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Computer Organization and Design

¢ Hardware interlocks and stalling
¢ Bypassing

e Control Hazards

Unit 5: Pipelining « Branch prediction

e Multi-cycle operations
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Readings Performance: Latency vs. Throughput
e P&H e Latency (execution time): time to finish a fixed task

* Chapter 4 (4.5 - 4.8) ¢ Throughput (bandwidth): number of tasks in fixed time

+ Different: exploit parallelism for throughput, not latency (e.g., bread)
¢ Often contradictory (latency vs. throughput)
o Will see many examples of this
¢ Choose definition of performance that matches your goals
 Scientific program? Latency, web server: throughput?
e Example: move people 10 miles
e Car: capacity = 5, speed = 60 miles/hour
¢ Bus: capacity = 60, speed = 20 miles/hour
e Latency: car = 10 min, bus = 30 min
e Throughput: car = 15 PPH (count return trip), bus = 60 PPH
o Fastest way to send 1TB of data? (100+ mbits/second)
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Single-Cycle Datapath Performance

oD

Register |

File Data
P> s1s [ em

¢ Single-cycle datapath: true “atomic” fetch/execute loop

* Fetch, decode, execute one complete insn every cycle
+ Low CPI: 1 by definition

— Long clock period: to accommodate slowest instruction
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Single-cycle vs. Multi-cycle Performance

¢ Single-cycle
¢ Clock period = 50ns, CPI =1
e Performance = 50ns/insn

e Multi-cycle has opposite performance split of single-cycle
+ Shorter clock period
— Higher CPI

e Multi-cycle
¢ Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)
e Clock period = 11ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4
¢ Why is clock period 11ns and not 10ns?
¢ Performance = 44ns/insn

¢ Aside: CISC makes perfect sense in multi-cycle datapath

CIS 371 (Roth/Martin): Pipelining 7

Alternative: Multi-Cycle Datapath

s3
Register u

File _H Data S5
P> s1s I 33 em

s5] 4:@_’szs _

e Multi-cycle datapath: attacks slow clock
¢ Cut datapath into multiple stages: fetch, decode, execute, etc.
¢ Micro-coded control: “stages” control signals
¢ Allows insns to take different number of cycles (the main point)

+ Opposite of single-cycle: short clock period, high CPI
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Latency versus Throughput

| insn0.fetch, dec, exec
Single-cycle insn1.fetch, dec, exec |

| insnO.fetchl insn0.dec | insn0.exec,
Multi-cycle insn1.fetch| insn1.dec | insn1.exec|

¢ Can we have both low CPI and short clock period?
* Not if datapath executes only one insn at a time

e Latency vs. Throughput
— Latency: no good way to make a single insn go faster
+ Throughput: fortunately, no one cares about single insn latency
¢ Goal is to make programs, not individual insns, go faster
¢ Programs contain billions of insns
¢ Key: exploit inter-insn parallelism
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Pipelining

linsno.fetch| insn0.dec |insn0.exec
Multi-cycle

insn1.fetch| insn1.dec |insn1.exec|

|insn0.fetch insn0.dec |insn0.exec
Pipelined insn1.fetch| insn1.dec [insn1.exec|

e Important performance technique
+ Improves instruction throughput rather instruction latency
e Begin with multi-cycle design
When insn advances from stage 1 to 2, next insn enters at stage 1
Form of parallelism: “insn-stage parallelism”
Maintains illusion of sequential fetch/execute loop
Individual instruction takes the same number of stages
+ But instructions enter and leave at a much faster rate
¢ Laundry analogy
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5 Stage Pipeline: Inter-Insn Parallelism

D

5 Stage Multi-Cycle Datapath

0

P Insn Register u
ol |Mem File _E Data
P P> s1s I em
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5 Stage Pipelined Datapath

I-' Register
File Data
PC I:/rllsn P> s1s2 -
em
I T

Tdata-mem Tregfile

T

insn-mem Tregfile TALU

o Pipelining: cut datapath into N stages (here 5)  Tsingiecycie
¢ One insnh in each stage in each cycle
+ Clock periOd = MAX(Tinsn-meml Tregfilel TALUI Tdata-mem)
+ Base CPI = 1: insn enters and leaves every cycle
— Actual CPI > 1: pipeline must often stall

¢ Individual insn latency increases (pipeline overhead), not the point
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U PC

Sl L] Insn Reg_ister A
Mem File

P> s1s2 B

EEE

e Temporary values (PC,IR,A,B,O,D) re-latched every stage
e Why? 5 insns may be in pipeline at once with different PCs
* Notice, PC not latched after ALU stage (why not?)
¢ Pipelined control: one single-cycle controller

¢ Control signals themselves pipelined
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Pipeline Terminology Some More Terminology

e Scalar pipeline: one insn per stage per cycle

0

U Fé ¢ Alternative: “superscalar” (later)
a I_. e In-order pipeline: insns enter execute stage in order
e L{Insn Register i3 o Alternative: “out-of-order” (later)
Mem File
P> s1s2 B
| 11 e Pipeline depth: number of pipeline stages
PC = « Nothing magical about five

FID DIX XM mMw « Trend has been to deeper pipelines
¢ Five stage: Fetch, Decode, eXecute, Memory, Writeback
¢ Nothing magical about 5 stages (Pentium 4 had 22 stages!)
o Latches (pipeline registers) named by stages they separate
e PC, F/D, D/X, X/M, M/W
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Pipeline Example: Cycle 1 Pipeline Example: Cycle 2

oD oD

Register Register
File A Patal I File A Patal I
P> s1s _ em P s1s = em
FID "}J XM M FID "}J XM M
add $3,%$2,51 add $3,$2,51

