CIS 371
Computer Organization and Design

Unit 8: Static and Dynamic Scheduling

With contributions by Drew Hilton

CIS 371 (Hilton/Roth/Martin): Scheduling

This Unit: Static & Dynamic Scheduling

App

App

App

System software

Mem

CPU

/O

e Pipelining and superscalar review

e Code scheduling
e To reduce pipeline stalls
e To increase ILP (insn level parallelism)

e Two approaches
e Static scheduling by the compiler
e Dynamic scheduling by the hardware

CIS 371 (Hilton/Roth/Martin): Scheduling 2

Readings

e P&H
e Chapter 4.10 — 4.11

CIS 371 (Hilton/Roth/Martin): Scheduling

Pipelining Review

e Increases clock frequency by staging instruction execution
e "Scalar” pipelines have a best-case CPI of 1

e Challenges:
e Data and control dependencies further worsen CPI
e Data: With full bypassing, load-to-use stalls
e Control: use branch prediction to mitigate penalty

e Big win, done by all processors today

e How many stages (depth)?
e Five stages is pretty good minimum
e Intel Pentium II/III: 12 stages
e Intel Pentium 4: 22+ stages
e Intel Core 2: 14 stages

CIS 371 (Hilton/Roth/Martin): Scheduling 4

Pipeline Diagram

1{2(3|4|5[6[7]8]09
add $3,$2,$1 F X| M| W

1w $4,4($3) F|D[YX | M [Ww

addi $6,%4,1 FID[d*['X [M|w
sub $8,%3,5$1 Fld*|D|Xx|M|w

e Use compiler scheduling to reduce load-use stall frequency
o Like software interlocks, but for performance not correctness

1|12 |3(4]5[6|78]09
add $3,$2,851 F XMW
1w $4,4($3) F|D[x |M (W
sub $8,$3,51 FID["X [[M|w
addi $6,%4,1 FI DY |M|w

CIS 371 (Hilton/Roth/Martin): Scheduling 5

Superscalar Pipeline Review

e Execute two or more instruction per cycle

e Challenges:
e wide fetch (branch prediction harder, misprediction more costly)
e wide decode (stall logic)
o wide execute (more ALUS)
e wide bypassing (more possibly bypassing paths)
e Finding enough independent instructions (and fill delay slots)
e How many instructions per cycle max (width)?
e Really simple, low-power cores are still scalar (single issue)
e Even low-power cores a dual-issue (Intel Atom)

e Most desktop/laptop chips three-issue or four-issue
e A few 5 or 6-issue chips have been built (IBM Power4, Itanium II)

CIS 371 (Hilton/Roth/Martin): Scheduling 6

Superscalar Pipeline Diagrams - Ideal

scalar 1 6 7 8 9 10 11 12

2
lw 0(rl)=r2 F D
lw 4 (rl)=r3 F
lw 8(rl)=>r4
add rl4d,rl5=>ré6
add rl12,r13=>r7
add rl7,rlée=>r8
lw 0(rl8)=>r9

T O X|Ww
MmO X Z|H

5
W
M
X
D
F

MOXZIZI=S

MOX <=
OXXXS

2-way superscalar 1 6 7 8 9 10 11 12

2
lw 0(rl)=>r2 F D
lw 4 (rl)=>r3 F D
lw 8(rl)=>r4 F
add rl4,rl15=2>ré6 F
add rl2,rl3=>r7
add rl17,rl6=>r8
lw 0(rl8)=>r9

CIS 371 (Hilton/Roth/Martin): Scheduling

M T O O X X|Ww
MOOXXZXZ|»
OXXXXXS S|u

XIS =
===

Superscalar Pipeline Diagrams - Realistic

5 6 7 8 9 10 11 12
W
M
X
dx*

scalar 1 2
lw 0(rl)=r2 F D
lw 4 (rl)=r3 F
lw 8(rl)=>r4
add r4,r5=2ré6
add r2,r3=9r7
add r7,r6=2r8
lw 0(r8)=>r9

N O X|lw
Mmoo X Z|d
MOXXS

W
X
D
F

MmO X <X
OXX=S
X =
==

2-way superscalar 1 6 7 8 9 10 11 12
lw 0(rl)=>r2 F

2
D
lw 4(rl)=>r3 F D
F
F

lw 8(rl)=>r4
add r4,r5=9r6
add r2,r3=29r7
add r7,r6=2r8
lw 0(r8)=>r9

CIS 371 (Hilton/Roth/Martin): Scheduling 8

M T O X X|w
T I x=ZZ|+»
MMOOXS S|un

TOXX=
OX XX
XXT=E
==

Code Scheduling

e Scheduling: act of finding independent instructions
e "Static” done at compile time by the compiler (software)
e "Dynamic” done at runtime by the processor (hardware)

o Why schedule code?
e Scalar pipelines: fill in load-to-use delay slots to improve CPI
e Superscalar: place independent instructions together
e As above, load-to-use delay slots

e Allow multiple-issue decode logic to let them execute at the
same time

CIS 371 (Hilton/Roth/Martin): Scheduling

Compiler Scheduling

e Compiler can schedule (move) instructions to reduce stalls
e Basic pipeline scheduling: eliminate back-to-back load-use pairs
e Example code sequence: a = b + c; d=f - e;

\\ Py / 4

- sp stack pointer, sp+0 is "a”, sp+4 is "b”, etc...

Before After

1d r2,4 (sp) 1d r2,4 (sp)

1d r3,8(sp) 1d r3,8(sp)

add ‘r3,r2,rl //stall 1d r5, 16 (sp)

st rl, 0 (sp) add r3,r2,rl //no stall
1d r5,16(sp 1d r6,20 (sp)

1d r6,20 (sp) st rl \D (sp)

sub r5,r6,r4 [/stall sub r5,r6,r4 //no stall
st r4,12 (sp) st r4,12 (sp)

CIS 371 (Hilton/Roth/Martin): Scheduling 10

Compiler Scheduling Requires

e Large scheduling scope
e Independent instruction to put between load-use pairs

+ Original example: large scope, two independent computations
— This example: small scope, one computation

Before After

1d r2,4 (sp) 1d r2,4 (sp)

1d r3,8(sp) 1d r3,8(sp)

add ‘r3,r2,rl //stall add ‘r3,r2,rl //stall
st rl,0(sp) st rl,0(sp)

e One way to create larger scheduling scopes?

CIS 371 (Hilton/Roth/Martin): Scheduling 11

Compiler Scheduling Requires

e Enough registers
e To hold additional “live” values

e Example code contains 7 different values (including sp)
e Before: max 3 values live at any time — 3 registers enough

e After: max 4 values live — 3 registers not enough

Original Wrong!
1d , 4 (sp) 1d , 4 (sp)
1d r1,8(sp) 1d r1,8(sp)

addVr1,:2,r1 //stall __» 1d r2\16(sp)
st rl,0(sp) add rl,r2,rl // wrong r2
1d r2,16(sp) 1d ,20 (sp)

1d ,20 (sp) st rl,0(sp) // wrong rl
sub r2,,rl [//stall sub r2, ,rl
st rl,12 (sp) st rl,12 (sp)

CIS 371 (Hilton/Roth/Martin): Scheduling

12

Compiler Scheduling Requires

o Alias analysis

o Ability to tell whether load/store reference same memory locations
o Effectively, whether load/store can be rearranged

e Example code: easy, all loads/stores use same base register (sp)

e New example: can compiler tell that 8 != sp?

e Must be conservative

Before Wrong(?)

