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CIS 371 
Computer Organization and Design 

Unit 5: Pipelining 
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This Unit: (Scalar In-Order) Pipelining 

•! Basic Pipelining 

•! Pipeline control 

•! Data Hazards 
•! Software interlocks and scheduling 

•! Hardware interlocks and stalling 

•! Bypassing 

•! Control Hazards 
•! Branch prediction  

•! Multi-cycle operations 

CPU Mem I/O 

System software 

App App App 
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Readings 

•! P&H 

•! Chapter 4 (4.5 – 4.8)  
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Performance: Latency vs. Throughput 

•! Latency (execution time): time to finish a fixed task 

•! Throughput (bandwidth): number of tasks in fixed time 
•! Different: exploit parallelism for throughput, not latency (e.g., bread) 

•! Often contradictory (latency vs. throughput) 

•! Will see many examples of this 

•! Choose definition of performance that matches your goals 

•! Scientific program? Latency, web server: throughput? 

•! Example: move people 10 miles 

•! Car: capacity = 5, speed = 60 miles/hour 

•! Bus: capacity = 60, speed = 20 miles/hour 

•! Latency: car = 10 min, bus = 30 min 

•! Throughput: car = 15 PPH (count return trip), bus = 60 PPH 

•! Fastest way to send 1TB of data?  (100+ mbits/second) 
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Single-Cycle Datapath Performance 

•! Single-cycle datapath: true “atomic” fetch/execute loop 
•! Fetch, decode, execute one complete insn every cycle 

+! Low CPI: 1 by definition 

–! Long clock period: to accommodate slowest instruction 
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Alternative: Multi-Cycle Datapath 

•! Multi-cycle datapath: attacks slow clock 
•! Cut datapath into multiple stages: fetch, decode, execute, etc. 

•! Micro-coded control: “stages” control signals 

•! Allows insns to take different number of cycles (the main point) 

±! Opposite of single-cycle: short clock period, high CPI 
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Single-cycle vs. Multi-cycle Performance 

•! Single-cycle 
•! Clock period = 50ns, CPI = 1 
•! Performance = 50ns/insn 

•! Multi-cycle has opposite performance split of single-cycle 
+! Shorter clock period 

–! Higher CPI 

•! Multi-cycle 
•! Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)  
•! Clock period = 11ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4 

•! Why is clock period 11ns and not 10ns? 
•! Performance = 44ns/insn 

•! Aside: CISC makes perfect sense in multi-cycle datapath 
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Latency versus Throughput 

•! Can we have both low CPI and short clock period? 

•! Not if datapath executes only one insn at a time 

•! Latency vs. Throughput 

–! Latency: no good way to make a single insn go faster 

+! Throughput: fortunately, no one cares about single insn latency 

•! Goal is to make programs, not individual insns, go faster 

•! Programs contain billions of insns 

•! Key: exploit inter-insn parallelism 

insn0.fetch, dec, exec 

Single-cycle 

Multi-cycle 

insn1.fetch, dec, exec 

insn0.dec insn0.fetch 

insn1.dec insn1.fetch 

insn0.exec 

insn1.exec 
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Pipelining 

•! Important performance technique 

•! Improves instruction throughput rather instruction latency 

•! Begin with multi-cycle design 
•! When insn advances from stage 1 to 2, next insn enters at stage 1 

•! Form of parallelism: “insn-stage parallelism” 

•! Maintains illusion of sequential fetch/execute loop 

•! Individual instruction takes the same number of stages 

+! But instructions enter and leave at a much faster rate 

•! Laundry analogy 

insn0.dec insn0.fetch 

insn1.dec insn1.fetch Multi-cycle 
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5 Stage Multi-Cycle Datapath 
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5 Stage Pipeline: Inter-Insn Parallelism 

•! Pipelining: cut datapath into N stages (here 5) 
•! One insn in each stage in each cycle 

+! Clock period = MAX(Tinsn-mem, Tregfile, TALU, Tdata-mem) 

+! Base CPI = 1: insn enters and leaves every cycle 

–! Actual CPI > 1: pipeline must often stall 

•! Individual insn latency increases (pipeline overhead), not the point 
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5 Stage Pipelined Datapath 

•! Temporary values (PC,IR,A,B,O,D) re-latched every stage 

•! Why? 5 insns may be in pipeline at once with different PCs 

•! Notice, PC not latched after ALU stage (why not?) 

•! Pipelined control: one single-cycle controller 

•! Control signals themselves pipelined 
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Pipeline Terminology 

•! Five stage: Fetch, Decode, eXecute, Memory, Writeback 
•! Nothing magical about 5 stages (Pentium 4 had 22 stages!) 

