
CIS 371 (Hilton/Roth/Martin): Scheduling 1

CIS 371
Computer Organization and Design

Unit 8: Static and Dynamic Scheduling

With contributions by Drew Hilton

CIS 371 (Hilton/Roth/Martin): Scheduling 2

This Unit: Static & Dynamic Scheduling

•  Pipelining and superscalar review

•  Code scheduling
•  To reduce pipeline stalls
•  To increase ILP (insn level parallelism)

•  Two approaches
•  Static scheduling by the compiler
•  Dynamic scheduling by the hardware

CPU Mem I/O

System software

App App App

CIS 371 (Hilton/Roth/Martin): Scheduling 3

Readings

•  P&H
•  Chapter 4.10 – 4.11

Pipelining Review

•  Increases clock frequency by staging instruction execution
•  “Scalar” pipelines have a best-case CPI of 1
•  Challenges:

•  Data and control dependencies further worsen CPI
•  Data: With full bypassing, load-to-use stalls
•  Control: use branch prediction to mitigate penalty

•  Big win, done by all processors today
•  How many stages (depth)?

•  Five stages is pretty good minimum
•  Intel Pentium II/III: 12 stages
•  Intel Pentium 4: 22+ stages
•  Intel Core 2: 14 stages

CIS 371 (Hilton/Roth/Martin): Scheduling 4

CIS 371 (Hilton/Roth/Martin): Scheduling 5

Pipeline Diagram

•  Use compiler scheduling to reduce load-use stall frequency
•  Like software interlocks, but for performance not correctness

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W
lw $4,4($3) F D X M W
addi $6,$4,1 F D d* X M W
sub $8,$3,$1 F d* D X M W

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W
lw $4,4($3) F D X M W
sub $8,$3,$1 F D X M W
addi $6,$4,1 F D X M W

Superscalar Pipeline Review

•  Execute two or more instruction per cycle
•  Challenges:

•  wide fetch (branch prediction harder, misprediction more costly)
•  wide decode (stall logic)
•  wide execute (more ALUs)
•  wide bypassing (more possibly bypassing paths)
•  Finding enough independent instructions (and fill delay slots)

•  How many instructions per cycle max (width)?
•  Really simple, low-power cores are still scalar (single issue)
•  Even low-power cores a dual-issue (Intel Atom)
•  Most desktop/laptop chips three-issue or four-issue
•  A few 5 or 6-issue chips have been built (IBM Power4, Itanium II)

CIS 371 (Hilton/Roth/Martin): Scheduling 6

CIS 371 (Hilton/Roth/Martin): Scheduling 7

Superscalar Pipeline Diagrams - Ideal
scalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r14,r15r6 F D X M W
add r12,r13r7 F D X M W
add r17,r16r8 F D X M W
lw 0(r18)r9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r14,r15r6 F D X M W
add r12,r13r7 F D X M W
add r17,r16r8 F D X M W
lw 0(r18)r9 F D X M W

CIS 371 (Hilton/Roth/Martin): Scheduling 8

Superscalar Pipeline Diagrams - Realistic
scalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r4,r5r6 F d* D X M W
add r2,r3r7 F D X M W
add r7,r6r8 F D X M W
lw 0(r8)r9 F D X M W

2-way superscalar 1 2 3 4 5 6 7 8 9 10 11 12
lw 0(r1)r2 F D X M W
lw 4(r1)r3 F D X M W
lw 8(r1)r4 F D X M W
add r4,r5r6 F d* d* D X M W
add r2,r3r7 F d* D X M W
add r7,r6r8 F D X M W
lw 0(r8)r9 F d* D X M W

Code Scheduling

•  Scheduling: act of finding independent instructions
•  “Static” done at compile time by the compiler (software)
•  “Dynamic” done at runtime by the processor (hardware)

•  Why schedule code?
•  Scalar pipelines: fill in load-to-use delay slots to improve CPI
•  Superscalar: place independent instructions together

•  As above, load-to-use delay slots
•  Allow multiple-issue decode logic to let them execute at the

 same time

CIS 371 (Hilton/Roth/Martin): Scheduling 9

CIS 371 (Hilton/Roth/Martin): Scheduling 10

Compiler Scheduling

•  Compiler can schedule (move) instructions to reduce stalls
•  Basic pipeline scheduling: eliminate back-to-back load-use pairs
•  Example code sequence: a = b + c; d = f – e;

• sp stack pointer, sp+0 is “a”, sp+4 is “b”, etc…

Before

ld r2,4(sp)
ld r3,8(sp)
add r3,r2,r1 //stall
st r1,0(sp)
ld r5,16(sp)
ld r6,20(sp)
sub r5,r6,r4 //stall
st r4,12(sp)

