CIS 371

Computer Organization and Design

Unit 6: Superscalar Pipelines

CIS 371 (Roth/Martin): Superscalar Pipelines 1

This Unit: (In-Order) Superscalar Pipelines

App | | App | | App

System software

Mem 110

e Superscalar hardware issues
¢ Bypassing and register file
o Stall logic
¢ Fetch and branch prediction

e Multiple-issue designs
e “Superscalar”
e VLIW/EPIC

CIS 371 (Roth/Martin): Superscalar Pipelines 3

A Key Theme of CIS 371: Parallelism

e Last unit: pipeline-level parallelism
¢ Work on execute of one instruction in parallel with decode of next

e Next: instruction-level parallelism (ILP)
¢ Execute multiple independent instructions fully in parallel
e Today: multiple issue
e Later:
o Static & dynamic scheduling
¢ Extract much more ILP
¢ Data-level parallelism (DLP)
¢ Single-instruction, multiple data (one insn., four 64-bit adds)
¢ Thread-level parallelism (TLP)
¢ Multiple software threads running on multiple cores

CIS 371 (Roth/Martin): Superscalar Pipelines 2

Readings

e P&H
¢ Chapter 4.10

CIS 371 (Roth/Martin): Superscalar Pipelines 4

Scalar Pipeline and the Flynn Bottleneck Multiple-Issue Pipeline

] regdfile |

T o

[

i

¢ Overcome this limit using multiple issue

¢ So far we have looked at scalar pipelines « Also called superscalar
* One instruction per stage « Two instructions per stage at once, or three, or four, or eight...
* With control speculation, bypassing, etc. « “Instruction-Level Parallelism (ILP)” [Fisher, IEEE TC'81]
— Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1 « Today, typically “4-wide” (Intel Core 2, AMD Opteron)

— Limit is never even achieved (hazards)

. o ¢ Some more (Powerb5 is 5-issue; Itanium is 6-issue)
— Diminishing returns from “super-pipelining” (hazards + overhead)

e Some less (dual-issue is common for simple cores)

CIS 371 (Roth/Martin): Superscalar Pipelines 5 CIS 371 (Roth/Martin): Superscalar Pipelines
Scalar Pipelines Superscalar Pipeline Diagrams - Ideal
i _ scalar 1 2 3 4 5 6 7 8 9 10 11 12
BP —'@ 1w 0(rl)Dr2 F D X MW
.y - 1w 4(r1)Dr3 F DXMW
L 1w 8(rl)=>r4 F D X MW
intRF [add rl14,r159r6 FDXMW
[DM add rl2,rl39r7 F D X M W
> | add rl7,rl16=>r8 F DX MW
1w 0(rl8)=>r9 F DX MW
e So far we have looked at scalar pipelines 2-waysuperscalar 1 2 3 4 5 6 7 8 9 10 11 12
« One instruction per stage 1w 0(rl)Pr2 F D XMW
1w 4(rl)=r3 F D X M W
1w 8(rl)=>r4 F DX MW
¢ With control speculation add rl4,rl59r6 F D X MW
o With bypassing (not shown) add r12,r133z7 FDXMW
« With floatina-point add rl7,r16>r8 F DX MW
Ith Hloating-point ... 1w 0(r18)Dro FDXMW

CIS 371 (Roth/Martin): Superscalar Pipelines 7 CIS 371 (Roth/Martin): Superscalar Pipelines

Superscalar Pipeline Diagrams - Realistic

scalar 1 2 6 7 8 9 10 11 12
1w 0(rl)>r2 F D

1w 4 (rl)=r3 F
1w 8(rl)=2r4

add r4,r59ré6

add r2,r3=9r7

add r7,r62r8

1w 0(r8)=r9

n O X|w
MmO X Z|»
T X X E|w
MmMOX=S
MmO X =
Mo XX
UOXZXS

2-way superscalar 1 6 7 8 9 10 11 12
1w O0(rl)=»r2 F

2
D
1w 4(rl)=r3 F D
F
F

xX X |+

1w 8(rl)=2r4
add r4,r59r6
add r2,r39r7
add r7,r69r8
1w 0(r8)=r9

CIS 371 (Roth/Martin): Superscalar Pipelines 9

*

m S O X x|w
Q.*Q.
MMOUOUOXS S|wn
LToxx=
UOX=ZXX
xXZT==
==

How Much ILP is There?