•! Latches (pipeline registers) named by stages they separate 
•! PC, F/D, D/X, X/M, M/W 
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Some More Terminology 

•! Scalar pipeline: one insn per stage per cycle 

•! Alternative: “superscalar” (later) 

•! In-order pipeline: insns enter execute stage in order 

•! Alternative: “out-of-order” (later) 

•! Pipeline depth: number of pipeline stages 

•! Nothing magical about five 

•! Trend has been to deeper pipelines 
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Pipeline Example: Cycle 1 

•! 3 instructions 
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Pipeline Example: Cycle 2 
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Pipeline Example: Cycle 3 
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Pipeline Example: Cycle 4 

•! 3 instructions 
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Pipeline Example: Cycle 5 
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Pipeline Example: Cycle 6 
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Pipeline Example: Cycle 7 
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Pipeline Diagram 

•! Pipeline diagram: shorthand for what we just saw 

•! Across: cycles 

•! Down: insns 

•! Convention: X means lw $4,0($5) finishes execute stage and 
writes into X/M latch at end of cycle 4 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($5) F D X M W 

sw $6,4($7) F D X M W 
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What About Pipelined Control? 

•! Should it be like single-cycle control? 

•! But individual insn signals must be staged 

•! Should it be like multi-cycle control? 
•! But all stages are simultaneously active 

•! How many different controllers are we going to need? 

•! One for each insn in pipeline? 

•! Solution: use simple single-cycle control, but pipeline it 
•! Single controller 
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Pipelined Control 
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Example Pipeline Perf. Calculation 

•! Single-cycle 
•! Clock period = 50ns, CPI = 1 

•! Performance = 50ns/insn 

•! Multi-cycle 
•! Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)  

•! Clock period = 11ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4 

•! Performance = 44ns/insn 

•! 5-stage pipelined 
•! Clock period = 12ns  (approx. (50ns / 5 stages) + overheads) 

+! CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle) 

+!Performance = 12ns/insn 

–! Well actually … CPI = 1 + some penalty for pipelining (next) 

•! CPI = 1.5 (on average insn completes every 1.5 cycles) 

•! Performance = 18ns/insn 
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Q1: Why Is Pipeline Clock Period …   

•! … > (delay thru datapath) / (number of pipeline stages)? 

•! Two reasons: 

•! Latches (FFs) add delay 

•! Pipeline stages have different delays, clock period is max delay 

•! Both factors have implications for ideal number pipeline stages 
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Q2: Why Is Pipeline CPI… 

•! … > 1? 
•! CPI for scalar in-order pipeline is 1 + stall penalties 

•! Stalls used to resolve hazards 

•! Hazard: condition that jeopardizes VN illusion 

•! Stall: artificial pipeline delay introduced to restore VN illusion 

•! Calculating pipeline CPI 
•! Frequency of stall * stall cycles 

•! Penalties add (stalls generally don’t overlap in in-order pipelines) 

•! 1 + stall-freq1*stall-cyc1 + stall-freq2*stall-cyc2 + … 

•! Correctness/performance/make common case fast (MCCF) 
•! Long penalties OK if they happen rarely, e.g., 1 + 0.01 * 10 = 1.1 

•! Stalls also have implications for ideal number of pipeline stages 
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Dependences and Hazards 

•! Dependence: relationship between two insns 
•! Data: two insns use same storage location 

•! Control: one insn affects whether another executes at all 

•! Not a bad thing, programs would be boring without them 

•! Enforced by making older insn go before younger one 

•! Happens naturally in single-/multi-cycle designs 

•! But not in a pipeline 

•! Hazard: dependence & possibility of wrong insn order 
•! Effects of wrong insn order cannot be externally visible 

•! Stall: for order by keeping younger insn in same stage 

•! Hazards are a bad thing: stalls reduce performance 
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Why Does Every Insn Take 5 Cycles? 

•! Could/should we allow add to skip M and go to W? No 

–! It wouldn’t help: peak fetch still only 1 insn per cycle 

–! Structural hazards: imagine add follows lw 
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Structural Hazards 

•! Structural hazards 

•! Two insns trying to use same circuit at same time 

•! E.g., structural hazard on regfile write port 

•! To fix structural hazards: proper ISA/pipeline design 

•! Each insn uses every structure exactly once 

•! For at most one cycle 

•! Always at same stage relative to F (fetch) 

•! Tolerate structure hazards 

•! Add stall logic to stall pipeline when hazards occur 
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Example Structural Hazard 

•! Example structural hazard: unified instruction & data cache 

•! Solution: 
•! Separate instruction/data memories 

•! Redesign memory to allow 2 accesses per cycle (slow, expensive) 

•! Stall pipeline 

1 2 3 4 5 6 7 8 9 

ld r2,0(r1) F D X M W 
add r1,r3,r4 F D X M W 
sub r1,r3,r5 F D X M W 
st r6,0(r1) F D X M W 
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Data Hazards 

•! Let’s forget about branches and the control for a while 

•! The three insn sequence we saw earlier executed fine… 
•! But it wasn’t a real program 

•! Real programs have data dependences 

•! They pass values via registers and memory 
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Dependent Operations 

•! Independent operations 

 add $3,$2,$1 
 add $6,$5,$4 

•! Would this program execute correctly on a pipeline? 

 add $3,$2,$1 

 add $6,$5,$3 

•! What about this program? 

 add $3,$2,$1 

 lw $4,0($3) 

 addi $6,1,$3 

 sw $3,0($7) 
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Data Hazards 

•! Would this “program” execute correctly on this pipeline? 
•!  Which insns would execute with correct inputs? 