After

ld r2,4(sp)
ld r3,8(sp)
ld r5,16(sp)
add r3,r2,r1 //no stall
ld r6,20(sp)
st r1,0(sp)
sub r5,r6,r4 //no stall
st r4,12(sp)

CIS 371 (Hilton/Roth/Martin): Scheduling 11

Compiler Scheduling Requires

•  Large scheduling scope
•  Independent instruction to put between load-use pairs
+  Original example: large scope, two independent computations
–  This example: small scope, one computation

•  One way to create larger scheduling scopes?
•  Loop unrolling

Before

ld r2,4(sp)
ld r3,8(sp)
add r3,r2,r1 //stall
st r1,0(sp)

After

ld r2,4(sp)
ld r3,8(sp)
add r3,r2,r1 //stall
st r1,0(sp)

CIS 371 (Hilton/Roth/Martin): Scheduling 12

Compiler Scheduling Requires

•  Enough registers
•  To hold additional “live” values
•  Example code contains 7 different values (including sp)
•  Before: max 3 values live at any time → 3 registers enough
•  After: max 4 values live → 3 registers not enough

Original

ld r2,4(sp)
ld r1,8(sp)
add r1,r2,r1 //stall
st r1,0(sp)
ld r2,16(sp)
ld r1,20(sp)
sub r2,r1,r1 //stall
st r1,12(sp)

Wrong!

ld r2,4(sp)
ld r1,8(sp)
ld r2,16(sp)
add r1,r2,r1 // wrong r2
ld r1,20(sp)
st r1,0(sp) // wrong r1
sub r2,r1,r1
st r1,12(sp)

CIS 371 (Hilton/Roth/Martin): Scheduling 13

Compiler Scheduling Requires
•  Alias analysis

•  Ability to tell whether load/store reference same memory locations
•  Effectively, whether load/store can be rearranged

•  Example code: easy, all loads/stores use same base register (sp)
•  New example: can compiler tell that r8 != sp?
•  Must be conservative

Before

ld r2,4(sp)
ld r3,8(sp)
add r3,r2,r1 //stall
st r1,0(sp)
ld r5,0(r8)
ld r6,4(r8)
sub r5,r6,r4 //stall
st r4,8(r8)

Wrong(?)

ld r2,4(sp)
ld r3,8(sp)
ld r5,0(r8) //does r8==sp?
add r3,r2,r1
ld r6,4(r8) //does r8+4==sp?
st r1,0(sp)
sub r5,r6,r4
st r4,8(r8)

CIS 371 (Hilton/Roth/Martin): Scheduling 14

Code Example: SAXPY
•  SAXPY (Single-precision A X Plus Y)

•  Linear algebra routine (used in solving systems of equations)
•  Part of early “Livermore Loops” benchmark suite
•  Uses floating point values in “F” registers
•  Uses floating point version of instructions (ldf, addf, mulf, stf, etc.)

for (i=0;i<N;i++)
 Z[i]=(A*X[i])+Y[i];

0: ldf X(r1)f1 // loop
1: mulf f0,f1f2 // A in f0
2: ldf Y(r1)f3 // X,Y,Z are constant addresses
3: addf f2,f3f4
4: stf f4Z(r1)
5: addi r1,4r1 // i in r1
6: blt r1,r2,0 // N*4 in r2

CIS 371 (Hilton/Roth/Martin): Scheduling 15

New Metric: Utilization

•  Utilization: actual performance / peak performance
•  Important metric for performance/cost
•  No point to paying for hardware you will rarely use

•  Adding hardware usually improves performance & reduces utilization
•  Additional hardware can only be exploited some of the time
•  Diminishing marginal returns

•  Compiler can help make better use of existing hardware
•  Important for superscalar

CIS 371 (Hilton/Roth/Martin): Scheduling 16

SAXPY Performance and Utilization

•  Scalar pipeline
•  Full bypassing, 5-cycle E*, 2-cycle E+, branches predicted taken
•  Single iteration (7 insns) latency: 16–5 = 11 cycles
•  Performance: 7 insns / 11 cycles = 0.64 IPC
•  Utilization: 0.64 actual IPC / 1 peak IPC = 64%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X(r1)f1 F D X M W
mulf f0,f1f2 F D d* E* E* E* E* E* W
ldf Y(r1)f3 F p* D X M W
addf f2,f3f4 F D d* d* d* E+ E+ W
stf f4Z(r1) F p* p* p* D X M W
addi r1,4r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1)f1 F D X M W