1d r2,4 (sp) 1d r2,4 (sp)

1d r3,8(sp) 1d r3,8(sp)

add r3,r2,rl //stall 1d r5,0(x8) //does r8==sp?
st rl, add r3,r2,rl

1d r5,0(x8) 1d r6,4(r8) //does r8+4==sp?
1d r6,4(xr8) st rl,

sub r5,r6,r4 //stall sub r5,r6,r4

st r4,8(r8) st r4,8(r8)

CIS 371 (Hilton/Roth/Martin): Scheduling 13

Code Example: SAXPY

e SAXPY (Single-precision A X Plus Y)
e Linear algebra routine (used in solving systems of equations)
o Part of early “Livermore Loops” benchmark suite
o Uses floating point values in “F” registers
e Uses floating point version of instructions (Idf, addf, mulf, stf, etc.)

for (1=0;i<N;i++)
Z[i]=(A*X[1i])+Y[i];

0: 1df X(rl)=Dfl // loop

1: mulf £0,fl1=9>£f2 // A in £0

2: 1df Y(rl)=>f£3 // X,Y¥,Z are constant addresses
3: addf f£2,f3D>f4

4: stf £4DZ(rl)

5: addi rl,4=>rl // i in rl

6: blt rl,r2,0 // N*¥4 in r2

CIS 371 (Hilton/Roth/Martin): Scheduling 14

New Metric: Utilization

o Utilization: actual performance / peak performance
e Important metric for performance/cost
e No point to paying for hardware you will rarely use

e Adding hardware usually improves performance & reduces utilization
o Additional hardware can only be exploited some of the time

e Diminishing marginal returns

e Compiler can help make better use of existing hardware
e Important for superscalar

CIS 371 (Hilton/Roth/Martin): Scheduling 15

SAXPY Performance and Utilization

1 2 3 4 5|6 7 8 91011121314 1516(17 18 19 20
1df x(r1)=>f1 |F D X MW
mulf £0,fl1Df2 F D d* EX|IE* E* E* E* W
1df Y(rl)=>£3 Fp*DIXMW
addf f2,f3>f4 F|D d*d* d*E+E+ W
stf £4>2Z(rl) Fp*p*p*D X MW
addi rl1,4=ril FDXMW
blt rl,r2,0 FDXMW
1df X(rl)=>f1 FDXMW

e Scalar pipeline
e Full bypassing, 5-cycle E*, 2-cycle E+, branches predicted taken
e Single iteration (7 insns) latency: 16-5 = 11 cycles
e Performance: 7 insns/ 11 cycles = 0.64 IPC
o Utilization: 0.64 actual IPC / 1 peak IPC = 64%

CIS 371 (Hilton/Roth/Martin): Scheduling

16

SAXPY Performance and Utilization

1 2 3 4 5|6 7 8 91011121314 15/16 17 18 19 20
1df X(r1)=2f1 |F D X M W
mulf £0,f1»£f2|F D d* d* EX|E* E* E* E* W
1df Y(rl)=>f£3 F Dp* XMW
addf £2,f3>f4 F p*p* D|d* d*d* d*E+E+ W
stf £4>2Z(rl) F p* Dip*p*p*p*d* X MW
addi rl,49rl Fip*p*p*p*p*D X MW
blt rl,r2,0 Flp*p*p*p*p* Dd* X MW
1df X(rl)=>fl FDXMW

e 2-way superscalar pipeline
e Any two insns per cycle + split integer and floating point pipelines
+ Performance: 7 insns / 10 cycles = 0.70 IPC
— Utilization: 0.70 actual IPC / 2 peak IPC = 35%
— More hazards — more stalls
— Each stall is more expensive

CIS 371 (Hilton/Roth/Martin): Scheduling

17

Static (Compiler) Instruction Scheduling

e Idea: place independent insns between slow ops and uses
o Otherwise, pipeline stalls while waiting for RAW hazards to resolve
e Have already seen pipeline scheduling

e To schedule well you need ... independent insns

e Scheduling scope: code region we are scheduling
e The bigger the better (more independent insns to choose from)
e Once scope is defined, schedule is pretty obvious
e Trick is creating a large scope (must schedule across branches)

e Compiler scheduling (really scope enlarging) techniques
e Loop unrolling (for loops)

CIS 371 (Hilton/Roth/Martin): Scheduling 18

Loop Unrolling SAXPY

e Goal: separate dependent insns from one another

e SAXPY problem: not enough flexibility within one iteration
e Longest chain of insns is 9 cycles
e Load (1)
e Forward to multiply (5)
e Forward to add (2)
e Forward to store (1)
— Can't hide a 9-cycle chain using only 7 insns
e But how about two 9-cycle chains using 14 insns?

e Loop unrolling: schedule two or more iterations together

e Fuse iterations
e Schedule to reduce stalls
e Schedule introduces ordering problems, rename registers to fix

CIS 371 (Hilton/Roth/Martin): Scheduling 19

Unrolling SAXPY I: Fuse Iterations

e Combine two (in general K) iterations of loop
e Fuse loop control: induction variable (i) increment + branch
e Adjust (implicit) induction uses: constants — constants + 4

1df X(rl) ,£f1
mulf £0,£f1,£2
1df Y(rl) ,£3
addf £2,£3,f4
stf £4,Z(rl)

addi rl,4,rl
blt rl,r2,0

1df X(rl) ,£f1
mulf £0,£f1,£2
1df Y (rl) ,£f3
addf £2,£3,f4
stf £4,Z(rl)

addi rl,4,rl
blt rl1l,r2,0

CIS 371 (Hilton/Roth/Martin): Scheduling

1df X(rl) ,£f1
mulf £0,£f1,£f2
1df Y (rl) ,£3
addf £2,£3,£f4
stf £4,Z(rl)

1df X+4(rl) ,£f1l
mulf £0,£f1,£2
1df Y+4 (rl) ,£3
addf £2,£3,f4
stf £f4,Z+4 (rl)
addi rl1,8,rl
blt rl,r2,0

20

Unrolling SAXPY II: Pipeline Schedule

e Pipeline schedule to reduce stalls
e Have already seen this: pipeline scheduling

1df X(rl) ,£f1
mulf £0,£f1,£2
1df Y(rl) ,£3
addf £2,£3,f4
stf £4,Z(rl)
1df X+4(rl) ,f1l
mulf £0,£f1,£2
1df Y+4 (rl) ,b£3
addf £2,£3,f4
stf £4,Z+4 (rl)
addi rl1,8,rl
blt rl1,r2,0

CIS 371 (Hilton/Roth/Martin): Scheduling

1df X(rl) ,£f1
1df X+4(rl) ,£f1l
mulf £0,£f1,£f2
mulf £0,£f1,£2
1df Y (rl) ,£3
1df Y+4 (rl) ,£3
addf £2,£3,f4
addf £2,£3,f4
stf £4,Z(rl)
stf £4,Z+4 (rl)
addi rl1,8,rl
blt rl1l,r2,0

21

Unrolling SAXPY III: "Rename” Registers

e Pipeline scheduling causes reordering violations

e Rename registers to correct

1df X(rl),fl
1df X+4(rl),fl
mulf £0,fl,£2

mulf fO,fl,f
1df Y (rl)
1df Y+ lt/fB

addf £2, 374 p—

addf fi_gg,ﬁ

stf £4,Z(rl)
stf £4,Z+4 (rl)
addi rl1,8,rl
blt rl,r2,0

CIS 371 (Hilton/Roth/Martin): Scheduling

1df X(rl) ,£f1
1df X+4(rl) ,£5
mulf £0,£f1,£f2
mulf £0,£f5,f6
1df Y (rl) ,£3
1df Y+4 (rl) , £7
addf £2,£3,f4
addf £6,£7,£8
stf £4,Z(rl)
stf £8,Z+4 (rl)
addi rl1,8,rl
blt rl1l,r2,0