•!  add is writing its result into $3 in current cycle  

–!  lw read $3 two cycles ago ! got wrong value 

–!  addi read $3 one cycle ago !  got wrong value 

•!  sw is reading $3 this cycle ! maybe (depending on regfile design) 

add $3,$2,$1 lw $4,0($3) sw $3,0($7) addi $6,1,$3 
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Memory Data Hazards 

•! What about data hazards through memory? No 
•!  lw following sw to same address in next cycle, gets right value 

•!  Why? Data mem read/write always take place in same stage 

•! Data hazards through registers? Yes (previous slide) 
•!  Occur because register write is three stages after register read 

•!  Can only read a register value three cycles after writing it  

sw $5,0($1) lw $4,0($1) 
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Fixing Register Data Hazards 

•! Can only read register value three cycles after writing it 

•! Option #1: make sure programs don’t do it 
•! Compiler puts two independent insns between write/read insn pair 

•! If they aren’t there already 

•! Independent means: “do not interfere with register in question” 

•! Do not write it: otherwise meaning of program changes 

•! Do not read it: otherwise create new data hazard 

•! Code scheduling: compiler moves around existing insns to do this 

•! If none can be found, must use nops (no-operation) 

•! This is called software interlocks 

•! MIPS: Microprocessor w/out Interlocking Pipeline Stages 
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Software Interlock Example 

add $3,$2,$1 
nop 
nop 
lw $4,0($3) 
sw $7,0($3) 
add $6,$2,$8 
addi $3,$5,4 

•! Can any of last three insns be scheduled between first two 
•!  sw $7,0($3)? No, creates hazard with add $3,$2,$1 

•!  add $6,$2,$8? OK 

•!  addi $3,$5,4? No, lw would read $3 from it 

•!  Still need one more insn, use nop 
add $3,$2,$1 
add $6,$2,$8 
nop 
lw $4,0($3) 
sw $7,0($3) 
addi $3,$5,4 
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Software Interlock Performance 

•! Assume 

•! Branch: 20%, load: 20%, store: 10%, other: 50% 

•! For software interlocks, let’s assume: 

•! 20% of insns require insertion of 1 nop 

•! 5% of insns require insertion of 2 nops 

•! Result: 

•! CPI is still 1 technically 

•! But now there are more insns 

•! #insns = 1 + 0.20*1 + 0.05*2 = 1.3 

–! 30% more insns (30% slowdown) due to data hazards 
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Hardware Interlocks 

•! Problem with software interlocks? Not compatible 

•! Where does 3 in “read register 3 cycles after writing” come from? 

•! From structure (depth) of pipeline 

•! What if next MIPS version uses a 7 stage pipeline? 

•! Programs compiled assuming 5 stage pipeline will break 

•! A better (more compatible) way: hardware interlocks 
•! Processor detects data hazards and fixes them 

•! Two aspects to this 

•! Detecting hazards 

•! Fixing hazards 
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Detecting Data Hazards 

•! Compare F/D insn input register names with output register 
names of older insns in pipeline 
Stall = 

(F/D.IR.RegSrc1 == D/X.IR.RegDest) ||  
(F/D.IR.RegSrc2 == D/X.IR.RegDest) || 
(F/D.IR.RegSrc1 == X/M.IR.RegDest) ||  
(F/D.IR.RegSrc2 == X/M.IR.RegDest) 
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Fixing Data Hazards 

•! Prevent F/D insn from reading (advancing) this cycle 
•! Write nop into D/X.IR (effectively, insert nop in hardware) 

•! Also reset (clear) the datapath control signals  

•! Disable F/D latch and PC write enables (why?) 

•! Re-evaluate situation next cycle 
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Aside: Insert NOP/Reset Register 

•! Earlier: registers support separate clock, write enable 
•! Useful for writes into register file 

•! Also useful for implementing stalls 

•! Registers can also support synchronous reset (clear) 
•! Useful for implementing stalls 

•! Implement as additional hardwired 0 input to FF data mux 

•! Resetting pipeline registers equivalent to inserting a NOP 

•! If NOP is all zeros 

•! If zero means “don’t write” for all write-enable control signals 

•! Design ISA/control signals to make sure this is the case  

FF 

D 
Q 

[RST:WE] 

FF 

D Q 

WE 
0 

2 
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Hardware Interlock Example: cycle 1 

Stall =  
(F/D.IR.RegSrc1 == D/X.IR.RegDest) ||  
(F/D.IR.RegSrc2 == D/X.IR.RegDest) || 
(F/D.IR.RegSrc1 == X/M.IR.RegDest) ||  
(F/D.IR.RegSrc2 == X/M.IR.RegDest) = 1 