CIS 371 (Hilton/Roth/Martin): Scheduling 17

SAXPY Performance and Utilization

•  2-way superscalar pipeline
•  Any two insns per cycle + split integer and floating point pipelines
+  Performance: 7 insns / 10 cycles = 0.70 IPC
–  Utilization: 0.70 actual IPC / 2 peak IPC = 35%
–  More hazards → more stalls
–  Each stall is more expensive

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X(r1)f1 F D X M W
mulf f0,f1f2 F D d* d* E* E* E* E* E* W
ldf Y(r1)f3 F D p* X M W
addf f2,f3f4 F p* p* D d* d* d* d* E+ E+ W
stf f4Z(r1) F p* D p* p* p* p* d* X M W
addi r1,4r1 F p* p* p* p* p* D X M W
blt r1,r2,0 F p* p* p* p* p* D d* X M W
ldf X(r1)f1 F D X M W

CIS 371 (Hilton/Roth/Martin): Scheduling 18

Static (Compiler) Instruction Scheduling

•  Idea: place independent insns between slow ops and uses
•  Otherwise, pipeline stalls while waiting for RAW hazards to resolve
•  Have already seen pipeline scheduling

•  To schedule well you need … independent insns
•  Scheduling scope: code region we are scheduling

•  The bigger the better (more independent insns to choose from)
•  Once scope is defined, schedule is pretty obvious
•  Trick is creating a large scope (must schedule across branches)

•  Compiler scheduling (really scope enlarging) techniques
•  Loop unrolling (for loops)

CIS 371 (Hilton/Roth/Martin): Scheduling 19

Loop Unrolling SAXPY

•  Goal: separate dependent insns from one another
•  SAXPY problem: not enough flexibility within one iteration

•  Longest chain of insns is 9 cycles
•  Load (1)
•  Forward to multiply (5)
•  Forward to add (2)
•  Forward to store (1)

–  Can’t hide a 9-cycle chain using only 7 insns
•  But how about two 9-cycle chains using 14 insns?

•  Loop unrolling: schedule two or more iterations together
•  Fuse iterations
•  Schedule to reduce stalls
•  Schedule introduces ordering problems, rename registers to fix

CIS 371 (Hilton/Roth/Martin): Scheduling 20

Unrolling SAXPY I: Fuse Iterations

•  Combine two (in general K) iterations of loop
•  Fuse loop control: induction variable (i) increment + branch
•  Adjust (implicit) induction uses: constants → constants + 4

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blt r1,r2,0
ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blt r1,r2,0

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)

ldf X+4(r1),f1
mulf f0,f1,f2
ldf Y+4(r1),f3
addf f2,f3,f4
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

CIS 371 (Hilton/Roth/Martin): Scheduling 21

Unrolling SAXPY II: Pipeline Schedule

•  Pipeline schedule to reduce stalls
•  Have already seen this: pipeline scheduling

ldf X(r1),f1
ldf X+4(r1),f1
mulf f0,f1,f2
mulf f0,f1,f2
ldf Y(r1),f3
ldf Y+4(r1),f3
addf f2,f3,f4
addf f2,f3,f4
stf f4,Z(r1)
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
ldf X+4(r1),f1
mulf f0,f1,f2
ldf Y+4(r1),f3
addf f2,f3,f4
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

CIS 371 (Hilton/Roth/Martin): Scheduling 22

Unrolling SAXPY III: “Rename” Registers

•  Pipeline scheduling causes reordering violations
•  Rename registers to correct

ldf X(r1),f1
ldf X+4(r1),f5
mulf f0,f1,f2
mulf f0,f5,f6
ldf Y(r1),f3
ldf Y+4(r1),f7
addf f2,f3,f4
addf f6,f7,f8
stf f4,Z(r1)
stf f8,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

ldf X(r1),f1
ldf X+4(r1),f1
mulf f0,f1,f2
mulf f0,f1,f2
ldf Y(r1),f3
ldf Y+4(r1),f3
addf f2,f3,f4
addf f2,f3,f4
stf f4,Z(r1)
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

CIS 371 (Hilton/Roth/Martin): Scheduling 23

Unrolled SAXPY Performance/Utilization

+  Performance: 12 insn / 13 cycles = 0.92 IPC
+  Utilization: 0.92 actual IPC / 1 peak IPC = 92%
+  Speedup: (2 * 11 cycles) / 13 cycles = 1.69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X(r1)f1 F D X M W
ldf X+4(r1)f5 F D X M W
mulf f0,f1f2 F D E* E* E* E* E* W
mulf f0,f5f6 F D E* E* E* E* E* W
ldf Y(r1)f3 F D X M W
ldf Y+4(r1)f7 F D X M s* s* W
addf f2,f3f4 F D d* E+ E+ s* W
addf f6,f7f8 F p* D E+ p* E+ W
stf f4Z(r1) F D X M W
stf f8Z+4(r1) F D X M W
addi r18,r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1)f1 F D X M W