¢ 3 instructions
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Pipeline Example: Cycle 3

) =)

O Data| [i>
em

}J XM M

add $3,%$2,51

F/ID

sw $6,4($7) 1w $4,0(8$5)

Pipeline Example: Cycle 4
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Pipeline Example: Cycle 5
) )
I .
Register
File Q »
P> s1s |
FID "}J XM M/
sw $6,4($7) 1w $4,0($5) add

19
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0

Register
File
P> s1s

F/ID

sw $6,4($7) 1w $4,0($5) add $3,$2,$1

¢ 3 instructions
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Pipeline Example: Cycle 6
(0 )

O Data| [&
em

}J XM M

sw $6,4(7)

20
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Pipeline Example: Cycle 7

Pipeline Diagram

oD

Register
File ® Datal I2
P> s1s _ em
F/D "}J XIM M
sSw
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What About Pipelined Control?

e Pipeline diagram: shorthand for what we just saw

o Across: cycles
e Down: insns

e Convention: X means 1w $4,0 ($5) finishes execute stage and
writes into X/M latch at end of cycle 4

e Should it be like single-cycle control?
o But individual insn signals must be staged

e Should it be like multi-cycle control?
¢ But all stages are simultaneously active

e How many different controllers are we going to need?
¢ One for each insn in pipeline?

¢ Solution: use simple single-cycle control, but pipeline it
¢ Single controller
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112|314 |5|6]|7 9
add $3,%2,51 FIDIX|M|W
1w $4,0(85) FID| X |M|W
sw $6,4(87) FID|X|M|W
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Pipelined Control
PC v@_D;J
A J o]
Register
File ~lo Datal [P
P> s1s B em
B
F/D D/X @”SJ XM /W]
R R R
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Example Pipeline Perf. Calculation

Q1: Why Is Pipeline Clock Period ...

¢ Single-cycle
¢ Clock period = 50ns, CPI =1
e Performance = 50ns/insn
e Multi-cycle
e Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)
e Clock period = 11ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4
¢ Performance = 44ns/insn
¢ 5-stage pipelined
e Clock period = 12ns (approx. (50ns / 5 stages) + overheads)
+ CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)
+ Performance = 12ns/insn
— Well actually ... CPI = 1 + some penalty for pipelining (next)
¢ CPI = 1.5 (on average insn completes every 1.5 cycles)
e Performance = 18ns/insn
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Q2: Why Is Pipeline CPL...

e ... > (delay thru datapath) / (number of pipeline stages)?

e Two reasons:
e Latches (FFs) add delay
¢ Pipeline stages have different delays, clock period is max delay

* Both factors have implications for ideal number pipeline stages
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Dependences and Hazards

o ...>17
¢ CPI for scalar in-order pipeline is 1 + stall penalties
¢ Stalls used to resolve hazards
¢ Hazard: condition that jeopardizes VN illusion
o Stall: artificial pipeline delay introduced to restore VN illusion

¢ Calculating pipeline CPI
* Frequency of stall * stall cycles
¢ Penalties add (stalls generally don't overlap in in-order pipelines)
¢ 1 + stall-freq, *stall-cyc, + stall-freg,*stall-cyc, + ...

¢ Correctness/performance/make common case fast (MCCF)
¢ Long penalties OK if they happen rarely, e.g., 1 + 0.01 * 10 = 1.1
¢ Stalls also have implications for ideal number of pipeline stages
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e Dependence: relationship between two insns
+ Data: two insns use same storage location
¢ Control: one insn affects whether another executes at all
¢ Not a bad thing, programs would be boring without them
¢ Enforced by making older insn go before younger one
¢ Happens naturally in single-/multi-cycle designs
¢ But not in a pipeline

e Hazard: dependence & possibility of wrong insn order
o Effects of wrong insn order cannot be externally visible
o Stall: for order by keeping younger insn in same stage
¢ Hazards are a bad thing: stalls reduce performance
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Why Does Every Insn Take 5 Cycles?

Structural Hazards

T

1A 6]
Register
File 0 Datal D
P> s1s B I em

[
F/D D/X {f@"wj XIM /W]
PR R iR iR

— — add $3,%$2,$1 1w $4,0($5)—

¢ Could/should we allow add to skip M and go to W? No
— It wouldn't help: peak fetch still only 1 insn per cycle
— Structural hazards: imagine add follows 1w
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Example Structural Hazard

¢ Structural hazards
e Two insns trying to use same circuit at same time
¢ E.g., structural hazard on redfile write port

¢ To fix structural hazards: proper ISA/pipeline design
o Each insn uses every structure exactly once

¢ For at most one cycle
¢ Always at same stage relative to F (fetch)

¢ Tolerate structure hazards
¢ Add stall logic to stall pipeline when hazards occur
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Data Hazards

1 2 3 4 5 6 7 8 9
1d r2,0(rl) F D X M W
add rl,r3,r4 F D X M W
sub rl,r3,r5 F D X M W
st r6,0(rl) F D X M W

e Example structural hazard: unified instruction & data cache

e Solution:
¢ Separate instruction/data memories
¢ Redesign memory to allow 2 accesses per cycle (slow, expensive)
o Stall pipeline
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L [ 5
Reg_lster o | |p

File | |s Data

P s1s I em

U ol =
F/D D/X XM M/W|
> > > >
[IR] = [R] (R
sw $6,0($7) 1w $4,0(%5) add $3,$2,51

o Let’s forget about branches and the control for a while

e The three insn sequence we saw earlier executed fine...
e But it wasn't a real program
¢ Real programs have data dependences
¢ They pass values via registers and memory
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Dependent Operations Data Hazards

« Independent operations L |[A] [ F:HJ
Register
add $3,%2,$1 lg'l (6] | D
add §6,$5,84 e [ Ie Data
P> s1s I em
e Would this program execute correctly on a pipeline? U B >
FID| Dix| xml MW
dd $3,$2,81
maa $6,$5,53 [IR] [IR] [IR] [IR] |
sw $3,0($7) addi $6,1,53 1w $4,0(33) add $3,%2,$1

e What about this program?
w55 50 51 e Would this “program” execute correctly on this pipeline?