Register 
File 

S 
X 

s1 s2 d 

IR 

A 

B 

IR 

O 

B 

IR 

F/D D/X X/M 

add $3,$2,$1 lw $4,0($3) 

hazard 

nop 

Data 
Mem 

a 

d 

O 

D 

IR 

M/W 

CIS 371 (Roth/Martin): Pipelining 44 

Hardware Interlock Example: cycle 2 
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Stall =  
(F/D.IR.RegSrc1 == D/X.IR.RegDest) ||  
(F/D.IR.RegSrc2 == D/X.IR.RegDest) || 
(F/D.IR.RegSrc1 == X/M.IR.RegDest) ||  
(F/D.IR.RegSrc2 == X/M.IR.RegDest) = 1 
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Hardware Interlock Example: cycle 3 
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Stall =  
(F/D.IR.RegSrc1 == D/X.IR.RegDest) ||  
(F/D.IR.RegSrc2 == D/X.IR.RegDest) || 
(F/D.IR.RegSrc1 == X/M.IR.RegDest) ||  
(F/D.IR.RegSrc2 == X/M.IR.RegDest) = 0 
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Pipeline Control Terminology 

•! Hardware interlock maneuver is called stall or bubble 

•! Mechanism is called stall logic 

•! Part of more general pipeline control mechanism 

•! Controls advancement of insns through pipeline 

•! Distinguish from pipelined datapath control 
•! Controls datapath at each stage 

•! Pipeline control controls advancement of datapath control 
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Pipeline Diagram with Data Hazards 

•! Data hazard stall indicated with d* 

•! Stall propagates to younger insns 

•! This is not good (why?) 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($3) F d* d* D X M W 

sw $6,4($7) F D X M W 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,0($3) F d* d* D X M W 

sw $6,4($7) F D X M W 
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Hardware Interlock Performance 

•! As before: 

•! Branch: 20%, load: 20%, store: 10%, other: 50% 

•! Hardware interlocks: same as software interlocks 

•! 20% of insns require 1 cycle stall (I.e., insertion of 1 nop) 

•! 5% of insns require 2 cycle stall (I.e., insertion of 2 nops) 

•! CPI = 1 * 0.20*1 + 0.05*2 = 1.3 

•! So, either CPI stays at 1 and #insns increases 30% (software) 

•! Or, #insns stays at 1 (relative) and CPI increases 30% (hardware) 

•! Same difference 

•! Anyway, we can do better 
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Observation! 

•! Technically, this situation is broken 
•!  lw $4,0($3) has already read $3 from regfile 

•!  add $3,$2,$1 hasn’t yet written $3 to regfile 

•! But fundamentally, everything is OK 
•!  lw $4,0($3) hasn’t actually used $3 yet 

•!  add $3,$2,$1 has already computed $3 
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Bypassing 

•! Bypassing 
•! Reading a value from an intermediate (µarchitectural) source 

•! Not waiting until it is available from primary source 

•! Here, we are bypassing the register file 

•! Also called forwarding 
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WX Bypassing 

•! What about this combination? 
•! Add another bypass path and MUX input 

•! First one was an MX bypass 

•! This one is a WX bypass 
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ALUinB Bypassing 

•! Can also bypass to ALU input B 
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WM Bypassing? 

•! Does WM bypassing make sense? 
•! Not to the address input (why not?) 

•! But to the store data input, yes 
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CIS 371 (Roth/Martin): Pipelining 54 

Bypass Logic 

•! Each MUX has its own, here it is for MUX ALUinA 
(D/X.IR.RegSrc1 == X/M.IR.RegDest) => 0 

(D/X.IR.RegSrc1 == M/W.IR.RegDest) => 1 

Else => 2 
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Pipeline Diagrams with Bypassing 

•! If bypass exists, “from”/“to” stages execute in same cycle 

•! Example: MX bypass 
1 2 3 4 5 6 7 8 9 10 

add r2,r3!r1 F D X M W 
sub r1,r4!r2 F D X M W 

•! Example: WX bypass  

1 2 3 4 5 6 7 8 9 10 

add r2,r3!r1 F D X M W 
ld [r7]!r5 F D X M W 
sub r1,r4!r2 F D X M W 

1 2 3 4 5 6 7 8 9 10 

add r2,r3!r1 F D X M W 
? F D X M W 

•! Example: WM bypass  

•! Can you think of a code example that uses the WM bypass? 
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Bypass and Stall Logic 

•! Two separate things 

•! Stall logic controls pipeline registers 

•! Bypass logic controls MUXs 

•! But complementary 

•! For a given data hazard: if can’t bypass, must stall 

•! Previous slide shows full bypassing: all bypasses possible 
•! Have we prevented all data hazards?  (Thus obviating stall logic) 
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Have We Prevented All Data Hazards? 
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•! No.  Consider a “load” followed by a dependent “add” insn 

•! Bypassing alone isn’t sufficient 

•! Solution?  Detect this, and then stall the “add” by one cycle 
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Stalling on Load-To-Use Dependences 