CIS 371 (Hilton/Roth/Martin): Scheduling 24

Loop Unrolling Shortcomings
–  Static code growth → more I$ misses (limits degree of unrolling)
–  Needs more registers to hold values (ISA limits this)
–  Doesn’t handle non-loops…
–  Doesn’t handle recurrences (inter-iteration dependences)

for (i=0;i<N;i++)
 X[i]=A*X[i-1];

ldf X-4(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
addi r1,4,r1
blt r1,r2,0
ldf X-4(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
addi r1,4,r1
blt r1,r2,0

ldf X-4(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
mulf f0,f2,f3
stf f3,X+4(r1)
addi r1,4,r1
blt r1,r2,0

•  Two mulf’s are not parallel
•  Other (more advanced) techniques help

CIS 371 (Hilton/Roth/Martin): Scheduling

Another Limitation: Branches

loop:
 jz r1, not_found
 ld [r1] -> r2
 sub r1, r2 -> r2
 jz r2, found
 ld [r1+4] -> r1
 jmp loop

Legal to move load up past branch?
No: if r1 is null, will cause a fault

Aside: what does this code do?
Searches a linked list for an element

25

Recap: Static Scheduling Limitations

•  Limited number of registers (set by ISA)

•  Scheduling scope
•  Example: can’t generally move memory operations past branches

•  Inexact memory aliasing information
•  Often prevents reordering of loads above stores

•  Caches misses (or any runtime event) confound scheduling
•  How can the compiler know which loads will miss vs hit?
•  Can impact the compiler’s scheduling decisions

CIS 371 (Hilton/Roth/Martin): Scheduling 26

CIS 371 (Hilton/Roth/Martin): Scheduling 27

Can Hardware Overcome These Limits?

•  Dynamically-scheduled processors
•  Also called “out-of-order” processors
•  Hardware re-schedules insns…
•  …within a sliding window of VonNeumann insns
•  As with pipelining and superscalar, ISA unchanged

•  Same hardware/software interface, appearance of in-order

•  Increases scheduling scope
•  Does loop unrolling transparently
•  Uses branch prediction to “unroll” branches

•  Examples:
•  Pentium Pro/II/III (3-wide), Core 2 (4-wide),

Alpha 21264 (4-wide), MIPS R10000 (4-wide), Power5 (5-wide)

•  Basic overview of approach (more information in CIS501)

CIS 371 (Hilton/Roth/Martin): Scheduling 28

The Problem With In-Order Pipelines
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

addf f0,f1f2 F D E+ E+ E+ W
mulf f2,f3f2 F D d* d* E* E* E* E* E* W
subf f0,f1f4 F p* p* D E+ E+ E+ W

•  What’s happening in cycle 4?
•  mulf stalls due to data dependence

•  OK, this is a fundamental problem
•  subf stalls due to pipeline hazard

•  Why? subf can’t proceed into D because addf is there
•  That is the only reason, and it isn’t a fundamental one

•  Maintaining in-order writes to register file

•  Why can’t subf go into D in cycle 4 and E+ in cycle 5?

CIS 371 (Hilton/Roth/Martin): Scheduling

Out-of-order Pipeline
Fe

tc
h

D
ec

od
e

R
en

am
e

D
is

pa
tc

h

C
om

m
it

Buffer of instructions

Is
su

e

R
eg

-r
ea

d

E
xe

cu
te

W
rit

eb
ac

k

In-order front end
Out-of-order execution

29

Code Example

•  Code:

•  “True” (real) & “False” (artificial) dependencies
•  Divide insn independent of subtract and multiply insns

•  Can execute in parallel with subtract

•  Many registers re-used
•  Just as in static scheduling, the register names get in the way
•  How does the hardware get around this?

•  Approach: (step #1) rename registers, (step #2) schedule

CIS 371 (Hilton/Roth/Martin): Scheduling 30

Raw insns

add r2,r3r1
sub r2,r1r3
mul r2,r3r3
div r1,4r1

CIS 371 (Hilton/Roth/Martin): Scheduling 31

Step #1: Register Renaming
•  To eliminate register conflicts/hazards
•  “Architected” vs “Physical” registers – level of indirection

•  Names: r1,r2,r3
•  Locations: p1,p2,p3,p4,p5,p6,p7
•  Original mapping: r1→p1, r2→p2, r3→p3, p4–p7 are “available”

•  Renaming – conceptually write each register once
+ Removes false dependences
+ Leaves true dependences intact!