22

Unrolled SAXPY Performance/Utilization

1 2 3 456 7 8 91011121314 151617 18({19 20
1df X(r1)=2f1 |F D X MW
1df X+4(rl)=>f£5 F DX MW
mulf £O0,fl1Df2 F D E¥|E* EX E*X E* W
mulf £0,f5=>f6 F D|E* E*X E* E* E* W
1df Y(rl)=>f£3 FID X MW
1df Y+4 (rl)=>£7 F D X \s* s* W
addf f£2,f3>f4 F D d*E+E+ s* W
addf £6,f7>f£8 F p* D E+p*E+ W
stf £f4=>7Z(rl) FDXMW
stf £8=>Z+4(rl) FDXMW
addi r1=8,rl FDXMW
blt rl,r2,0 FDXMW
1df X (rl)=>f1 FDXMW

+ Performance: 12 insn / 13 cycles = 0.92 IPC
+ Utilization: 0.92 actual IPC / 1 peak IPC = 92%
+ Speedup: (2 * 11 cycles) / 13 cycles = 1.69

CIS 371 (Hilton/Roth/Martin): Scheduling

23

Loop Unrolling Shortcomings

— Static code growth — more I$ misses (limits degree of unrolling)
— Needs more registers to hold values (ISA limits this)
— Doesn’t handle non-loops...
— Doesn’t handle recurrences (inter-iteration dependences)
for (1=0;i<N;i++)
X[i]=A*X[i-1];

1df X-4(rl),f1 1df X-4(rl),fl
mulf £0,fl,f2 mulf £0,fl,f2

stf £2,X(rl) “——— i £2 X(rl)

addi rl,4,rl mulf £0,£2,£3

blt rl1l,r2,0 stf £3,X+4(rl)

1df X-4(rl),f1 addi rl,4,rl

mulf £0,£f1,£2 blt rl,r2,0

stf £2,X(rl)

addi rl,4,rl e Two mulf’s are not parallel

blt rl1,xr2,0

e Other (more advanced) techniques help
CIS 371 (Hilton/Roth/Martin): Scheduling 24

Another Limitation: Branches

loop:
jz r1, not_found ':
Id [r1] -> 12
subrl, r2 ->r2
jz r2, found

Id [r1+4] -> r1
jmp loop

Aside: what does this code do?

_egal to move load up past branch?

CIS 371 (Hilton/Roth/Martin): Scheduling

25

Recap: Static Scheduling Limitations

e Limited number of registers (set by ISA)

e Scheduling scope
e Example: can’t generally move memory operations past branches

e Inexact memory aliasing information
o Often prevents reordering of loads above stores

e Caches misses (or any runtime event) confound scheduling

e How can the compiler know which loads will miss vs hit?
e (Can impact the compiler’s scheduling decisions

CIS 371 (Hilton/Roth/Martin): Scheduling 26

Can Hardware Overcome These Limits?

e Dynamically-scheduled processors
e Also called “out-of-order” processors
e Hardware re-schedules insns...
e ...within a sliding window of VonNeumann insns
e As with pipelining and superscalar, ISA unchanged
e Same hardware/software interface, appearance of in-order

e Increases scheduling scope
e Does loop unrolling transparently
e Uses branch prediction to “unroll”
e Examples:

e Pentium Pro/II/III (3-wide), Core 2 (4-wide),
Alpha 21264 (4-wide), MIPS R10000 (4-wide), Power5 (5-wide)

e Basic overview of approach (more information in CIS501)

branches

CIS 371 (Hilton/Roth/Martin): Scheduling 27

The Problem With In-Order Pipelines

345 6 7 8 9101112131415 16

1 2
addf fo,fi1=2>f2|F D E+E+E+ W
mulf £2,£3Pf£2 F D d*d*E*E*E*E*XE* W
subf £0,f1>f4 F p*p* D E+E+E+ W

e What's happening in cycle 4?
e mulf stalls due to data dependence
e OK, this is a fundamental problem

e subf stalls due to pipeline hazard
e Why? subf can't proceed into D because addf is there

e That is the only reason, and it isn‘t a fundamental one
e Maintaining in-order writes to register file

e Why can't subf go into D in cycle 4 and E+ in cycle 5?

CIS 371 (Hilton/Roth/Martin): Scheduling 28

Out-of-order Pipeline

Buffer of instructions

J

Fetch

[
Decode

[
Rename

[
Dispatch

In-order front end

CIS 371 (Hilton/Roth/Martin): Scheduling

Out-of-order execution

\

Commit

29

Code Example

e Code: Raw insns

add r2,r3=rl
sub r2,r r3

mul r2, 3‘5::3
div rl,4=9rl

e "True” (real) & “False” (artificial) dependencies
e Divide insn independent of subtract and multiply insns
e (Can execute in parallel with subtract

e Many registers re-used
e Just as in static scheduling, the register names get in the way
e How does the hardware get around this?

e Approach: (step #1) rename registers, (step #2) schedule

CIS 371 (Hilton/Roth/Martin): Scheduling 30

Step #1: Register Renaming

e To eliminate register conflicts/hazards

e “Architected” vs “Physical” registers — level of indirection
e Names: rl,r2,r3
e Locations: pl,p2,p3,p4,p5,p6,p7
e Original mapping: r1—pl, r2—p2, r3—p3, p4—p7 are “available”

MapTable FreelList Original insns Renamed insns
rl |[r2 |r3

Pl |p2 |p3 P4,pP5,p6,p7 add r2,r3,rl add p2,p3,p4
p4 |p2 |p3 P5,p6,p7 sub r2,r1/r3 sub p2,p4/p5
p4 |p2 |p5 Pp6,p7 mul r2,r25r3 mul p2 %6
p4d |p2 [pb6 p7 div r1¥4,rl div p4,4,p7

e Renaming — conceptually write each register once
+ Removes false dependences

+ Leaves true dependences intact!
e When to reuse a physical register? After overwriting insn done

CIS 371 (Hilton/Roth/Martin): Scheduling 31

Register Renaming Algorithm

e Data structures:
e maptable[architectural_reg] = physical_reg
o Free list: get/put free register

e Algorithm: at decode for each instruction:
insn.phys inputl = maptable[insn.arch inputl]
insn.phys input2 = maptable[insn.arch input2]
insn.phys to free = maptable[arch output]
new reg = get free phys reg()
insn.phys output = new reg
maptable[arch output] = new reg

e At “commit”

e Once all older instructions have committed, free register
put free phys reg(insn.phys to free)

CIS 371 (Hilton/Roth/Martin): Scheduling 32

Renaming example

xorr1”r2->r3
addr3+rd4d->r4
subr5-r2->r3
addir3 +1->r1

r1 p1
r2 p2
r3 p3
r4 p4
rS pPS
Map table

CIS 371 (Hilton/Roth/Martin): Scheduling

Free-list

33

Renaming example

xorr1*r2->r3 » Xxor p1A7p2->

addr3 +r4 ->r4

subr5-r2->r3

addir3 + 1 ->r1
r1 p1 p6
r2 p2 p7
r3 p3 p8
r4 p4 P9
rS pPS p10

Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

34

Renaming example

xorr1Ar2->r3 » Xxor p12p2->p6

addr3+r4 ->r4
subr5-r2->r3
addir3+ 1 ->r1

r1 p1
r2 p2
r3 p3
r4 p4
rS pPS
Map table

CIS 371 (Hilton/Roth/Martin): Scheduling

Free-list

35

Renaming example

xorr1Ar2->r3 » Xxor p1”p2->pb6
addr3 +r4 ->r4
subr5-r2->r3
addir3 + 1 ->r1

r1 p1

r2 p2 p’/

r3 p6 P8

r4 p4 P9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

36

Renaming example

xorr1Ar2->r3 xor p1 7 p2->pb6
addr3 +r4 ->r4 ~ add p6 + p4 ->
subr5-r2->r3 .