Stall = (D/X.IR.Operation == LOAD) && 

          ((F/D.IR.RegSrc1 == D/X.IR.RegDest) ||  

           ((F/D.IR.RegSrc2 == D/X.IR.RegDest) && (F/D.IR.Op != STORE))  
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Stalling on Load-To-Use Dependences 
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Stall = (D/X.IR.Operation == LOAD) && 

          ((F/D.IR.RegSrc1 == D/X.IR.RegDest) ||  

           ((F/D.IR.RegSrc2 == D/X.IR.RegDest) && (F/D.IR.Op != STORE))  
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Stalling on Load-To-Use Dependences 
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Reducing Load-Use Stall Frequency  

•! Use compiler scheduling to reduce load-use stall frequency 

•! Like software interlocks, but for performance not correctness 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,4($3) F D X M W 

addi $6,$4,1 F d* D X M W 

sub $8,$3,$1 F D X M W 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 

lw $4,4($3) F D X M W 

sub $8,$3,$1 F D X M W 

addi $6,$4,1 F D X M W 
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Performance Impact of Load/Use Penalty 

•! Assume 

•! Branch: 20%, load: 20%, store: 10%, other: 50% 

•! 50% of loads are followed by dependent instruction 

•! require 1 cycle stall (I.e., insertion of 1 nop) 

•! Calculate CPI 
•! CPI = 1 + (1 * 20% * 50%) = 1.1 
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Pipelining and Multi-Cycle Operations 

•! What if you wanted to add a multi-cycle operation? 
•! E.g., 4-cycle multiply 

•! P/W: separate output latch connects to W stage 

•! Controlled by pipeline control finite state machine (FSM) 

Register 
File 

s1 s2 d 

IR 

A 

B 

IR 

O 

B 

IR 

F/D D/X X/M 

Data 
Mem 

a 

d 

O 

D 

IR 

P 

IR 

X 

P/W 

Xctrl 

CIS 371 (Roth/Martin): Pipelining 64 

A Pipelined Multiplier 

•! Multiplier itself is often pipelined, what does this mean? 
•! Product/multiplicand register/ALUs/latches replicated 

•! Can start different multiply operations in consecutive cycles 
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What about Stall Logic? 

Stall = (OldStallLogic) || 
(F/D.IR.RegSrc1 == P0/P1.IR.RegDest) ||  
(F/D.IR.RegSrc2 == P0/P1.IR.RegDest) || 
(F/D.IR.RegSrc1 == P1/P2.IR.RegDest) ||  
(F/D.IR.RegSrc2 == P1/P2.IR.RegDest) || 
(F/D.IR.RegSrc1 == P2/P3.IR.RegDest) ||  
(F/D.IR.RegSrc2 == P2/P3.IR.RegDest) 
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Pipeline Diagram with Multiplier 

•! What about… 

•! Two instructions trying to write regfile in same cycle? 

•! Structural hazard! 

•! Must prevent: 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 

addi $6,$4,1 F D d* d* d* X M W 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 

addi $6,$1,1 F D X M W 

add $5,$6,$10 F D X M W 
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Preventing Structural Hazard 

•! Fix to problem on previous slide: 
Stall = (OldStallLogic) ||  

   (F/D.IR.RegDest “is valid” &&  

    F/D.IR.Operation != MULT && P0/P1.IR.RegDest “is valid”)  
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More Multiplier Nasties 

•! What about… 
•! Mis-ordered writes to the same register 

•! Software thinks add gets $4 from addi, actually gets it from mul 

•! Common? Not for a 4-cycle multiply with 5-stage pipeline 
•! More common with deeper pipelines 

•! In any case, must be correct 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 

addi $4,$1,1 F D X M W 

… 

… 

add $10,$4,$6 F D X M W
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Preventing Mis-Ordered Reg. Write 

•! Fix to problem on previous slide: 
Stall = (OldStallLogic) ||  

   (F/D.IR.RegDest == D/X.IR.RegDest &&  
D/X.IR.Operation == MULT)  
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Corrected Pipeline Diagram 

•! With the correct stall logic 

•! Prevent mis-ordered writes to the same register 

•! Why two cycles of delay? 

•! Multi-cycle operations complicate pipeline logic 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 

addi $4,$1,1 F d* d* D X M W 

… 

… 

add $10,$4,$6 F D X M W

CIS 371 (Roth/Martin): Pipelining 71 

What About Branches? 