Superscalar CPI Calculations

e The compiler tries to “schedule” code to avoid stalls
¢ Even for scalar machines (to fill load-use delay slot)
¢ Even harder to schedule multiple-issue (superscalar)

e How much ILP is common?
¢ Greatly depends on the application
¢ Consider memory copy
¢ Unroll loop, lots of independent operations
¢ Other programs, less so

e Even given unbounded ILP, superscalar has limits
e IPC (or CPI) vs clock frequency trade-off

CIS 371 (Roth/Martin): Superscalar Pipelines 11

Base CPI for scalar pipeline is 1

Base CPI for N-way superscalar pipeline is 1/N
— Amplifies stall penalties
¢ Assumes no data stalls (an overly optmistic assumption)

Example: Branch penalty calculation
e 20% branches, 75% taken, no explicit branch prediction
Scalar pipeline
e 1+ 0.2%¥0.75%2 = 1.3 — 1.3/1 = 1.3 — 30% slowdown
2-way superscalar pipeline
e 0.5 + 0.2%0.75*%2 = 0.8 — 0.8/0.5 = 1.6 — 60% slowdown
4-way superscalar
e 0.25 + 0.2*%0.75*2 = 0.55 — 0.55/0.25 = 2.2 — 120% slowdown

CIS 371 (Roth/Martin): Superscalar Pipelines 10

A Typical Dual-Issue Pipeline

] regdfile |

T w

i

e Fetch an entire 16B or 32B cache block
¢ 4 to 8 instructions (assuming 4-byte fixed length instructions)
¢ Predict a single branch per cycle
o Parallel decode
¢ Need to check for conflicting instructions
e Output of I, is an input to I,
e Other stalls, too (for example, load-use delay)

CIS 371 (Roth/Martin): Superscalar Pipelines 12

A Typical Dual-Issue Pipeline Superscalar Execution

e Common design: functional unit mix « insn type mix

s o Integer apps: 20-30% loads, 10-15% stores, 15-20% branches
¢ Floating point apps: 30% FP, 20% loads, 10% stores, 5% branches
E :l ¢ Rest 40-50% are non-branch integer ALU operations

o Intel Pentium (2-way superscalar): 1 any + 1 integer ALU

* Multi-ported register file ¢ Alpha 21164: 2 integer (incl. 2 loads or 1 store) + 2 floating point

e Larger area, latency, power, cost, complexity
e Multiple execution units
* Simple adders are easy, but bypass paths are expensive
e Memory unit
¢ Single load per cycle (stall at decode) probably okay for dual issue
¢ Alternative: add a read port to data cache
¢ Larger area, latency, power, cost, complexity

e Execution units
e Simple ALUs are cheap (have N of these for N-wide processor)
e Complex ALUs are less cheap (have fewer of these)
¢ Data memory bandwidth expensive
o Multi-port, replicate, or "bank” (more later in memory unit)

CIS 371 (Roth/Martin): Superscalar Pipelines 13 CIS 371 (Roth/Martin): Superscalar Pipelines 14
Superscalar Challenges - Front End Superscalar Challenges - Back End
¢ Wide instruction fetch e Wide instruction execution

¢ Modest: need multiple instructions per cycle ¢ Replicate arithmetic units

e Aggressive: predict multiple branches ¢ Perhaps multiple cache ports
¢ Wide instruction decode ¢ Wide instruction register writeback

¢ Replicate decoders ¢ One write port per instruction that writes a register
o Wide instruction issue ¢ Example, 4-wide superscalar = 4 write ports

« Determine when instructions can proceed in parallel e Wide bypass paths

¢ Not all combinations possible * More possible sources for data values

e More complex stall logic - order N2 for N-wide machine e Order (N2 * P) for N~wide machine with execute pipeline depth P
¢ Wide register read

e One port for each register read ¢ Fundamental challenge:

» Each port needs its own set of address and data wires ¢ Amount of ILP (instruction-level parallelism) in the program
e Example, 4-wide superscalar = 8 read ports e Compiler must schedule code and extract parallelism

CIS 371 (Roth/Martin): Superscalar Pipelines 15 CIS 371 (Roth/Martin): Superscalar Pipelines 16

Superscalar Register File

DM

¢ "N-way superscalar register file: 2N read + N write ports
¢ < N write ports: stores, branches (35% insns) don't write registers
e < 2N read ports: many inputs come from immediates/bypasses
— Latency and area « #ports? « (3N)2 (slow for large N)

CIS 371 (Roth/Martin): Superscalar Pipelines 17

Superscalar Bypass

L,

intRF

DM

e Consider WX bypass for 1st input of each insn
— 2 non-redfile inputs to bypass mux: in general N
— 4 point-to-point connections: in general N2
— Bypass wires long (slow) and are difficult to route
* And this is just one bypass stage and one input per insn!

¢ N2 bypass

CIS 371 (Roth/Martin): Superscalar Pipelines 19

N2 Dependence Cross-Check

¢ Stall logic for 1-wide pipeline with full bypassing
¢ Full bypassing — load/use stalls only
X/M.op==LOAD && (D/X.rs1==X/M.rd || D/X.rs2==X/M.rd)
e Two “terms”: « 2N
¢ Now: same logic for a 2-wide pipeline
X/M,.op==LOAD && (D/X;.rs1==X/M,.rd || D/X;.rs2==X/M,.rd) ||
X/M,.op==LOAD && (D/X,.rs1==X/M,.rd || D/X,.rs2==X/M,.rd) ||
X/M,.op==LOAD && (D/X;.rs1==X/M,.rd || D/X;.rs2==X/M,.rd) ||
X/M,.op==LOAD && (D/X,.rs1==X/M,.rd || D/X,.rs2==X/M,.rd)
e FEight “terms”: « 2N?
¢ N2 dependence cross-check
¢ Not quite done, also need
e D/X,.rs1==D/X;.rd || D/X,.rs2==D/X;.rd