1w $4,0(53) * Which insns would execute with correct inputs?
:3%3?2; ;;)53 e add is writing its result into $3 in current cycle
— 1w read $3 two cycles ago — got wrong value
— addi read $3 one cycle ago — got wrong value
e swis reading $3 this cycle — maybe (depending on redfile design)
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Memory Data Hazards Fixing Register Data Hazards

1L |[A] [ F:HJ e Can only read register value three cycles after writing it

Register
. o] L, D
File B Data - ’ =
> s1s2 9l [ - e Option #1: make sure programs don‘t do it
J B S e Compiler puts two independent insns between write/read insn pair
F/ID . D/X . (;) XM g M W> o If they aren't there already
IR IR IR IR | ¢ Independent means: “do not interfere with register in question”

¢ Do not write it: otherwise meaning of program changes

¢ Do not read it: otherwise create new data hazard
Code scheduling: compiler moves around existing insns to do this
If none can be found, must use nops (no-operation)

1w $4,0($1) sw $5,0($1)
e What about data hazards through memory? No
¢ 1w following sw to same address in next cycle, gets right value
¢ Why? Data mem read/write always take place in same stage
¢ Data hazards through registers? Yes (previous slide)
e Occur because register write is three stages after register read
e Can only read a register value three cycles after writing it

This is called software interlocks
¢ MIPS: Microprocessor w/out Interlocking Pipeline Stages
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Software Interlock Example

add $3,82,51
nop

nop

1w $4,0(383)
sw $7,0($3)
add $6,%$2,58
addi $3,$5,4

¢ Can any of last three insns be scheduled between first two
e sw $7,0(53)? No, creates hazard with add $3,$2,$1
e add $6,$2,$8? OK
e addi $3,%$5,4? No, 1w would read $3 from it

¢ Still need one more insn, use nop
add $3,%$2,51
add $6,%2,%8
nop
1w $4,0($3)
sw $7,0(53)
addi $3,%5,4
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Hardware Interlocks

e Problem with software interlocks? Not compatible
e Where does 3 in “read register 3 cycles after writing” come from?
¢ From structure (depth) of pipeline
* What if next MIPS version uses a 7 stage pipeline?
¢ Programs compiled assuming 5 stage pipeline will break

e A better (more compatible) way: hardware interlocks
¢ Processor detects data hazards and fixes them
e Two aspects to this
¢ Detecting hazards
e Fixing hazards
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Software Interlock Performance

e Assume
¢ Branch: 20%, load: 20%, store: 10%, other: 50%

¢ For software interlocks, let’s assume:
e 20% of insns require insertion of 1 nop
¢ 5% of insns require insertion of 2 nops

¢ Result:

CPI is still 1 technically

But now there are more insns

#insns = 1 + 0.20*%1 + 0.05*2 = 1.3

30% more insns (30% slowdown) due to data hazards
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Detecting Data Hazards

1L | [A] = 6:[] |
Register
File ° 1P

| [B Data
P s1s I em
U ol =
F/D D/X XIM M/W|
> > > >
[IR] [IR] | [IR] [IR] |
J

F
e Compare F/D insn input register names with output register
names of older insns in pipeline

Stall =
(F/D.IR.RegSrc

1 /X.IR.RegDest) ||
(F/D.IR.RegSrc2
1

D,

D/X.IR.RegDest) ||
(F/D.IR.RegSrc X/M.IR.RegDest) ||
(F/D.IR.RegSrc2 X/M.IR.RegDest)
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Fixing Data Hazards

Aside: Insert NOP/Reset Register

L 7] Il o]
Register o Ia 5

File B Data
P> s1s em

XM

=]

bd
(an
|;—UV w
V

=

S

=Y

¢ Prevent F/D insn from reading (advancing) this cycle
¢ Write nop into D/X.IR (effectively, insert nop in hardware)
¢ Also reset (clear) the datapath control signals
¢ Disable F/D latch and PC write enables (why?)

¢ Re-evaluate situation next cycle
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Hardware Interlock Example: cycle 1

L 7] Il o]
Reg_lster o Ia | |p
File | |s Data
P> s1s I em
U ol =
D/X XIM M/W|
> > >
[IR] | [IR] [IR] |
J
1w $4,0(53) add $3,$2,%1

Stall =
(F/D.IR.RegSrc1 == D/X.IR.RegDest) ||
(F/D.IR.RegSrc2 == D/X.IR.RegDest) ||
(F/D.IR.RegSrc1 == X/M.IR.RegDest) ||
(F/D.IR.RegSrc2 == X/M.IR.RegDest) = 1
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Q
D Q D
i 0 T
WE [RST:WE] —7,

o Earlier: registers support separate clock, write enable
o Useful for writes into register file
¢ Also useful for implementing stalls
e Registers can also support synchronous reset (clear)
o Useful for implementing stalls
¢ Implement as additional hardwired 0 input to FF data mux
¢ Resetting pipeline registers equivalent to inserting a NOP

o If NOP is all zeros
o If zero means “don't write” for all write-enable control signals