•! Control hazards options 

•! Could just stall to wait for branch outcome (two-cycle penalty)  

•! Fetch past branch insns before branch outcome is known 

•! Default: assume “not-taken” (at fetch, can’t tell it’s a branch) 
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Branch Recovery  
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•! Branch recovery: what to do when branch is actually taken 

•! Insns that will be written into F/D and D/X are wrong 

•! Flush them, i.e., replace them with nops 

+! They haven’t had written permanent state yet (regfile, DMem)  

–! Two cycle penalty for taken branches 
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Branch Recovery Pipeline Diagram 

•! Mis-speculation recovery: what to do on wrong guess 

•! Not too painful in an in-order pipeline 

•! Branch resolves in X 

+! Younger insns (in F, D) haven’t changed permanent state 

•! Flush insns currently in F/D and D/X (i.e., replace with nops) 

1 2 3 4 5 6 7 8 9 

     addi $3,$0,1 F D X M W 
     bnez $3,targ F D X M W 
     sw $6,4($7) F D X M W 
targ:addi $8,$7,1 F D X M W 

1 2 3 4 5 6 7 8 9 

     addi $3,$0,1 F D X M W 
     bnez $3,targ F D X M W 
     sw $6,4($7) F D -- -- -- 
targ:addi $8,$7,1 F -- -- -- -- 
targ:addi $8,$7,1 F D X M W 

Correct: 

Recovery: 

speculative 
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Branch Performance 

•! Back of the envelope calculation 

•! Branch: 20%, load: 20%, store: 10%, other: 50% 

•! Say, 75% of branches are taken 

•! CPI = 1 + 20% * 75% * 2 = 
         1 + 0.20 * 0.75 * 2 = 1.3 

–! Branches cause 30% slowdown 

•! Even worse with deeper pipelines 

•! How do we reduce this penalty? 

CIS 371 (Roth/Martin): Pipelining 75 

Reducing Penalty: Fast Branches 

•! Fast branch: targets control-hazard penalty 

•! Basically, branch insns that can resolve at D, not X 

•! Test must be comparison to zero or equality, no time for ALU 

+! New taken branch penalty is 1 

–! Additional comparison insns (e.g., cmplt, slt) for complex tests 

–! Must bypass into decode stage now, too 

1 2 3 4 5 6 7 8 9 

     bnez r3,targ F D X M W 
targ:add r4,r5,r4 F D X M W 
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Fast Branch Performance  

•! Assume: Branch: 20%, 75% of branches are taken 
•! CPI = 1 + 20% * 75% * 1 = 1 + 0.20*0.75*1 = 1.15 

•! 15% slowdown (better than the 30% from before) 

•! But wait, fast branches assume only simple comparisons 
•! Fine for MIPS 

•! But not fine for ISAs with “branch if $1 > $2” operations 

•! In such cases, say 25% of branches require an extra insn 
•! CPI = 1 + (20% * 75% * 1) + 20%*25%*1(extra insn) = 1.2 

•! Example of ISA and micro-architecture interaction 
•! Type of branch instructions 

•! Another option: “Delayed branch” or “branch delay slot” 

•! What about condition codes? 
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More Generally: Speculative Execution 

•! Speculation: “risky transactions on chance of profit” 

•! Speculative execution 

•! Execute before all parameters known with certainty 

•! Correct speculation 

+!Avoid stall, improve performance 

•! Incorrect speculation (mis-speculation) 

–!Must abort/flush/squash incorrect insns 

–!Must undo incorrect changes (recover pre-speculation state) 

•! The “game”: [%correct * gain] – [(1–%correct) * penalty] 

•! Control speculation: speculation aimed at control hazards 

•! Unknown parameter: are these the correct insns to execute next? 
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Control Speculation Mechanics 

•! Guess branch target, start fetching at guessed position 
•! Doing nothing is implicitly guessing target is PC+4 

•! Can actively guess other targets: dynamic branch prediction 

•! Execute branch to verify (check) guess 
•! Correct speculation? keep going 

•! Mis-speculation? Flush mis-speculated insns 

•! Hopefully haven’t modified permanent state (Regfile, DMem) 

+!Happens naturally in in-order 5-stage pipeline 

•! “Game” for in-order 5 stage pipeline 
•! %correct = ? 

•! Gain = 2 cycles 

+! Penalty = 0 cycles ! mis-speculation no worse than stalling 
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Dynamic Branch Prediction 

•! Dynamic branch prediction: hardware guesses outcome 
•! Start fetching from guessed address 

•! Flush on mis-prediction 
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Dynamic Branch Prediction Components 

•! Step #1: is it a branch? 
•! Easy after decode... 

•! Step #2: is the branch taken or not taken? 
•! Direction predictor (applies to conditional branches only) 

•! Predicts taken/not-taken 

•! Step #3: if the branch is taken, where does it go? 
•! Easy after decode… 

regfile 

D$ I$ 

B 
P 



CIS 371 (Roth/Martin): Pipelining 81 

Branch Direction Prediction 

•! Learn from past, predict the future 
•! Record the past in a hardware structure 

•! Direction predictor (DIRP) 
•! Map conditional-branch PC to taken/not-taken (T/N) decision 

•! Individual conditional branches often biased or weakly biased 

•! 90%+ one way or the other considered “biased” 

•! Why?  Loop back edges, checking for uncommon conditions 

•! Branch history table (BHT): simplest predictor 
•! PC indexes table of bits (0 = N, 1 = T), no tags 

•! Essentially: branch will go same way it went last time 

•! What about aliasing? 

•! Two PC with the same lower bits? 