addir3 + 1 ->r1

r1 p1

r2 p2 p7

r3 p6 P8

r4 p4 P9

rS pPS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

xorr1Ar2->r3 xor p1 7 p2->pb6
addr3+r4 ->r4 ~add p6 + p4 -> p7
subr5-r2 ->r3]

addir3 + 1 ->r1

r1 p1

r2 p2 p7

r3 p6 p8

r4 p4 P9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

38

Renaming example

xorr1Ar2->r3 xor p1 7 p2->pb6
addr3+r4 ->r4 ~add p6 + p4 -> p7
subr5-r2 ->r3]

addir3 + 1 ->r1

r1 p1

r2 p2

r3 p6 p8

r4 p7 P9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

39

Renaming example

xorr1Ar2->r3 xor p1 7 p2->pb6
addr3+r4 ->r4 add p6 + p4 -> p7
subr5-r2->r3 sub p5 - p2 ->

v

addir3+ 1 ->r1

r1 p1

r2 p2

r3 p6 p8

r4 p7 P9

rs p5 p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

40

Renaming example

xorr1Ar2->r3 xor p1 7 p2->pb6
addr3+r4 ->r4 add p6 + p4 -> p7
subr5-r2->r3 sub p5 - p2 -> p8

v

addir3+ 1 ->r1

r1 p1

r2 p2

r3 p6 p8

r4 p7 P9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

xorr1Ar2->r3 xor p1 7 p2->pb6
addr3+r4 ->r4 add p6 + p4 -> p7
subr5-r2->r3 sub p5 - p2 -> p8

v

addir3+ 1 ->r1

r1 p1

r2 p2

r3 p8

r4 p7 P9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

xorr1*r2->r3
addr3 +r4 ->r4
subrb5-r2->r3

xor p14p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8

addir3d +1->r1 addi p8 + 1 ->
r1 p1
r2 p2
r3 p8
r4 p7 P9
r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

43

Renaming example

xorr1”r2->r3
addr3+rd4d->r4
subr5-r2->r3
addir3 +1->r1

v

xor p1 7 p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addip8 + 1 ->p9

r1 p1

r2 p2

r3 p8

r4 p7 p9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

44

Renaming example

xorr1”r2->r3
addr3+rd4d->r4
subr5-r2->r3
addir3+1->r1

xor p1 7 p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

r1 p9

r2 p2

r3 p8

r4 p7

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

45

Out-of-order Pipeline

Buffer of instructions

J

Fetch
Decode
Rename
Dispatch

Have unique register names
Now put into ooo execution structures

CIS 371 (Hilton/Roth/Martin): Scheduling

\

Commit

46

Dispatch

e Renamed instructions into ooo structures
e Re-order buffer (ROB)
o All instruction until commit
o Issue Queue
e Un-executed instructions
e Central piece of scheduling logic
e Content Addressable Memory (CAM)

CIS 371 (Hilton/Roth/Martin): Scheduling

47

RAM vs CAM

e Random Access Memory
e Read/write specific index
o Get/set value there
e Content Addressable Memory
e Search for a value (send value to all entries)
e Find matching indices (use comparator at each entry)
e Qutput: one bit per entry (multiple match)

e One structure can have ports of both types

CIS 371 (Hilton/Roth/Martin): Scheduling

48

RAM vs CAM: RAM

17

22

Read index 4

47

17

19

19

12

13

42

RAM: read/write specific index

CIS 371 (Hilton/Roth/Martin): Scheduling

RAM vs CAM: CAM

Index O

17

22

Find value “17” 4r Index 3

17
19
12
13
42

CAM: search for value

CIS 371 (Hilton/Roth/Martin): Scheduling

Issue Queue

e Holds un-executed instructions

e Tracks ready inputs

e Physical register names + ready bit

o AND to tell if ready

Insn

Inp1

Inp2

Dst

Age

CIS 371 (Hilton/Roth/Martin): Scheduling

Ready?

v

51

Dispatch Steps

o Allocate IQ slot
o Full? Stall

e Read ready bits of inputs
e Table 1-bit per preg

e (Clear ready bit of output in table
e Instruction has not produced value yet

o Write data in IQ slot

Dispatch Example

xor p1 7 p2->p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

Issue Queue

Insn

Inp1

R

Inp2

Dst

CIS 371 (Hilton/Roth/Martin): Scheduling

Ready bits

< IK (IK IK IK IK IK I I

U
(OX

Dispatch Example

xor p1 7 p2->p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

Issue Queue

Insn

Inp1

Inp2

Dst

Xor

p1

p2

CIS 371 (Hilton/Roth/Martin): Scheduling

Ready bits

< IK (IK IK I

<

4

Dispatch Example

xor p1 7 p2->p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

Issue Queue

Insn Inp1 Inp2 Dst | Age
xor p1 p2 p6 |0
add P6 p4 p7 |1

CIS 371 (Hilton/Roth/Martin): Scheduling

Ready bits

< IK (IK IK I

2

Dispatch Example

xor p1 7 p2->p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

Issue Queue

Insn Inp1 Inp2 Dst | Age
xor p1 p2 p6 |0
add p6 p4 p7 |1
sub pPS p2 p8 |2

CIS 371 (Hilton/Roth/Martin): Scheduling

Ready bits

< IK (IK IK I

20

Dispatch Example

xor p1 7 p2->p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

Issue Queue

Insn Inp1 Inp2 R | Dst | Age
xor p1 p2 y | p6 |0
add p6 p4 y | p7 |1
sub pS p2 y | p8 |2
addi P8 y | p9 |3

CIS 371 (Hilton/Roth/Martin): Scheduling

Ready bits

< IK (IK IK I

S/

Out-of-order pipeline

e Execution (000) stages

e Select ready instructions
e Send for execution

o Wakeup dependents

CIS 371 (Hilton/Roth/Martin): Scheduling 58

Dynamic Scheduling/Issue Algorithm

e Data structures:
e Ready table[phys_reg] = yes/no (part of issue queue)

e Algorithm at “schedule” stage (prior to read registers):

foreach instruction:
1f table[insn.phys inputl] == ready &&
table[insn.phys input2] == ready then
insn as “ready”
select the oldest “ready” instruction

table[insn.phys output] = ready

CIS 371 (Hilton/Roth/Martin): Scheduling 59

Issue = Select + Wakeup

o Select N oldest, ready instructions
> “xor” is the oldest ready instruction below
> “xor” and “sub” are the two oldest ready instructions below
o Note: may have resource constraints: i.e. load/store/fp

Insn Inp1 R | Inp2 R | Dst | Age

xor p1 y | p2 y | p6 |0 Ready!
add p6 n | p4 y | p7 |1

sub pPS y | p2 y | p8 |2 Ready!
addi p8 n| -- y | p9 |3

Issue = Select + Wakeup

e Wakeup dependent instructions
e CAM search for Dst in inputs
e Set ready

e Also update ready-bit table for future instructions Ready bits
p1 y
P2y
p3 vy
Insn Inp1 R | Inp2 R | Dst | Age o4y
xor P’ y | p2 y | p6 |0 5 v
add p6 y | p4 y | p7 |1 o v
sub p5 y | p2 y | p8 |2 7
addi p8 y | — y | p9 |3 5 y
P9 n