¢ Design ISA/control signals to make sure this is the case
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Hardware Interlock Example: cycle 2

L 7] Il o]
Register o Ia 5

File B Data

> s1s2 dl | [ em
U ol =
D/X XIM M/W|
> > >
[IR] | [IR] [IR] |
J
1w $4,0($3) add $3,$2,61

Stall =
(F/D.IR.RegSrc1 == D/X.IR.RegDest) ||
(F/D.IR.RegSrc2 == D/X.IR.RegDest) ||
(F/D.IR.RegSrc1 == X/M.IR.RegDest) ||

(F/D.IR.RegSrc2 == X/M.IR.RegDest) = 1
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Hardware Interlock Example: cycle 3

L IR W 6:[] |
Register
File © L o

| [B Data
P> s1s I em
U ol =
F/ID D/X XM M/W|
> > >
| - R
J
1w $4,0($3) add $3,%2,51

Stall =
(F/D.IR.RegSrc
(F/D.IR.RegSrc

1 D/X.IR.RegDest) ||

2 D/X.IR.RegDest) ||
(F/D.IR.RegSrcl X/M.IR.RegDest) ||
(F/D.IR.RegSrc2 X/M.IR.RegDest) = 0
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Pipeline Diagram with Data Hazards

Pipeline Control Terminology

e Data hazard stall indicated with d*
o Stall propagates to younger insns

112|3|/4|5|6|7|8|9
add $3,%2,%1 FID|X|M|W
1w $4,0($3) F |d¥|d* D|X|M|W
sw $6,4($7) FID|IX|M|W
¢ This is not good (why?)
112|3|4|5|6|7|8|9
add $3,%2,31 F|D]|X W
1w $4,0($3) Fld*|d* D|X|M|W
sw $6,4($7) FID|X|M|W
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¢ Hardware interlock maneuver is called stall or bubble

e Mechanism is called stall logic

e Part of more general pipeline control mechanism
¢ Controls advancement of insns through pipeline

¢ Distinguish from pipelined datapath control
¢ Controls datapath at each stage
¢ Pipeline control controls advancement of datapath control
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Hardware Interlock Performance

¢ As before:
¢ Branch: 20%, load: 20%, store: 10%, other: 50%

e Hardware interlocks: same as software interlocks
e 20% of insns require 1 cycle stall (I.e., insertion of 1 nop)
¢ 5% of insns require 2 cycle stall (I.e., insertion of 2 nops)

e CPI =1 *0.20*1 + 0.05%*2 = 1.3

e So, either CPI stays at 1 and #insns increases 30% (software)

¢ Or, #insns stays at 1 (relative) and CPI increases 30% (hardware)
¢ Same difference

e Anyway, we can do better
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Bypassing

Observation!
L IR W o]
Reg_lster o | |p
File | |s Data
P s1s I em
U ol =
F/D D/X X/M M/W|
> > > >
[IR] [IR] [IR] [IR] |
1w $4,0($3) add $3,$2,51
e Technically, this situation is broken
e 1w $4,0($3) has already read $3 from redfile
e add $3,$2,$1 hasn't yet written $3 to redfile
e But fundamentally, everything is OK
e 1w $4,0($3) hasn't actually used $3 yet
e add $3,%$2,%1 has already computed $3
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WX Bypassing

L— :

Reé;illzter o B | |b

B Data

P> s1s 1 | em

U I =
F/ID D/X XM M/W|
> > > D>
IR IR IR IR
1w $4,0(3$3) add $3,%$2,51

e Bypassing
¢ Reading a value from an intermediate (uarchitectural) source
¢ Not waiting until it is available from primary source
¢ Here, we are bypassing the register file
¢ Also called forwarding
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ALUinB Bypassing

Reg_lster o K | |o

File | |B Data

P> s1s | em

U ol =
F/D D/X XM M/W|
> > > >
[IR] [IR] [IR] [IR]
1w $4,0($3) add $3,$2,$1

e What about this combination?
¢ Add another bypass path and MUX input
¢ First one was an MX bypass
¢ This one is a WX bypass
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O]
Register
. D
File B
P> s1s 1
F/ID D/X
> D> >

[IR] [IR] [IR]

add $4,$2,53 add $3,$2,51

¢ (Can also bypass to ALU input B
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WM Bypassing?

Bypass Logic

e

Reg_lster o | |p
L File | |B Data
1
sls 5 —t glem
F/D D/X XM M/W|
> > > >
[IR] [IR] [IR] [IR]
sw $3,0($4) 1w $3,0($2)
¢ Does WM bypassing make sense?
¢ Not to the address input (why not?)
e But to the store data input, yes
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Pipeline Diagrams with Bypassing

Register
e ° e
| |B Data
P> s1s -T em

U 1° =
FID DIX XIM W,

=Y
=Y
=Y
¢
=Y

e Each MUX has its own, here it is for MUX ALUInA
(D/X.IR.RegSrcl == X/M.IR.RegDest) => 0
(D/X.IR.RegSrcl == M/W.IR.RegDest) => 1
Else => 2
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Bypass and Stall Logic

o If bypass exists, “from”/"to” stages execute in same cycle
¢ Example: MX bypass

1 2 3 4 5 6 7 8 9 10
add r2,r39rl F D X \M W
sub rl,r49r2 F DY M W
e Example: WX bypass
1 2 3 4 5 6 7 8 9 10
add r2,r39rl D X MW
1d [r7]=>x5 F D X \M w
sub rl,r49r2 F D M W
e Example: WM bypass
i 2 3 4 5 6 7 8 9 10
add r2,r39rl F D X M \W
2 F D XM W