•  When to reuse a physical register? After overwriting insn done

MapTable FreeList Original insns Renamed insns
r1 r2 r3
p1 p2 p3 p4,p5,p6,p7 add r2,r3,r1 add p2,p3,p4
p4 p2 p3 p5,p6,p7 sub r2,r1,r3 sub p2,p4,p5
p4 p2 p5 p6,p7 mul r2,r3,r3 mul p2,p5,p6
p4 p2 p6 p7 div r1,4,r1 div p4,4,p7

Register Renaming Algorithm

•  Data structures:
•  maptable[architectural_reg]  physical_reg
•  Free list: get/put free register

•  Algorithm: at decode for each instruction:
insn.phys_input1 = maptable[insn.arch_input1]

insn.phys_input2 = maptable[insn.arch_input2]

insn.phys_to_free = maptable[arch_output]

new_reg = get_free_phys_reg()

insn.phys_output = new_reg

maptable[arch_output] = new_reg

•  At “commit”
•  Once all older instructions have committed, free register
put_free_phys_reg(insn.phys_to_free)

CIS 371 (Hilton/Roth/Martin): Scheduling 32

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

r1 p1

r2 p2

r3 p3

r4 p4

r5 p5

Map table Free-list

p6

p7

p8

p9

p10

33

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p3

r4 p4

r5 p5

Map table Free-list

p6

p7

p8

p9

p10

xor p1 ^ p2 -> xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

34

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p3

r4 p4

r5 p5

Map table Free-list

p6

p7

p8

p9

p10

xor p1 ^ p2 -> p6 xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

35

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p6

r4 p4

r5 p5

Map table Free-list

p7

p8

p9

p10

xor p1 ^ p2 -> p6 xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

36

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p6

r4 p4

r5 p5

Map table Free-list

p7

p8

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 ->

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

37

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p6

r4 p4

r5 p5

Map table Free-list

p7

p8

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

38

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p6

r4 p7

r5 p5

Map table Free-list

p8

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

39

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p6

r4 p7

r5 p5

Map table Free-list

p8

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 ->

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

40

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p6

r4 p7

r5 p5

Map table Free-list

p8

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

41

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

42

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 ->

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

43

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

44

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p9

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

45

CIS 371 (Hilton/Roth/Martin): Scheduling

Out-of-order Pipeline
Fe

tc
h

D
ec

od
e

R
en

am
e

D
is

pa
tc

h

C
om

m
it

Buffer of instructions

Is
su

e

R
eg

-r
ea

d

E
xe

cu
te

W
rit

eb
ac

k

Have unique register names
Now put into ooo execution structures

46

CIS 371 (Hilton/Roth/Martin): Scheduling

Dispatch

•  Renamed instructions into ooo structures
•  Re-order buffer (ROB)

•  All instruction until commit
•  Issue Queue

•  Un-executed instructions
•  Central piece of scheduling logic
•  Content Addressable Memory (CAM)

47

CIS 371 (Hilton/Roth/Martin): Scheduling

RAM vs CAM

•  Random Access Memory
•  Read/write specific index
•  Get/set value there

•  Content Addressable Memory
•  Search for a value (send value to all entries)
•  Find matching indices (use comparator at each entry)
•  Output: one bit per entry (multiple match)

•  One structure can have ports of both types

48

CIS 371 (Hilton/Roth/Martin): Scheduling

RAM vs CAM: RAM

17

22

47

17

19

12

13

42

Read index 4
19

RAM: read/write specific index

49

CIS 371 (Hilton/Roth/Martin): Scheduling

RAM vs CAM: CAM

17

22

47

17

19

12

13

42

Find value “17”

CAM: search for value

Index 0

Index 3

50

CIS 371 (Hilton/Roth/Martin): Scheduling

Issue Queue

•  Holds un-executed instructions
•  Tracks ready inputs

•  Physical register names + ready bit
•  AND to tell if ready

Insn Inp1 R Inp2 R Dst

Ready?