CIS 371 (Hilton/Roth/Martin): Scheduling 61

Issue

Select/Wakeup one cycle
Dependents go back to back

e Next cycle: add/addi are ready:

Insn Inp1 Inp2 Dst | Age
add p6 p4 p7 |1
addi p8 p9 |3

Register Read

e When do instructions read the register file?

e Option #1: after select, right before execute

e (Not done at decode)

e Read physical register (renamed)

e Or get value via bypassing (based on physical register name)
e This is Pentium 4, MIPS R10k, Alpha 21264 style

e Physical register file may be large
e Multi-cycle read

e Option #2: as part of issue, keep values in Issue Queue
e Pentium Pro, Core 2, Core i/

Renaming review

Everyone rename this instruction:

mul r4 *r5 -> r1

r1 p1
r2 p2
r3 p3
r4 p4
rS pPS
Map table

CIS 371 (Hilton/Roth/Martin): Scheduling

Free-list

64

Dispatch Review

Everyone dispatch this instruction:

div p7 / p6 -> p1

Insn

Inp1 R

Inp2

Dst

CIS 371 (Hilton/Roth/Martin): Scheduling

Ready bits

< IK (IK IK I

<

(§)e)

Select Review

Insn Inp1 R | Inp2 R | Dst | Age
add p3 y | p1 y | P2 |0
mul p2 n | p4 y | p5 |1
div p1 y | pd n|p6 |2
xor p4 y | pl y | p9 |3

Determine which instructions are ready.
Which will be issued on a 1-wide machine?
Which will be issued on a 2-wide machine?

CIS 371 (Hilton/Roth/Martin): Scheduling

66

Wakeup Review

Insn Inp1 R | Inp2 R | Dst | Age
add p3 y | p1 y | P2 |0
mul p2 n | p4 y | p5 |1
div p1 y | pd n|p6 |2
xor p4 y | pl y | p9 |3

What information will change if we issue the add?

CIS 371 (Hilton/Roth/Martin): Scheduling

OO0 execution (2-wide)

xor § RDY

add

sub fRDY

addi

o
(&)
ojlo|lolfo[foo|lO |~ |W| N

CIS 371 (Hilton/Roth/Martin): Scheduling 68

OO0 execution (2-wide)

add J RDY

addig RDY

o
(&)
ojlo|lolfo[foo|lO |~ |W| N

CIS 371 (Hilton/Roth/Martin): Scheduling

(@)
w

OO0 execution (2-wide)

o
(&)
ojlo|lolfo[foo|lO |~ |W| N

CIS 371 (Hilton/Roth/Martin): Scheduling 70

OO0 execution (2-wide)

o
(&)
ojlo|lolfo[foo|lO |~ |W| N

CIS 371 (Hilton/Roth/Martin): Scheduling 7T

OO0 execution (2-wide)

go)
35
o|lwlo|ld|lolo |~ |w]|~N

CIS 371 (Hilton/Roth/Martin): Scheduling 72

OO0 execution (2-wide)

CIS 371 (Hilton/Roth/Martin): Scheduling 73

OO0 execution (2-wide)

Note similarity
to in-order

CIS 371 (Hilton/Roth/Martin): Scheduling

N
I

Multi-cycle operations

e Multi-cycle ops (load, fp, multiply, etc)
o Wakeup deferred a few cycles
e Structural hazard?

e Cache misses?

e Speculative wake-up (assume hit)
e Cancel exec of dependents

e Re-issue later

e Details: complicated, not important

CIS 371 (Hilton/Roth/Martin): Scheduling

75

Re-order Buffer (ROB)

e All instructions in order

e TwoO purposes
e Misprediction recovery
e In-order commit
e Maintain appearance of in-order execution
e Freeing of physical registers

CIS 371 (Hilton/Roth/Martin): Scheduling

76

Renaming revisited

e Qverwritten register
e Freed at commit
e Restore in map table on recovery
e Branch mis-prediction recovery
» Also must be read at rename

CIS 371 (Hilton/Roth/Martin): Scheduling

77

Renaming example

xorr1”r2->r3
addr3+rd4d->r4
subr5-r2->r3
addir3 +1->r1

r1 p1
r2 p2
r3 p3
r4 p4
rS pPS
Map table

CIS 371 (Hilton/Roth/Martin): Scheduling

Free-list

78

Renaming example

xorr1/2r2->r3 » Xxor p1/p2->

addr3 +r4 ->r4

subr5-r2->r3

addir3 + 1 ->r1
r1 p1 p6
r2 p2 p’/
r3 p3 p8
r4 p4 P9
rS pPS p10

Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

[P3]

79

Renaming example

xorr1Ar2->r3 » Xxor p1”p2->pb6
addr3 +r4 ->r4
subr5-r2->r3
addir3 + 1 ->r1

r1 p1

r2 p2 p’/

r3 p6 P8

r4 p4 P9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

[P3]

80

Renaming example

xorr1Ar2->r3 xor p1 7 p2->pb6
addr3 +rd ->r4 ~add p6 + p4 ->
subr5-r2->r3]

addir3 + 1 ->r1

r1 p1

r2 p2 p’/

r3 p6 p8

r4 p4 P9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

81

Renaming example

xorr1Ar2->r3 xor p1 7 p2->pb6
addr3+r4 ->r4 ~add p6 + p4 -> p7
subr5-r2 ->r3]

addir3 + 1 ->r1

r1 p1

r2 p2

r3 p6 p8

r4 p7 P9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

82

Renaming example

xorr1Ar2->r3 xor p1Ap2->p6 [pP3]
addr3+r4 ->r4 add p6 + p4 -> p7 [p4]
subr5-r2->r3 sub p5 - p2 -> [p6]

v

addir3+ 1 ->r1

r1 p1

r2 p2

r3 p6 P8

r4 p7 P9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling 83

Renaming example

xorr1Ar2->r3 xor p1Ap2->p6 [pP3]
addr3+r4 ->r4 add p6 + p4 -> p7 [p4]
subr5-r2->r3 sub p5 - p2 -> p8 [p6]

v

addir3+ 1 ->r1

r1 p1

r2 p2

r3 p8

r4 p7 P9

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling 84

Renaming example

xorr1*r2->r3
addr3 +r4 ->r4
subrb5-r2->r3

xor p14p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8

addir3 +1 ->r1 addip8 + 1 ->
r1 p1
r2 p2
r3 p8
r4 p7 P9
r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

xorr1”r2->r3
addr3+rd4d->r4
subr5-r2->r3
addir3 +1->r1

xor p1 7 p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

r1 p9

r2 p2

r3 p8

r4 p7

r5 pS p10
Map table Free-list

CIS 371 (Hilton/Roth/Martin): Scheduling

86

ROB

e ROB entry holds all info for recover/commit
e Logical register names
e Physical register names
e Instruction types
e Dispatch: insert at tail
e Full? Stall

e Commit: remove from head
e Not completed? Stall

Recovery

e Completely remove wrong path instructions
e Flush from IQ
e Remove from ROB
e Restore map table to before misprediction
e Free destination registers

