Multicycle 19

How Can We Make Common Case Fast?

•! If we don’t know what CC is?

•! How is CPI actually measured?
•! Execution time: time (Unix): wall clock / CPU + system

•! CPI = CPU time / (clock frequency * dynamic insn count)

•! How is dynamic insn count measured?
•! Hardware event counters

•! More useful is CPI breakdown (CPICPU, CPIMEM, etc.)
•! So we know what performance problems are and what to fix

•! Hardware event counters:

+!Accurate

–! Can’t measure everything or evaluate modifications

•! Cycle-level micro-architecture simulation: e.g., SimpleScalar

+!Measure exactly what you want, evaluate potential fixes

–! Burden of accuracy is on the simulator writer

CIS 371 (Roth/Martin): Performance & Multicycle 20

Summary

•! Multicycle datapath

•! Clock vs CPI

•! CPU performance equation

•! Performance metrics

•! Benchmarking

CPU Mem I/O

System software

App App App