Age

51

CIS 371 (Hilton/Roth/Martin): Scheduling

Dispatch Steps

•  Allocate IQ slot
•  Full? Stall

•  Read ready bits of inputs
•  Table 1-bit per preg

•  Clear ready bit of output in table
•  Instruction has not produced value yet

•  Write data in IQ slot

52

CIS 371 (Hilton/Roth/Martin): Scheduling

Dispatch Example

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

Insn Inp1 R Inp2 R Dst Age

Issue Queue

p1 y

p2 y

p3 y

p4 y

p5 y

p6 y

p7 y

p8 y

p9 y

Ready bits

53

CIS 371 (Hilton/Roth/Martin): Scheduling

Dispatch Example

Insn Inp1 R Inp2 R Dst Age

xor p1 y p2 y p6 0

Issue Queue

p1 y

p2 y

p3 y

p4 y

p5 y

p6 n

p7 y

p8 y

p9 y

Ready bits xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

54

CIS 371 (Hilton/Roth/Martin): Scheduling

Dispatch Example

Insn Inp1 R Inp2 R Dst Age

xor p1 y p2 y p6 0

add p6 n p4 y p7 1

Issue Queue

p1 y

p2 y

p3 y

p4 y

p5 y

p6 n

p7 n

p8 y

p9 y

Ready bits xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

55

CIS 371 (Hilton/Roth/Martin): Scheduling

Dispatch Example

Insn Inp1 R Inp2 R Dst Age

xor p1 y p2 y p6 0

add p6 n p4 y p7 1

sub p5 y p2 y p8 2

Issue Queue

p1 y

p2 y

p3 y

p4 y

p5 y

p6 n

p7 n

p8 n

p9 y

Ready bits xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

56

CIS 371 (Hilton/Roth/Martin): Scheduling

Dispatch Example

Insn Inp1 R Inp2 R Dst Age

xor p1 y p2 y p6 0

add p6 n p4 y p7 1

sub p5 y p2 y p8 2

addi p8 n --- y p9 3

Issue Queue

p1 y

p2 y

p3 y

p4 y

p5 y

p6 n

p7 n

p8 n

p9 n

Ready bits xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

57

CIS 371 (Hilton/Roth/Martin): Scheduling

Out-of-order pipeline

Issue

Reg-read

Execute

Writeback

•  Execution (ooo) stages
•  Select ready instructions

•  Send for execution

•  Wakeup dependents

58

Dynamic Scheduling/Issue Algorithm

•  Data structures:
•  Ready table[phys_reg]  yes/no (part of issue queue)

•  Algorithm at “schedule” stage (prior to read registers):
foreach instruction:

if table[insn.phys_input1] == ready && 
 table[insn.phys_input2] == ready then

 insn as “ready”

select the oldest “ready” instruction

table[insn.phys_output] = ready

CIS 371 (Hilton/Roth/Martin): Scheduling 59

CIS 371 (Hilton/Roth/Martin): Scheduling

Issue = Select + Wakeup

•  Select N oldest, ready instructions
  “xor” is the oldest ready instruction below
  “xor” and “sub” are the two oldest ready instructions below
•  Note: may have resource constraints: i.e. load/store/fp

Insn Inp1 R Inp2 R Dst Age

xor p1 y p2 y p6 0

add p6 n p4 y p7 1

sub p5 y p2 y p8 2

addi p8 n --- y p9 3

Ready!

Ready!

60

CIS 371 (Hilton/Roth/Martin): Scheduling

Issue = Select + Wakeup
•  Wakeup dependent instructions

•  CAM search for Dst in inputs
•  Set ready
•  Also update ready-bit table for future instructions

Insn Inp1 R Inp2 R Dst Age

xor p1 y p2 y p6 0

add p6 y p4 y p7 1

sub p5 y p2 y p8 2

addi p8 y --- y p9 3

p1 y

p2 y

p3 y

p4 y

p5 y

p6 y

p7 n

p8 y

p9 n

Ready bits

61

CIS 371 (Hilton/Roth/Martin): Scheduling

Issue
•  Select/Wakeup one cycle
•  Dependents go back to back

•  Next cycle: add/addi are ready:

Insn Inp1 R Inp2 R Dst Age

add p6 y p4 y p7 1

addi p8 y --- y p9 3

62

CIS 371 (Hilton/Roth/Martin): Scheduling

Register Read

•  When do instructions read the register file?

•  Option #1: after select, right before execute
•  (Not done at decode)
•  Read physical register (renamed)
•  Or get value via bypassing (based on physical register name)
•  This is Pentium 4, MIPS R10k, Alpha 21264 style

•  Physical register file may be large
•  Multi-cycle read

•  Option #2: as part of issue, keep values in Issue Queue
•  Pentium Pro, Core 2, Core i7

63

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming review

mul r4 * r5 -> r1

r1 p1

r2 p2

r3 p3

r4 p4

r5 p5

Map table Free-list

p6

p7

p8

p9

p10

Everyone rename this instruction:

64

CIS 371 (Hilton/Roth/Martin): Scheduling

Dispatch Review

div p7 / p6 -> p1

Insn Inp1 R Inp2 R Dst Age

p1 y

p2 y

p3 y

p4 y

p5 y

p6 n

p7 y

p8 y

p9 y

Ready bits Everyone dispatch this instruction:

65

CIS 371 (Hilton/Roth/Martin): Scheduling

Select Review

Insn Inp1 R Inp2 R Dst Age

add p3 y p1 y p2 0

mul p2 n p4 y p5 1

div p1 y p5 n p6 2

xor p4 y p1 y p9 3

Determine which instructions are ready.
Which will be issued on a 1-wide machine?
Which will be issued on a 2-wide machine?