Recovery example

bnz r1 loop

xorr1”r2->r3
addr3+rd4 ->r4
subr5-r2->r3
addir3 + 1 ->r1

CIS 371 (Hilton/Roth/Martin): IMap.table

bnz p1, loop

xor p1 7 p2->p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

r1 P9
r2 p2
r3 p8
r4 p7
r5 pS p10

Free-list

Recovery example

bnz r1 loop

xorr1”r2->r3
addr3+rd4 ->r4
subr5-r2->r3
addir3 + 1 ->r1

CIS 371 (Hilton/Roth/Martin): IMap.table

bnz p1, loop

xor p1 7 p2->p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

r1 p1

r2 p2

r3 p8

r4 p7 P9
r5 pS p10

Free-list

Recovery example

bnz r1 loop

xorr1”r2->r3
addr3+rd4 ->r4
subr5-r2->r3

bnz p1, loop

xor p1 7 p2->p6
add p6 + p4 -> p7
sub p5 - p2 -> p8

r1 p1

r2 p2

r3 p6 p8
r4 p7 P9
r5 pS p10

CIS 371 (Hilton/Roth/Martin): Maputable Free-list

91

Recovery example

bnz r1 loop bnz p1, loop
xorr12r2->r3 xor p1 7 p2->p6
addr3 +r4 ->r4 add p6 + p4 -> p7/
r1 p1
r2 p2 p/
r3 p6 p8
r4 p4 P9
rS pPS p10

CIS 371 (Hilton/Roth/Martin): Maputable Free-list

92

Recovery example

bnz r1 loop bnz p1, loop []
xorr1”Ar2->r3 xor p1 4 p2->p6 [p3]
r1 p1 6
r2 p2 p7
r3 p3 p8
r4 p4 P9
r5 pS p10

CIS 371 (Hilton/Roth/Martin): Maputable Free-list

Recovery example

bnz r1 loop bnz p1, loop
r1 p1
r2 p2
r3 p3
r4 p4
rS pPS

CIS 371 (Hilton/Roth/Martin): IMap.table

Free-list

94

What about stores

e Stores: Write D$, not registers
e Can we rename memory?
e Recover in the cache?

CIS 371 (Hilton/Roth/Martin): Scheduling

95

What about stores

e Stores: Write D$, not registers
e Can we rename memory?
e Recover in the cache?

» No (at least not easily)
e Cache writes unrecoverable

e Stores: only when certain
e Commit

CIS 371 (Hilton/Roth/Martin): Scheduling

96

Commit

xorr1Ar2->r3 xor p1 7 p2->p6
addr3 +r4 ->r4 add p6 + p4 -> p7
subr5-r2->r3 sub p5 - p2 -> p8
addir3 + 1 ->r1 addi p8 + 1 -> p9

« Commit: instruction becomes architected state
* In-order, only when instructions are finished

* Free overwritten register (why?)

Freeing over-written register

XOr [Ag/@ p3]
ad 4 ->T [p4
subr5-r2->r3 [PG |
addir3 + 1 ->r1 addi p8 + 1 ->p9 p1]

* P3 was r3 before xor
* P6 is r3 after xor
* Anything older than xor should read p3

» Anything younger than xor should p6 (until next r3 writing
instruction

« At commit of xor, no older instructions exist

CIS 371 (Hilton/Roth/Martin): Scheduling

98

Commit Example

xorr1”r2->r3
addr3+rd4d->r4
subr5-r2->r3
addir3 +1->r1

xor p1 7 p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 ->p9

r1 P9 p10
r2 p2
r3 p8
r4 p7
r5 pS

CIS 371 (Hilton/Roth/Martin): Maputable Free-list

99

Commit Example

xorr1”r2->r3
addr3+rd4d->r4
subr5-r2->r3
addir3 +1->r1

xor p1 7 p2->pb6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 ->p9

r1 P9 010
r2 p2 03
r3 p8

r4 p7

rS pPS

CIS 371 (Hilton/Roth/Martin): Maputable Free-list

100

Commit Example

addr3+r4 ->r4 add p6 + p4 -> p7
subr5-r2->r3 sub p5 - p2 -> p8
addir3 + 1 ->r1 addi p8 + 1 -> p9
r1 P9 p10
r2 p2 p3
r3 p8 p4
r4 p7
rS pPS

CIS 371 (Hilton/Roth/Martin): Maputable Free-list

101

Commit Example

subr5-r2->r3 sub p5 - p2 -> p8
addir3 + 1 ->r1 addi p8 + 1 -> p9
r1 P9 p10
r2 p2 p3
r3 p8 p4
r4 p7 p6
rS pPS

CIS 371 (Hilton/Roth/Martin): Maputable Free-list

102

Commit Example

addir3 + 1 ->r1 addi p8 + 1 -> p9 [p1]
r1 P9 p10
r2 p2 p3
r3 p8 p4
r4 p7 p6
rS pPS p1

CIS 371 (Hilton/Roth/Martin): Map.table Free-list 103

Out of order pipeline diagrams

e Standard style: large and cumbersome
e Change layout slightly

e Columns = stages (dispatch, issue, etc)
e Rows = instructions
e Content of boxes = cycles

e For our purposes: issue/exec = 1 cycle
e Ignore preg read latency, etc
e Load-use, mul, div, and FP longer

CIS 371 (Hilton/Roth/Martin): Scheduling 104

Out of order pipeline diagrams

Instruction

Disp

Issue

WB

Commit

Ld [p1] -> p2

add p2 + p3 -> p4

xor p4 " p5 -> p6

Id [p7] -> p8

2-wide
Infinite ROB, 1Q, Pregs
Loads: 3 cycles

CIS 371 (Hilton/Roth/Martin): Scheduling

105

Out of order pipeline diagrams

Instruction Disp | Issue WB Commit
Ld [p1]->p2 1
add p2 + p3 -> p4 1

xor p4 " p5 -> p6

Id [p7] -> p8

Cycle 1:
 Dispatch Id and add

CIS 371 (Hilton/Roth/Martin): Scheduling 106

Out of order pipeline diagrams

Instruction Disp | Issue WB Commit
Ld [p1] -> p2 1 2 5
add p2 + p3 -> p4 1
xor p4 A p5 -> p6 2
ld [p7] -> p8 2
Cycle 1:

* Dispatch xor and Id
 1st Ld issues -- also note WB cycle while you do this

(Note: don’t issue if WB ports full)

CIS 371 (Hilton/Roth/Martin): Scheduling 107

Out of order pipeline diagrams

Instruction Disp | Issue WB Commit
Ld [p1] -> p2 1 2 5
add p2 + p3 -> p4 1
xor p4 " p5 -> p6 2
ld [p7] -> p8 2 3 6
Cycle 3:

» add and xor are not ready

* 2nd load is- issue it

CIS 371 (Hilton/Roth/Martin): Scheduling

108

Out of order pipeline diagrams

Instruction Disp | Issue WB Commit
Ld [p1] -> p2 1 2 5
add p2 + p3 -> p4 1 3 6
xor p4 " p5 -> p6 2
ld [p7] -> p8 2 3 6
Cycle 4. Cycle 5:
* Nothing » Add can issue

CIS 371 (Hilton/Roth/Martin): Scheduling

109

Out of order pipeline diagrams

Instruction Disp | Issue WB Commit
Ld [p1] -> p2 1 2 5 6
add p2 + p3 -> p4 1) 6
xor p4 " p5 -> p6 2 6 7
ld [p7] -> p8 2 3 6

Cycle 6:

* 1st load can commit (oldest instruction and finished)

e XOr can issue

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of order pipeline diagrams

Instruction Disp | Issue WB Commit
Ld [p1] -> p2 1 2 5 6
add p2 + p3 -> p4 1) 6 7
xor p4 " p5 -> p6 2 6 7
ld [p7] -> p8 2 3 6

Cycle 7:

 Add can commit

CIS 371 (Hilton/Roth/Martin): Scheduling

111

Out of order pipeline diagrams

Instruction Disp | Issue WB Commit
Ld [p1] -> p2 1 2 5 6
add p2 + p3 -> p4 1) 6 7
xor p4 A p5 -> p6 2 6 7 8
ld [p7] -> p8 2 3 6 8

Cycle 8:

« Commit xor and Id (2-wide: can do both at once)

CIS 371 (Hilton/Roth/Martin): Scheduling 112

Dynamically Scheduling Memory Ops

e Compilers must schedule memory ops conservatively

e Options for hardware:
e Don't execute any load until all prior stores execute (conservative)
e Execute loads as soon as possible, detect violations (aggressive)

e When a store executes, it checks if any later loads executed too
early (to same address). If so, flush pipeline

e Learn violations over time, selectively reorder (predictive)

Before Wrong(?)