T or NT 

[9:2] 1:0 [31:10] 

T or NT 

PC BHT 

Prediction (taken or  

not taken) CIS 371 (Roth/Martin): Pipelining 82 

Branch History Table (BHT) 

•! Branch history table (BHT): simplest direction predictor 

•! PC indexes table of bits (0 = N, 1 = T), no tags 

•! Essentially: branch will go same way it went last time 

•! Problem: consider inner loop branch below (* = mis-prediction) 

for (i=0;i<100;i++) 

   for (j=0;j<3;j++) 

      // whatever 

–! Two “built-in” mis-predictions per inner loop iteration 

–! Branch predictor “changes its mind too quickly” 

State/prediction N* T T T* N* T T T* N* T T T* 

Outcome T T T N T T T N T T T N 
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Two-Bit Saturating Counters (2bc) 

•! Two-bit saturating counters (2bc) [Smith] 

•! Replace each single-bit prediction 

•! (0,1,2,3) = (N,n,t,T) 

•! Adds “hysteresis” 

•! Force predictor to mis-predict twice before “changing its mind” 

•! One mispredict each loop execution (rather than two) 

+!Fixes this pathology (which is not contrived, by the way) 

•! Can we do even better? 

State/prediction N* n* t T* t T T T* t T T T* 

Outcome T T T N T T T N T T T N 
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Correlated Predictor 

•! Correlated (two-level) predictor [Patt] 

•! Exploits observation that branch outcomes are correlated 

•! Maintains separate prediction per (PC, BHR) 

•! Branch history register (BHR): recent branch outcomes 

•! Simple working example: assume program has one branch 

•! BHT: one 1-bit DIRP entry 

•! BHT+2BHR: 22 = 4 1-bit DIRP entries 

–! We didn’t make anything better, what’s the problem? 

State/prediction BHR=NN N* T T T T T T T T T T T 

“active pattern” BHR=NT N N* T T T T T T T T T T 

BHR=TN N N N N N* T T T T T T T 

BHR=TT N N N* T* N N N* T* N N N* T* 

Outcome                    N  N T T T N T T T N T T T N 
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Correlated Predictor 

•! What happened? 

•! BHR wasn’t long enough to capture the pattern 

•! Try again: BHT+3BHR: 23 = 8 1-bit DIRP entries 

+! No mis-predictions after predictor learns all the relevant patterns 

State/prediction BHR=NNN N* T T T T T T T T T T T 

BHR=NNT N N* T T T T T T T T T T 

BHR=NTN N N N N N N N N N N N N 

“active pattern” BHR=NTT N N N* T T T T T T T T T 

BHR=TNN N N N N N N N N N N N N 

BHR=TNT N N N N N N* T T T T T T 

BHR=TTN N N N N N* T T T T T T T 

BHR=TTT N N N N N N N N N N N N 

Outcome                N  N  N T T T N T T T N T T T N 
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Correlated Predictor 

•! Design choice I: one global BHR or one per PC (local)? 
•! Each one captures different kinds of patterns 

•! Global is better, captures local patterns for tight loop branches 

•! Design choice II: how many history bits (BHR size)? 
•! Tricky one 

+! Given unlimited resources, longer BHRs are better, but… 

–! BHT utilization decreases 

–!Many history patterns are never seen 

–!Many branches are history independent (don’t care) 

•! PC xor BHR allows multiple PCs to dynamically share BHT 

•! BHR length < log2(BHT size) 

–! Predictor takes longer to train 

•! Typical length: 8–12 
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Hybrid Predictor 

•! Hybrid (tournament) predictor [McFarling] 

•! Attacks correlated predictor BHT utilization problem 

•! Idea: combine two predictors 

•! Simple BHT predicts history independent branches 

•! Correlated predictor predicts only branches that need history 

•! Chooser assigns branches to one predictor or the other 

•! Branches start in simple BHT, move mis-prediction threshold 

+! Correlated predictor can be made smaller, handles fewer branches 

+! 90–95% accuracy 
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When to Perform Branch Prediction? 

•! During Decode 
•! Look at instruction opcode to determine branch instructions 

•! Can calculate next PC from instruction (for PC-relative branches) 

–! One cycle “mis-fetch” penalty even if branch predictor is correct 

•! During Fetch? 
•! How do we do that? 