¢ Can you think of a code example that uses the WM bypass?
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e Two separate things
o Stall logic controls pipeline registers
* Bypass logic controls MUXs
e But complementary
* For a given data hazard: if can't bypass, must stall

e Previous slide shows full bypassing: all bypasses possible
* Have we prevented all data hazards? (Thus obviating stall logic)
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Have We Prevented All Data Hazards?

o
[ I. | [A] 0]
Register

g L,|D

L File | |B Data

sls —-‘ Mem

>
F/D D/X M/W|

> _T E

add $4,%$2,33 1w $3,4($2)

¢ No. Consider a “load” followed by a dependent “add” insn
e Bypassing alone isn't sufficient
e Solution? Detect this, and then stall the “add” by one cycle

CIS 371 (Roth/Martin): Pipelining 57

Stalling on Load-To-Use Dependences

o
[ I. | [A] 0]
Register

g L,|D

L File | |B Data

sls —-‘ Mem

>
F/D D/X M/W|

> _T E

add $4,$2,$3 (stall bubble) 1w $3,4($2)
Stall = (D/X.IR.Operation == LOAD) &&
((F/D.IR.RegSrc1 == D/X.IR.RegDest) ||
((F/D.IR.RegSrc2 == D/X.IR.RegDest) && (F/D.IR.Op != STORE))
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Stalling on Load-To-Use Dependences

o
[ I. | [A] 0]
Register

g L,|D

L File | |B Data

sls —-‘ Mem

>
F/D D/X M/W|

> _T E

add $4,$2,$3 1w $3,4($2)
Stall = (D/X.IR.Operation == LOAD) &&
((F/D.IR.RegSrcl == D/X.IR.RegDest) ||
((F/D.IR.RegSrc2 == D/X.IR.RegDest) && (F/D.IR.Op != STORE))
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Stalling on Load-To-Use Dependences

o
I- L A (¢
Register
g L,|D
L File | |B Data
sls —-‘ Mem
>
F/D D/X M/W|
> >
¢ IR
] J
add $4,$2,$3 (stall bubble) 1w $3,..

Stall = (D/X.IR.Operation == LOAD) &&
((F/D.IR.RegSrc1 == D/X.IR.RegDest) ||
((F/D.IR.RegSrc2 == D/X.IR.RegDest) && (F/D.IR.Op != STORE))
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Reducing Load-Use Stall Frequency

1(2|3(4|5|]6|7|8]|9
add $3,$2,$1 F X| MW
1w $4,4153) Flo[' |m[w
addi $6%54,1 Flax[p['x [M|w
sub $8,53,61 FID|X|M|W

e Use compiler scheduling to reduce load-use stall frequency

o Like software interlocks, but for performance not correctness

112[3]45]6]7]8]09
add $3,52,51 | F|D|X[M[w
1w 54,4153) Flo['x||m |[w
sub $\ 73,81 Flol'x [[m|w
addi $6154,1 FIp['x|m|w
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Pipelining and Multi-Cycle Operations

Performance Impact of Load/Use Penalty

L A ] 0O AJ
Register 0 | | D
File B Data_.
P> s1s em
F/D D Bm
> >
IR IR [IR] IR
P/W

e What if you wanted to add a multi-cycle operation?
¢ E.g., 4-cycle multiply
e P/W: separate output latch connects to W stage
¢ Controlled by pipeline control finite state machine (FSM)
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e Assume
¢ Branch: 20%, load: 20%, store: 10%, other: 50%
¢ 50% of loads are followed by dependent instruction
e require 1 cycle stall (I.e., insertion of 1 nop)

¢ Calculate CPI
e CPI =1+ (1*20% *50%) = 1.1
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A Pipelined Multiplier

L A [ ] [¢) AJ
Register | | D
File N

0
B Data
P> s1s em
F/D D Bm
> >
IR IR IR IR |

PO/P1 P1/P2 P2/P3 P3/W

e Multiplier itself is often pipelined, what does this mean?
¢ Product/multiplicand register/ALUs/latches replicated
¢ Can start different multiply operations in consecutive cycles
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What about Stall Logic?

Pipeline Diagram with Multiplier

O

L A [ ] [¢) AJ
Register | | D
File B Datal |

P> s1s em
F/D D

I;_va

Stall = (OldStallLogic) || PO/P1  P1/P2 P2/P3 P3/W
(F/D.IR.RegSrcl == PO/P1.IR.RegDest) ||
(F/D.IR.RegSrc2 == PO/P1.IR.RegDest) ||
(F/D.IR.RegSrcl == P1/P2.IR.RegDest) ||
(F/D.IR.RegSrc2 == P1/P2.IR.RegDest) ||
(F/D.IR.RegSrcl == P2/P3.IR.RegDest) ||

(F/D.IR.RegSrc2 == P2/P3.IR.RegDest)
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Preventing Structural Hazard

1123 ]4|5|6|7|81]9
mul $4,$3,$5 F{D|PO|PL|P2|P3|W
addi $6,%4,1 F| D |d*|d*|d*¥| X |M|W

e What about...
¢ Two instructions trying to write regdfile in same cycle?
e Structural hazard!

e Must prevent:

mul $4,$3,$5 F|D|PO|PL|P2|P3|W

addi $6,$1,1 F|D|X|M|W
add $5,%6,510 F D| X |M|W
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More Multiplier Nasties

L A ] 0O AJ
Register 0 | | D
File B Data_.
P> s1s em
F/D D Bm
> >
IR IR [IR] IR |