CIS 371 (Roth/Martin): Superscalar Pipelines 18

Not All N2 Problems Created Equal

¢ N2 bypass vs. N2 stall logic & dependence cross-check
¢ Which is the bigger problem?

e N2 bypass ... by a lot
e 32- or 64- bit quantities (vs. 5-bit)
o Multiple levels (MX, WX) of bypass (vs. 1 level of stall logic)
e Must fit in one clock period with ALU (vs. not)

¢ Dependence cross-check not even 2nd biggest N2 problem

* Redfile is also an N2 problem (think latency where N is #ports)
¢ And also more serious than cross-check

CIS 371 (Roth/Martin): Superscalar Pipelines 20

Avoid N? Bypass/RegFile: Clustering Superscalar Fetch/Decode

cluster 0 ﬁ_]] —|_‘@
r 4‘-._9 > ——
cluster 1 T_‘m: _’-L—' DM | | I
) =]] e What is involved in fetching N insns per cycle?
e Clustering: group ALUs into K clusters * Mostly wider instruction memory ports
o Full bypassing within cluster, limited (or no) bypassing between them « Read N instructions in parallel

¢ Get values from redfile with 1 or 2 cycle delay
+ N/K non-redfile inputs at each mux, N2/K point-to-point paths
* Key to performance: steer dependent insns to same cluster

¢ Most tricky aspects involve branch prediction

o Hurts IPC, but helps clock frequency (or wider issue at same clock) » What about Decode?
o Typically used with replicated redfile: replica per cluster ¢ Easier with fixed-width instructions (MIPS, Alpha, PowerPC, ARM)
 Alpha 21264: 4-way superscalar, 2 clusters, static steering * Harder with variable-length instructions (x86)
CIS 371 (Roth/Martin): Superscalar Pipelines 21 CIS 371 (Roth/Martin): Superscalar Pipelines 22

Wide Non-Sequential Fetch Aside: VLIW/EPIC

e Two related questions e VLIW: Very Long Insn Word
» How many branches predicted per cycle? « Intel: EPIC (Explicit Parallel Instruction Computing)
¢ Can we fetch across the branch if it is predicted “taken”? « Effectively, a 1-wide pipeline, but unit is an N-insn group
Group travels down pipeline as a unit
e Simplest, most common organization: “1” and “"No” Compiler guarantees insns within a VLIW group are independent
One prediction, discard post-branch insns if prediction is “taken” « If no independent insns, slots filled with nops
Lowers effective fetch width and IPC
Average number of instructions per taken branch?
e Assume: 20% branches, 50% taken — ~10 instructions
Consider a 10-instruction loop body with an 8-issue processor
o Without smarter fetch, ILP is limited to 5 (not 8)

Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.
E.g., Itanium (two 3-wide bundles per cycle = 6-way issue)
Simplifies fetch and branch prediction
+ Simplifies pipeline control (no rigid vs. fluid business)
— Doesn't help bypasses or regfile, which are bigger problems
¢ Can expose these issues to software, too (yuck)
— Not really compatible across machines of different widths
¢ How does Itanium deal with non-compatibility? Transmeta?
CIS 371 (Roth/Martin): Superscalar Pipelines 23 CIS 371 (Roth/Martin): Superscalar Pipelines 24

+

e Compiler can help
¢ Reduce taken branch frequency (e.g., unroll loops)

Predication

¢ Branch mis-predictions hurt more on superscalar
* Replace difficult branches with something else...
o Convert control flow into data flow (& dependencies)

¢ Predication

¢ Conditionally executed insns unconditionally fetched

¢ Full predication (ARM, Intel Itanium)
¢ Can tag every insn with predicate, but extra bits in instruction

¢ Conditional moves (Alpha, x86)
¢ Construct appearance of full predication from one primitive

cmoveq rl,r2,r3 // if (rl==0) r3=r2;

— May require some code duplication to achieve desired effect
+ Only good way of adding predication to an existing ISA

o If-conversion: replacing control with predication

CIS 371 (Roth/Martin): Superscalar Pipelines 25

Multiple Issue Summary

Trends in Single-Processor Multiple Issue

486 Pentium | PentiumIl | Pentium4 | Itanium | ItaniumIl Core2
Year 1989 1993 1998 2001 2002 2004 2006
Width 1 2 3 3 3 6 4

App | | App | | App | ® Superscalar hardware issues
System software

¢ Bypassing and register file

¢ Stall logic
Mem o) ¢ Fetch and branch prediction

e Multiple-issue designs
e “Superscalar”
o VLIW

e Next up
¢ Midterm

CIS 371 (Roth/Martin): Superscalar Pipelines 27

o Issue width has saturated at 4-6 for high-performance cores

¢ Canceled Alpha 21464 was 8-way issue

¢ No justification for going wider
¢ Hardware or compiler “scheduling” needed to exploit 4-6 effectively

¢ For high-performance per watt cores, issue width is ~2
¢ Advanced scheduling techniques not needed

o Multi-threading (a little later) helps cope with cache misses

CIS 371 (Roth/Martin): Superscalar Pipelines

26