1 2 3 4 5 6 7 8 9 

     bnez r3,targ F D X M W 
targ:add r4,r5,r4 F D X M W 
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Revisiting Branch Prediction Components 

•! Step #1: is it a branch? 
•! Easy after decode... during fetch: predictor 

•! Step #2: is the branch taken or not taken? 
•! Direction predictor (as before) 

•! Step #3: if the branch is taken, where does it go? 
•! Branch target predictor (BTB) 

•! Supplies target PC if branch is taken 

regfile 

D$ I$ 

B 
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CIS 371 (Roth/Martin): Pipelining 90 

Branch Target Buffer (BTB) 

•! As before: learn from past, predict the future 
•! Record the past branch targets in a hardware structure 

•! Branch target buffer (BTB): 
•! “guess” the future PC based on past behavior 
•! “Last time the branch X was taken, it went to address Y” 

•! “So, in the future, if address X is fetched, fetch address Y next”  

•! Operation 
•! A small RAM (like a regfile): address = PC, data = target-PC 
•! Access at Fetch in parallel with instruction memory 

•! predicted-target = BTB[hash(PC)] 
•! Updated at X whenever target != predicted-target 

•! BTB[hash(PC)] = target 
•! Hash function is just typically just extracting lower bits (as before) 
•! Aliasing?  No problem, this is only a prediction 
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Branch Target Buffer (continued) 

•! At Fetch, how does insn know it’s a branch & should read 
BTB?   It doesn’t have to… 
•! …all insns access BTB in parallel with Imem Fetch 

•! Key idea: use BTB to predict which insn are branches 

•! Implement by “tagging” each entry with its corresponding PC 

•! Update BTB on every taken branch insn, record target PC: 

•! BTB[PC].tag = PC, BTB[PC].target = target of branch 

•! All insns access at Fetch in parallel with Imem 

•! Check for tag match, signifies insn at that PC is a branch 

•! Predicted PC = (BTB[PC].tag == PC) ? BTB[PC].target : PC+4 

PC 

+ 
4 

BTB 
tag 

=
=

 

target 
predicted target 
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Why Does a BTB Work? 

•! Because most control insns use direct targets 

•! Target encoded in insn itself ! same “taken” target every time 

•! What about indirect targets? 

•! Target held in a register ! can be different each time 

•! Indirect conditional jumps are not widely supported 

•! Two indirect call idioms 

+!Dynamically linked functions (DLLs): target always the same 

•! Dynamically dispatched (virtual) functions: hard but uncommon 

•! Also two indirect unconditional jump idioms 

•! Switches: hard but uncommon 

–! Function returns: hard and common but… 
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IMem 

Return Address Stack (RAS) 

•! Return address stack (RAS) 
•! Call instruction? RAS[TOS++] = PC+4 

•! Return instruction? Predicted-target = RAS[--TOS] 

•! Q: how can you tell if an insn is a call/return before decoding it? 

•! Accessing RAS on every insn BTB-style doesn’t work 

•! Answer: pre-decode bits in Imem, written when first executed 

•! Can also be used to signify branches 

PC 

+ 
4 

BTB 
tag 

=
=

 

target 
predicted target 

RAS 

PD 

Putting It All Together 

•! BTB & branch direction predictor during fetch 

•! If branch prediction correct, no taken branch penalty 
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IMem 

PC 

+ 
4 

BTB 
tag 

=
=

 

target 
predicted target 

RAS 

PD 

BHT taken/not-taken 

is ret? 
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Branch Prediction Performance 

•! Dynamic branch prediction 
•! 20% of instruction branches 

•! Simple predictor: branches predicted with 75% accuracy 

•! CPI = 1 + (20% * 25% * 2) = 1.1 

•! More advanced predictor: 95% accuracy 

•! CPI = 1 + (20% *  5% * 2) = 1.02 

•! Branch mis-predictions still a big problem though 
•! Pipelines are long: typical mis-prediction penalty is 10+ cycles 

•! Pipelines are superscalar (later) 
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Pipelining And Exceptions 

•! “Exceptions”: divide by zero, protection violation 

•! Pipelining makes exceptions nasty 
•! 5 insns in pipeline at once 

•! Exception happens, how do you know which insn caused it? 

•! Exceptions propagate along pipeline in latches 

•! Two exceptions happen, how do you know which one to take first? 

•! One belonging to oldest insn 

•! When handling exception, have to flush younger insns 

•! Piggy-back on branch mis-prediction machinery to do this 

•! What about multi-cycle operations? 

•! Just FYI 
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Pipeline Depth 

•! Trend had been to deeper pipelines 
•! 486: 5 stages (50+ gate delays / clock) 

•! Pentium: 7 stages 

•! Pentium II/III: 12 stages 

•! Pentium 4: 22 stages (~10 gate delays / clock) “super-pipelining” 

•! Core1/2: 14 stages 

•! Increasing pipeline depth 
+! Increases clock frequency (reduces period) 

•! But double the stages reduce the clock period by less than 2x 

–! Decreases IPC (increases CPI) 

•! Branch mis-prediction penalty becomes longer 

•! Non-bypassed data hazard stalls become longer 

•! At some point, actually causes performance to decrease, but when? 

•! 1GHz Pentium 4 was slower than 800 MHz PentiumIII 

•! “Optimal” pipeline depth is program and technology specific 
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Summary 

•! Basics of pipelining 

•! Pipeline diagrams 

•! Data hazards 
•! Software interlocks/code scheduling 

•! Hardware interlocks/stalling 

•! Bypassing 

•! Multi-cycle operations 

•! Control hazards 

•! Branch prediction 

CPU Mem I/O 

System software 

App App App 