PO/P1 P1/P2 P2/P3 P3/W

¢ Fix to problem on previous slide:
Stall = (OldStallLogic) ||
(F/D.IR.RegDest “is valid” &&

F/D.IR.Operation = MULT && P0/P1.IR.RegDest "is valid”)
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e What about...
¢ Mis-ordered writes to the same register
o Software thinks add gets $4 from addi, actually gets it from mul

1/2(3|4|5(6[|7|8]9
mul $4,$3,$5 F|{D|PO|P1L|P2|P3|W
addi $4,$1,1 F D X MW

add $10,54,%6 FID|X|M|W

e Common? Not for a 4-cycle multiply with 5-stage pipeline
e More common with deeper pipelines
¢ In any case, must be correct
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Preventing Mis-Ordered Reg. Write Corrected Pipeline Diagram
L _ A [ 0  With the correct stall logic
Relg:;_llster 0 I |; o * Prevent mis-ordered writes to the same register
g e B Data o Why two cycles of delay?
sls em
F/D D N N 11234567809
IR R fid [IRf mul $4,$3,85 | F|D|PO|PL|P2|P3|W
addi $4,$1,1 Fld*¥|d*¥| D |X|M|W
PO/P1  P1/P2 P2/P3  P3/W aad $10,54,56 FID|X | MW
¢ Fix to problem on previous slide:
Stall = (OldStallLogic) ||
(F/D.IR.RegDest == D/X.IR.RegDest &&
D/X.IR.Operation == MULT)
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What About Branches?
—— —
L’ i F/ID i D/IX 6
8 |, XM

Regist A
| elgillzer 0 q ©
nsn 1
Mo L P> s1s2 d : | ;3
> > 5 5 IR

o Control hazards options

¢ Could just stall to wait for branch outcome (two-cycle penalty)
¢ Fetch past branch insns before branch outcome is known

¢ Default: assume “not-taken” (at fetch, can't tell it's a branch)
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e Multi-cycle operations complicate pipeline logic
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Branch Recovery

ﬁ\ ® o
U = =
F/D D/IX 6
8 |, X/IM
Register &
| File ) § l ©
ST P> s1s2 dl)
g Mem N I—'
> > :’i—o|R

B
gt
nop

nop

3V @

e Branch recovery: what to do when branch is actually taken
¢ Insns that will be written into F/D and D/X are wrong
¢ Flush them, i.e., replace them with nops

+ They haven't had written permanent state yet (regfile, DMem)
— Two cycle penalty for taken branches
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Branch Recovery Pipeline Diagram

1 2 3 4 5 6 7 8 9
Correct: addi $3,$0,1 F D X M w
bnez $3,targ F D X M W
sw $6,4(57) F D X M W
targ:addi $8,$7,1 F D X M W

) ) speculative
e Mis-speculation recovery: what to do on wrong guess

Not too painful in an in-order pipeline

Branch resolves in X

+ Younger insns (in F, D) haven't changed permanent state

Flush insns currently in F/D and D/X (i.e., replace with nops)
1 2 3 4 5 6 7 8 9

Recovery: addi $3,$0,1 F D X M W
bnez $3,targ F D X M w
—SwHET4 T F D \“ - -
“targraddi—§8671— F - -- -- --
targ:addi $8,$7,1 F D X M W
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Reducing Penalty: Fast Branches

Branch Performance

e Fast branch: targets control-hazard penalty
¢ Basically, branch insns that can resolve at D, not X
¢ Test must be comparison to zero or equality, no time for ALU
+ New taken branch penalty is 1
— Additional comparison insns (e.g., ecmplt, s1t) for complex tests
— Must bypass into decode stage now, too

1 2 3 4 5 6 7 8 9
bnez r3,targ F D \X M W
targ:add r4,r5,r4 F D X M W
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e Back of the envelope calculation
¢ Branch: 20%, load: 20%, store: 10%, other: 50%
¢ Say, 75% of branches are taken

e CPI =1+ 20% *75% *2 =
1+0.20 *0.75*2=1.3
— Branches cause 30% slowdown
¢ Even worse with deeper pipelines
¢ How do we reduce this penalty?
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Fast Branch Performance

e Assume: Branch: 20%, 75% of branches are taken
e CPI=1+20% *75% * 1 =1+ 0.20%0.75*%1 = 1.15
¢ 15% slowdown (better than the 30% from before)

e But wait, fast branches assume only simple comparisons
¢ Fine for MIPS
* But not fine for ISAs with “branch if $1 > $2” operations

¢ In such cases, say 25% of branches require an extra insn
e CPI =1+ (20% * 75% * 1) + 20%*25%*1(extra insn) = 1.2

e Example of ISA and micro-architecture interaction
¢ Type of branch instructions
* Another option: “Delayed branch” or “branch delay slot”

o What about condition codes?
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More Generally: Speculative Execution

e Speculation: “risky transactions on chance of profit”

¢ Speculative execution
o Execute before all parameters known with certainty
¢ Correct speculation
+ Avoid stall, improve performance
* Incorrect speculation (mis-speculation)
— Must abort/flush/squash incorrect insns
— Must undo incorrect changes (recover pre-speculation state)
* The “game”: [Yo orrect ¥ 9ain] — [(1—Y%0 q1rect) * Penalty]

e Control speculation: speculation aimed at control hazards
¢ Unknown parameter: are these the correct insns to execute next?
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Dynamic Branch Prediction