1d r2,4 (sp) 1d r2,4 (sp)

1d r3,8(sp) 1d r3,8(sp)

add r3,r2,rl //stall 1d r5,0(x8) //does r8==sp-?
st rl, add r3,r2,rl

1d r5,0(x8) 1d r6,4(xr8) //does r8+4==sp?
1d r6,4(x8) st rl,

sub r5,r6,r4 //stall sub r5,r6,r4

st r4,8(r8) st r4,8(r8)

Loads and Stores

Instruction Disp | Issue WB Commit
fdiv p1/p2 ->p3 1 2 25
stpd ->[p5] 1 2 3
stp3 ->[p6] 2
ld [p7]->p8 2
Cycle 3:
«Canld [p7] -> p8 execute?
« Why or why not?

CIS 371 (Hilton/Roth/Martin): Scheduling

114

Loads and Stores

Instruction Disp | Issue WB Commit
fdiv p1/p2 ->p3 1 2 25
stpd ->[p5] 1 2 3
stp3 ->[p6] 2
Id [p7]->p8 2

Aliasing (again)
. p5 == p7’?
* p6 == p7?

CIS 371 (Hilton/Roth/Martin): Scheduling

115

Loads and Stores

Instruction Disp | Issue WB Commit
fdiv p1/p2 ->p3 1 2 25
stpd ->[p5] 1 2 3
stp3 ->[p6] 2
Id [p7]->p8 2

Suppose p5 == p7 and p6 != p7
Can Id execute now?

CIS 371 (Hilton/Roth/Martin): Scheduling

116

Memory Forwarding

e Stores write cache at commit
e Commit is in-order, delayed by all instructions
e Allows stores to be “undone” on branch mis-predictions, etc.

e Loads read cache
e Early execution of loads is critical

e Forwarding
e Allow store -> load communication before store commit
e Conceptually like reg. bypassing, but different implementation
e Why? Addresses unknown until execute

Forwarding: Store Queue

e Store Queue

e CAM: searchable by address load pésition
e Age logic: determine youngest
matching store older than load

e Store execution

Stare Queye

o Write Store Queue head
e Address + Data
e Load execution 54 R me tail
e Search SQ

e Match? Forward

Fe T

Data cache

CIS 371 (Hilton/Roth/Martin): Scheduling 118

Load scheduling

e Store->Load Forwarding:
e Get value from executed (but not comitted) store to load

e |Load Scheduling:

e Determine when load can execute with regard to older stores

e (Conservative load scheduling:
e All older stores have executed
e Some architectures: split store address / store data
e Only require known address
e Advantage: always safe
e Disadvantage: performance (limits out-of-orderness)

Our example from before

Id [r1] -> 5

Id [r2] -> r6

add r5 + r6 -> r7 With conservative load scheduling,
st r7 -> [r3] what can go out of order?

Id 4[r1] -> r5

Id 4[r2] -> r6

add r5 + r6 -> r7

st r7 -> 4[r3]

// loop control here

CIS 371 (Hilton/Roth/Martin): Scheduling 120

Our example from before

Disp | Issue | WB | Commit

Id [p1] -> p5 1

Id [p2] -> pb6 1

add p5 + p6 -> p7

st p7 -> [p3]

Id 4[p1] -> p8
Id 4[p2] -> p9

add p8 + p9 -> p4
st p4 -> 4[p3]

Suppose 2 wide, conservative scheduling. May issue 1 load
per cycle. Loads take 3 cycles to complete.

Our example from before

Disp

Issue

WB

Commit

Id [p1] -> p5

2

5

d [p2] -> p6

add p5 + p6 -> p7

st p7 -> [p3]

1
1
2
2

Id 4[p1] -> p8
Id 4[p2] -> p9

add p8 + p9 -> p4
st p4 -> 4[p3]

CIS 371 (Hilton/Roth/Martin): Scheduling

122

Our example from before

Disp

Issue

WB

Commit

Id [p1] -> p5

2

d [p2] -> p6

3

add p5 + p6 -> p7

st p7 -> [p3]

Id 4[p1] -> p8
Id 4[p2] -> p9

WlIW NN —=| -

add p8 + p9 -> p4
st p4 -> 4[p3]

CIS 371 (Hilton/Roth/Martin): Scheduling

123

Our example from before

Disp | Issue | WB | Commit

2
3 6

Id [p1] -> p5

Id [p2] -> pb6

add p5 + p6 -> p7
st p7 -> [p3]

Id 4[p1] -> p8

Id 4[p2] -> p9

add p8 + p9 -> p4
st p4 -> 4[p3]

AP O OWININ|—~]-

Conservative load scheduling: can’t issue Id4[p1]->p8

CIS 371 (Hilton/Roth/Martin): Scheduling 124

Our example from before

Disp | Issue | WB | Commit

Id [p1] -> p5 1 2 5 6

Id [p2] -> pb6 1 3 6

add p5 + p6 -> p7| 2 6 7

st p7 -> [p3] 2

Id 4[p1] -> p8 3

Id 4[p2] -> p9 3

add p8 + p9 -> p4| 4

st p4 -> 4[p3] 4

CIS 371 (Hilton/Roth/Martin): Scheduling

125

Our example from before

Disp

Issue

WB

Commit

Id [p1] -> p5

2

6

d [p2] -> p6

7

add p5 + p6 -> p7

st p7 -> [p3]

3
6
7

| N]| O

Id 4[p1] -> p8
Id 4[p2] -> p9

add p8 + p9 -> p4
st p4 -> 4[p3]

Ah| w|lwdmd[dM]=2] =

CIS 371 (Hilton/Roth/Martin): Scheduling

126

Our example from before

Disp | Issue | WB | Commit
Id [p1] -> p5 1 2 6
Id [p2] -> pb6 1 3 7
add p5 + p6 -> p7| 2 6 8
st p7 -> [p3] 2 7
Id 4[p1] -> p8 3 8 1
Id 4[p2] -> p9 3
add p8 + p9 -> p4| 4
st p4 -> 4[p3] 4

CIS 371 (Hilton/Roth/Martin): Scheduling

127

Our example from before

Disp

Issue

WB

Commit

Id [p1] -> p5

2

6

d [p2] -> p6

add p5 + p6 -> p7

st p7 -> [p3]

7
8
9

11

Id 4[p1] -> p8
Id 4[p2] -> p9

OO |N|[O | W

12

add p8 + p9 -> p4
st p4 -> 4[p3]