66

CIS 371 (Hilton/Roth/Martin): Scheduling

Wakeup Review

Insn Inp1 R Inp2 R Dst Age

add p3 y p1 y p2 0

mul p2 n p4 y p5 1

div p1 y p5 n p6 2

xor p4 y p1 y p9 3

What information will change if we issue the add?

67

CIS 371 (Hilton/Roth/Martin): Scheduling

OOO execution (2-wide)

p1 7

p2 3

p3 4

p4 9

p5 6

p6 0

p7 0

p8 0

p9 0

xor RDY
add
sub RDY
addi

68

CIS 371 (Hilton/Roth/Martin): Scheduling

OOO execution (2-wide)

p1 7

p2 3

p3 4

p4 9

p5 6

p6 0

p7 0

p8 0

p9 0

add RDY

addi RDY

xo
r p

1^
 p

2
->

 p
6

su
b

p5
 -

p2
 ->

 p
8

69

CIS 371 (Hilton/Roth/Martin): Scheduling

OOO execution (2-wide)

p1 7

p2 3

p3 4

p4 9

p5 6

p6 0

p7 0

p8 0

p9 0

ad
d

p6
 +

p4
 ->

p7

ad
di

 p
8

+1
 ->

 p
9

xo
r 7

^
3

->
 p

6
su

b
6

- 3
 ->

 p
8

70

CIS 371 (Hilton/Roth/Martin): Scheduling

OOO execution (2-wide)

p1 7

p2 3

p3 4

p4 9

p5 6

p6 0

p7 0

p8 0

p9 0

ad
d

_
+

9
->

 p
7

ad
di

 _
 +

1
->

 p
9

4
->

 p
6

3
->

 p
8

71

CIS 371 (Hilton/Roth/Martin): Scheduling

OOO execution (2-wide)

p1 7

p2 3

p3 4

p4 9

p5 6

p6 4

p7 0

p8 3

p9 0

13
 ->

 p
7

4
->

 p
9

72

CIS 371 (Hilton/Roth/Martin): Scheduling

OOO execution (2-wide)

p1 7

p2 3

p3 4

p4 9

p5 6

p6 4

p7 13

p8 3

p9 4

73

CIS 371 (Hilton/Roth/Martin): Scheduling

OOO execution (2-wide)

p1 7

p2 3

p3 4

p4 9

p5 6

p6 4

p7 13

p8 3

p9 4

Note similarity
to in-order

74

CIS 371 (Hilton/Roth/Martin): Scheduling

Multi-cycle operations

•  Multi-cycle ops (load, fp, multiply, etc)
•  Wakeup deferred a few cycles

•  Structural hazard?

•  Cache misses?
•  Speculative wake-up (assume hit)
•  Cancel exec of dependents
•  Re-issue later
•  Details: complicated, not important

75

CIS 371 (Hilton/Roth/Martin): Scheduling

Re-order Buffer (ROB)

•  All instructions in order
•  Two purposes

•  Misprediction recovery
•  In-order commit

•  Maintain appearance of in-order execution
•  Freeing of physical registers

76

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming revisited

•  Overwritten register
•  Freed at commit
•  Restore in map table on recovery

•  Branch mis-prediction recovery
  Also must be read at rename

77

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

r1 p1

r2 p2

r3 p3

r4 p4

r5 p5

Map table Free-list

p6

p7

p8

p9

p10

78

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p3

r4 p4

r5 p5

Map table Free-list

p6

p7

p8

p9

p10

xor p1 ^ p2 -> xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]

79

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p6

r4 p4

r5 p5

Map table Free-list

p7

p8

p9

p10

xor p1 ^ p2 -> p6 xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]

80

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p6

r4 p4

r5 p5

Map table Free-list

p7

p8

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 ->

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]
[p4]

81

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p6

r4 p7

r5 p5

Map table Free-list

p8

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]
[p4]

82

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p6

r4 p7

r5 p5

Map table Free-list

p8

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 ->

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]
[p4]
[p6]

83

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]
[p4]
[p6]

84

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p1

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p9

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 ->

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]
[p4]
[p6]
[p1]

85

CIS 371 (Hilton/Roth/Martin): Scheduling

Renaming example

r1 p9

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p10

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]
[p4]
[p6]
[p1]

86

CIS 371 (Hilton/Roth/Martin): Scheduling

ROB

•  ROB entry holds all info for recover/commit
•  Logical register names
•  Physical register names
•  Instruction types