B, N\ —
PC] P
>
4 F/D 1IN X/M
Register || [A °
File
':;I‘S“ > s1s2 dl[[B B
em
>
:U"'>—R T &R >

nop nop
e Dynamic branch prediction: hardware guesses outcome
o Start fetching from guessed address
¢ Flush on mis-prediction
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Control Speculation Mechanics

e Guess branch target, start fetching at guessed position
¢ Doing nothing is implicitly guessing target is PC+4
¢ Can actively guess other targets: dynamic branch prediction

e Execute branch to verify (check) guess
¢ Correct speculation? keep going
¢ Mis-speculation? Flush mis-speculated insns
¢ Hopefully haven't modified permanent state (Regdfile, DMem)
+ Happens naturally in in-order 5-stage pipeline

e “Game” for in-order 5 stage pipeline
Yocorrect = ?
¢ Gain = 2 cycles

+ Penalty = 0 cycles — mis-speculation no worse than stalling
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Dynamic Branch Prediction Components

regfile

e Step #1: is it a branch?
o Easy after decode...

o Step #2: is the branch taken or not taken?
* Direction predictor (applies to conditional branches only)
o Predicts taken/not-taken

e Step #3: if the branch is taken, where does it go?
o Easy after decode...
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Branch Direction Prediction

Branch History Table (BHT)

e Learn from past, predict the future
¢ Record the past in a hardware structure
¢ Direction predictor (DIRP)
¢ Map conditional-branch PC to taken/not-taken (T/N) decision
¢ Individual conditional branches often biased or weakly biased
¢ 90%-+ one way or the other considered “biased”
e Why? Loop back edges, checking for uncommon conditions
e Branch history table (BHT): simplest predictor
¢ PC indexes table of bits (0 = N, 1 = T), no tags
¢ Essentially: branch will go same way it went last time
PcC| [31:10] | 21 |10 BHT
T or NT

| TorNT |
Prediction (taken or
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¢ What about aliasing?
¢ Two PC with the same lower bits?

Two-Bit Saturating Counters (2bc)

e Branch history table (BHT): simplest direction predictor
¢ PC indexes table of bits (0 = N, 1 = T), no tags
¢ Essentially: branch will go same way it went last time
¢ Problem: consider inner loop branch below (* = mis-prediction)

for (i=0;i<100;i++)
for (3j=0;3<3;j++)
// whatever

X X X X

Outcome T|T|T|N|T|T|TIN|T|T|T|N

State/prediction |N*| T | T |[T*|N*| T | T |[T*|N*| T | T |T*

— Two “built-in” mis-predictions per inner loop iteration
— Branch predictor “changes its mind too quickly”
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Correlated Predictor

¢ Two-bit saturating counters (2bc) [Smith]
* Replace each single-bit prediction
¢ (0,1,2,3) = (N,n,t,T)
o Adds “hysteresis”
» Force predictor to mis-predict twice before “changing its mind”

State/prediction |N*|n*| & |T*| t | T | T |T*| t | T | T |T*
Outcome T|{T|T|N|T|T|T|N|T|T|T|N

¢ One mispredict each loop execution (rather than two)
+ Fixes this pathology (which is not contrived, by the way)
e Can we do even better?
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¢ Correlated (two-level) predictor [Patt]
» Exploits observation that branch outcomes are correlated
¢ Maintains separate prediction per (PC, BHR)
¢ Branch history register (BHR): recent branch outcomes
¢ Simple working example: assume program has one branch
¢ BHT: one 1-bit DIRP entry
e BHT+2BHR: 22 = 4 1-bit DIRP entries

State/prediction |[BHR=NNN*| T | T | T | T|T|T|{T|T|T|T|T
“active pattern” |[BHR=NT | N ([N*| T [ T | T | T | T | T|T|T|T|T
BHR=TN | N[N |[N[N|N*¥| T |T|T|T|T|T|T
BHR=TT | N [ N [N*[T*| N | N [N*|T*| N | N [N*| T*
Outcome NN|T|T|T|N|T|T|T|N|T|T|T|N
— We didn't make anything better, what’s the problem?
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Correlated Predictor

Correlated Predictor

e What happened?
¢ BHR wasn't long enough to capture the pattern
e Try again: BHT+3BHR: 23 = 8 1-bit DIRP entries

State/prediction [BHR=NNN [N*| T | T | T (T | T |T|T|T|T|T|T
BHR=NNT [ N [N*| T | T | T |T|T|T|T|T|T|T
BHR=NTN | N [N | N[ N{N|N|N|N|N|N|NJ|N
“active pattern” [IBHR=NTT | N [N |[N*| T | T (T | T[T |T|T|T|T
BHR=TNN | N[N N[ N|{N|N|N|N|N|N|NJ|N
BHR=TNT [ N | N|N|N|N[N*|T|T|T|T|T|T
BHR=TTN [ N | N|N|NN* T |T|T|T|T|T|T
BHR=TTT | N[ N|N|N|N|N|N|N|N|N|N|N
Outcome NNN|T|T|T|{N|T|T|T|N|T|T|T|N

+ No mis-predictions after predictor learns all the relevant patterns
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Hybrid Predictor

¢ Design choice I: one global BHR or one per PC (local)?
* Each one captures different kinds of patterns
¢ Global is better, captures local patterns for tight loop branches

¢ Design choice II: how many history bits (BHR size)?
o Tricky one
+ Given unlimited resources, longer BHRs are better, but...
BHT utilization decreases
— Many history patterns are never seen
— Many branches are history independent (don't care)
¢ PC xor BHR allows multiple PCs to dynamically share BHT
¢ BHR length < log,(BHT size)
Predictor takes longer to train
Typical length: 8-12
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When to Perform Branch Prediction?