Ah| w|lwdmd[dM]=2] =

CIS 371 (Hilton/Roth/Martin): Scheduling

128

Our example from before

Disp | Issue | WB | Commit

Id [p1] -> p5 1 2 6

Id [p2] -> pb6 1 3 7
add p5 + p6 -> p7| 2 6 8

st p7 -> [p3] 2 7 9

Id 4[p1] -> p8 3 8 11 12

Id 4[p2] -> p9 3 9 12

add p8 + p9 -> p4| 4 12 13

st p4 -> 4[p3] 4

CIS 371 (Hilton/Roth/Martin): Scheduling

129

Our example from before

Disp | Issue | WB | Commit

Id [p1] -> p5 1 2 6
Id [p2] -> pb6 1 3 7
add p5 + p6 -> p7| 2 6 8
st p7 -> [p3] 2 / 9
Id 4[p1] -> p8 3 8 1 12
Id 4[p2] -> p9 3 9 12 13
add p8 + p9 -> p4| 4 12 13

st p4 -> 4[p3] 4 13 14

CIS 371 (Hilton/Roth/Martin): Scheduling

130

Our example from before

Disp | Issue | WB | Commit

Id [p1] -> p5 1 2 6
Id [p2] -> pb6 1 3 7
add p5 + p6 -> p7| 2 6 8
st p7 -> [p3] 2 / 9
Id 4[p1] -> p8 3 8 1 12
Id 4[p2] -> p9 3 9 12 13
add p8 + p9 -> p4| 4 12 13 14
st p4 -> 4[p3] 4 13 14

CIS 371 (Hilton/Roth/Martin): Scheduling

131

Our example from before

Disp | Issue | WB | Commit
Id [p1] -> p5 6
Id [p2] -> pb6 7
add p5 + p6 -> p7 6 8
st p7 -> [p3] / 9
Id 4[p1] -> p8 8 1 12
Id 4[p2] -> p9 9 12 13
add p8 + p9 -> p4 12 13 14
st p4 -> 4[p3] 13 14 15

Our 2-wide o000 processor may as well be 1-wide in-order!

Our example from before

Disp | Issue | WB

Commit

Id [p1] -> p5

d [p2] -> p6

add p5 + p6 -> p7

st p7 -> [p3]

Id 4[p1] -> p8 4 /
Id 4[p2] -> p9

add p8 + p9 -> p4| 4

st p4 -> 4[p3] 4

e It would be nice if we could issue Id 4
e Can we speculate and issue it then?

'pl]->p8 in c4.

Load Speculation

e Speculation requires two things.....
o Detection of mis-speculations
e How can we do this?

e Recovery from mis-speculations

e Squash from offending load
e Saw how to squash from branches: same method

CIS 371 (Hilton/Roth/Martin): Scheduling 134

Load Queue

e Detects load ordering
violations

e | oad execution: Write
address into LQ

e Also note any store
forwarded from
e Store execution: Search LQ

e Younger load with same
addr?

e Didn't forward from younger
store?

store positionflush?

load queue [LQ)

head

tail

—_—

Data Cache

Store Queue + Load Queue

e Store Queue: handles forwarding
e Written by stores (@ execute)

e Searched by loads (@ execute)
e Read from to write data cache (@ commit)

e Load Queue: detects ordering violations

e Written by loads (@ execute)
e Searched by stores (@ execute)

e Both together

e Allows aggressive load scheduling
e Stores don't constrain load execution

Our example from before

Disp | Issue | WB | Commit

Id [p1] -> p5 1 2

Id [p2] -> pb6 1 3 6

add p5 + p6 -> p7| 2

st p7 -> [p3] 2

Id 4[p1] -> p8 3 4 /

Id 4[p2] -> p9 3

add p8 + p9 -> p4| 4

st p4 -> 4[p3] 4

e Aggressive load scheduling?

e Issue ld 4[p1]->p8 in cycle 4

CIS 371 (Hilton/Roth/Martin): Scheduling 137

Our example from before

Disp | Issue | WB | Commit

Id [p1] -> p5 1 2 5

Id [p2] -> pb6 1 3 6

add p5 + p6 -> p7| 2

st p7 -> [p3] 2

Id 4[p1] -> p8 3 4

Id 4[p2] -> p9 3 5

add p8 + p9 -> p4| 4

st p4 -> 4[p3] 4

CIS 371 (Hilton/Roth/Martin): Scheduling

138

Our example from before

Disp | Issue | WB | Commit

Id [p1] -> p5

d [p2] -> p6

add p5 + p6 -> p7

st p7 -> [p3]

©| O |0 |

Id 4[p1] -> p8

Id 4[p2] -> p9 10

©| ®|~|oo |

10

O©lo| o|lbd|~

add p8 + p9 -> p4| 4
st p4 -> 4[p3] 4

Saves 4 cycles over conservative
Actually uses ooo-ness

Aggressive Load scheduling

o Allows loads to issue before older stores
e Increases out-of-orderness
+ When no conflict, increases performance
- Conflict => squash => worse performance than waiting

e Some loads might forward from stores
e Always aggressive will squash a lot

e Can we have our cake AND eat it too?

CIS 371 (Hilton/Roth/Martin): Scheduling 140

Predictive Load scheduling

e Predict which loads must wait for stores

e Fool me once, shame on you-- fool me twice?

e Loads default to aggressive

e Keep table of load PCs that have been caused squashes
e Schedule these conservatively

+ Simple predictor

- Makes "bad” loads wait for all older stores is not so great

e More complex predictors used in practice
e Predict which stores loads should wait for

Out of Order: Window Size

e Scheduling scope = ooo window size

e Larger = better

e Constrained by physical registers (#preqg)
e ROB roughly limited by #preg = ROB size + #logical registers
e Big register file = hard/slow

e Constrained by issue queue
o Limits number of un-executed instructions
e CAM = can't make big (power + area)

e Constrained by load + store queues
e Limit number of loads/stores
e CAMs
o Active area of research: scaling window sizes

e Usefulness of large window: limited by branch prediction
e 95% branch mis-prediction rate: 1 in 20 branches, or 1 in 100 insn.

Out of Order: Benefits

e Allows speculative re-ordering
e Loads / stores
e Branch prediction

e Schedule can change due to cache misses
o Different schedule optimal from on cache hit

e Done by hardware

o Compiler may want different schedule for different hw configs
e Hardware has only its own configuration to deal with

Recap: Dynamic Scheduling

e Dynamic scheduling
e Totally in the hardware
o Also called “out-of-order execution” (O00Q)

e Fetch many instructions into instruction window
e Use branch prediction to speculate past (multiple) branches
e Flush pipeline on branch misprediction

e Rename to avoid false dependencies

e Execute instructions as soon as possible

e Register dependencies are known
e Handling memory dependencies more tricky

e “"Commit” instructions in order
e Anything strange happens before commit, just flush the pipeline

e Current machines: 100+ instruction scheduling window

Out of Order: Top 5 Things to Know

e Register renaming

e How to perform is and how to recover it
o Commit

e Precise state (ROB)

e How/when registers are freed
o Issue/Select

e Wakeup: CAM

e Choose N oldest ready instructions
e Stores

o Write at commit

e Forward to loads via LQ

e Loads
e Conservative/aggressive/predictive scheduling
e Violation detection

CIS 371 (Hilton/Roth/Martin): Scheduling 145

Static vs Dynamic Scheduling

e If we can do this in software...

e ...why build complex (slow-clock, high-power) hardware?
+ Performance portability
e Don’t want to recompile for new machines
+ More information available
e Memory addresses, branch directions, cache misses
+ More registers available
e Compiler may not have enough to schedule well
+ Speculative memory operation re-ordering
o Compiler must be conservative, hardware can speculate
— But compiler has a larger scope
e Compiler does as much as it can (not much)
e Hardware does the rest

CIS 371 (Hilton/Roth/Martin): Scheduling 146

This Unit: Code Scheduling

App | | App | | App e Pipelining and superscalar review
System software

Mem | Bedzlt /O e Code scheduling
e To reduce pipeline stalls
e To increase ILP (insn level parallelism)

e Two approaches
e Static scheduling by the compiler
e Dynamic scheduling by the hardware

e Up next: multiprocessing

CIS 371 (Hilton/Roth/Martin): Scheduling 147