¢ Hybrid (tournament) predictor [McFarling]
o Attacks correlated predictor BHT utilization problem
e Idea: combine two predictors
e Simple BHT predicts history independent branches
» Correlated predictor predicts only branches that need history
* Chooser assigns branches to one predictor or the other
¢ Branches start in simple BHT, move mis-prediction threshold
+ Correlated predictor can be made smaller, handles fewer branches
+ 90-95% accuracy

]

BHR
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e During Decode
¢ Look at instruction opcode to determine branch instructions
¢ Can calculate next PC from instruction (for PC-relative branches)
— One cycle "mis-fetch” penalty even if branch predictor is correct

1 2 3 4 5 6 7 8 9
bnez r3,targ F D X M W
targ:add r4,r5,r4 F D X M W

¢ During Fetch?
¢ How do we do that?
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Revisiting Branch Prediction Components

regfile

e Step #1: is it a branch?
o Easy after decode... during fetch: predictor
e Step #2: is the branch taken or not taken?
¢ Direction predictor (as before)
e Step #3: if the branch is taken, where does it go?
* Branch target predictor (BTB)
¢ Supplies target PC if branch is taken
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Branch Target Buffer (continued)

Branch Target Buffer (BTB)

e At Fetch, how does insn know it’s a branch & should read
BTB? It doesn't have to...
¢ ...all insns access BTB in parallel with Imem Fetch
e Key idea: use BTB to predict which insn are branches
¢ Implement by “tagging” each entry with its corresponding PC
¢ Update BTB on every taken branch insn, record target PC:
e BTB[PC].tag = PC, BTB[PC].target = target of branch
e All insns access at Fetch in parallel with Imem
¢ Check for tag match, signifies insn at that PC is a branch
¢ Predicted PC = (BTB[PC].tag == PC) ? BTB[PC].target : PC+4

predicted target
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e As before: learn from past, predict the future
¢ Record the past branch targets in a hardware structure

¢ Branch target buffer (BTB):
e “guess” the future PC based on past behavior
e “Last time the branch X was taken, it went to address Y”
¢ “So, in the future, if address X is fetched, fetch address Y next”

¢ Operation
« A small RAM (like a redfile): address = PC, data = target-PC
e Access at Fetch in parallel with instruction memory
e predicted-target = BTB[hash(PC)]
¢ Updated at X whenever target != predicted-target
¢ BTB[hash(PC)] = target
¢ Hash function is just typically just extracting lower bits (as before)
¢ Aliasing? No problem, this is only a prediction
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Why Does a BTB Work?

¢ Because most control insns use direct targets
¢ Target encoded in insn itself — same “taken” target every time

e What about indirect targets?
¢ Target held in a register — can be different each time
¢ Indirect conditional jumps are not widely supported
¢ Two indirect call idioms
+ Dynamically linked functions (DLLs): target always the same
» Dynamically dispatched (virtual) functions: hard but uncommon
¢ Also two indirect unconditional jump idioms
¢ Switches: hard but uncommon
— Function returns: hard and common but...
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Return Address Stack (RAS)

Putting It All Together

predicted target

¢ Return address stack (RAS)
¢ Call instruction? RAS[TOS++] = PC+4
e Return instruction? Predicted-target = RAS[--TOS]
¢ Q: how can you tell if an insn is a call/return before decoding it?
¢ Accessing RAS on every insn BTB-style doesn't work
¢ Answer: pre-decode bits in Imem, written when first executed
¢ Can also be used to signify branches
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Branch Prediction Performance

e BTB & branch direction predictor during fetch

———— predicted target

—
BHT taken/not-taken

¢ If branch prediction correct, no taken branch penalty
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Pipelining And Exceptions

e Dynamic branch prediction
¢ 20% of instruction branches
¢ Simple predictor: branches predicted with 75% accuracy
e CPI =1+ (20% * 25% *2)=1.1
¢ More advanced predictor: 95% accuracy
e CPI =1+ (20% * 5% * 2) = 1.02

e Branch mis-predictions still a big problem though
¢ Pipelines are long: typical mis-prediction penalty is 10+ cycles
¢ Pipelines are superscalar (later)
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e “Exceptions”: divide by zero, protection violation

¢ Pipelining makes exceptions nasty

¢ 5insns in pipeline at once

¢ Exception happens, how do you know which insn caused it?
» Exceptions propagate along pipeline in latches

¢ Two exceptions happen, how do you know which one to take first?
¢ One belonging to oldest insn

¢ When handling exception, have to flush younger insns
¢ Piggy-back on branch mis-prediction machinery to do this

¢ What about multi-cycle operations?

e Just FYI
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Pipeline Depth

e Trend had been to deeper pipelines
e 486: 5 stages (50+ gate delays / clock)
e Pentium: 7 stages
Pentium II/III: 12 stages
Pentium 4: 22 stages (~10 gate delays / clock) “super-pipelining”
Corel/2: 14 stages
¢ Increasing pipeline depth
+ Increases clock frequency (reduces period)
¢ But double the stages reduce the clock period by less than 2x
— Decreases IPC (increases CPI)
¢ Branch mis-prediction penalty becomes longer
* Non-bypassed data hazard stalls become longer
¢ At some point, actually causes performance to decrease, but when?
¢ 1GHz Pentium 4 was slower than 800 MHz PentiumIII
e “Optimal” pipeline depth is program and technology specific
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Summary

App | | App | | App

System software

Mem 110
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e Basics of pipelining
¢ Pipeline diagrams
e Data hazards
¢ Software interlocks/code scheduling
¢ Hardware interlocks/stalling
¢ Bypassing
¢ Multi-cycle operations
e Control hazards
¢ Branch prediction
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