•  Dispatch: insert at tail
•  Full? Stall

•  Commit: remove from head
•  Not completed? Stall

87

CIS 371 (Hilton/Roth/Martin): Scheduling

Recovery

•  Completely remove wrong path instructions
•  Flush from IQ
•  Remove from ROB
•  Restore map table to before misprediction
•  Free destination registers

88

CIS 371 (Hilton/Roth/Martin): Scheduling

Recovery example

r1 p9

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p10

bnz p1, loop
xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

bnz r1 loop
xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[]
[p3]
[p4]
[p6]
[p1]

89

CIS 371 (Hilton/Roth/Martin): Scheduling

Recovery example

r1 p1

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p10

bnz p1, loop
xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

bnz r1 loop
xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[]
[p3]
[p4]
[p6]
[p1]

 p9

90

CIS 371 (Hilton/Roth/Martin): Scheduling

Recovery example

r1 p1

r2 p2

r3 p6

r4 p7

r5 p5

Map table Free-list

p10

bnz p1, loop
xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8

bnz r1 loop
xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3

[]
[p3]
[p4]
[p6]

 p9

 p8

91

CIS 371 (Hilton/Roth/Martin): Scheduling

Recovery example

r1 p1

r2 p2

r3 p6

r4 p4

r5 p5

Map table Free-list

p10

bnz p1, loop
xor p1 ^ p2 -> p6
add p6 + p4 -> p7

bnz r1 loop
xor r1 ^ r2 -> r3
add r3 + r4 -> r4

[]
[p3]
[p4]

 p9

 p8

 p7

92

CIS 371 (Hilton/Roth/Martin): Scheduling

Recovery example

r1 p1

r2 p2

r3 p3

r4 p4

r5 p5

Map table Free-list

p10

bnz p1, loop
xor p1 ^ p2 -> p6

bnz r1 loop
xor r1 ^ r2 -> r3

[]
[p3]

 p9

 p8

 p7

 p6

93

CIS 371 (Hilton/Roth/Martin): Scheduling

Recovery example

r1 p1

r2 p2

r3 p3

r4 p4

r5 p5

Map table Free-list

p10

bnz p1, loop bnz r1 loop []

 p9

 p8

 p7

 p6

94

CIS 371 (Hilton/Roth/Martin): Scheduling

What about stores

•  Stores: Write D$, not registers
•  Can we rename memory?
•  Recover in the cache?

95

CIS 371 (Hilton/Roth/Martin): Scheduling

What about stores

•  Stores: Write D$, not registers
•  Can we rename memory?
•  Recover in the cache?

  No (at least not easily)
•  Cache writes unrecoverable
•  Stores: only when certain

•  Commit

96

CIS 371 (Hilton/Roth/Martin): Scheduling

Commit

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]
[p4]
[p6]
[p1]

•  Commit: instruction becomes architected state

•  In-order, only when instructions are finished

•  Free overwritten register (why?)

97

CIS 371 (Hilton/Roth/Martin): Scheduling

Freeing over-written register

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]
[p4]
[p6]
[p1]

•  P3 was r3 before xor

•  P6 is r3 after xor

•  Anything older than xor should read p3

•  Anything younger than xor should p6 (until next r3 writing
 instruction

•  At commit of xor, no older instructions exist

98

CIS 371 (Hilton/Roth/Martin): Scheduling

Commit Example

r1 p9

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]
[p4]
[p6]
[p1]

99

p10

CIS 371 (Hilton/Roth/Martin): Scheduling

Commit Example

r1 p9

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

xor p1 ^ p2 -> p6
add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

xor r1 ^ r2 -> r3
add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p3]
[p4]
[p6]
[p1]

 p3

100

p10

CIS 371 (Hilton/Roth/Martin): Scheduling

Commit Example

r1 p9

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p10

add p6 + p4 -> p7
sub p5 - p2 -> p8
addi p8 + 1 -> p9

add r3 + r4 -> r4
sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p4]
[p6]
[p1]

 p4

 p3

101

CIS 371 (Hilton/Roth/Martin): Scheduling

Commit Example

r1 p9

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p10

sub p5 - p2 -> p8
addi p8 + 1 -> p9

sub r5 - r2 -> r3
addi r3 + 1 -> r1

[p6]
[p1]

 p4

 p3

 p6

102

CIS 371 (Hilton/Roth/Martin): Scheduling

Commit Example

r1 p9

r2 p2

r3 p8

r4 p7

r5 p5

Map table Free-list

p10

addi p8 + 1 -> p9 addi r3 + 1 -> r1 [p1]

 p4

 p3

 p6

 p1

103

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of order pipeline diagrams

•  Standard style: large and cumbersome
•  Change layout slightly

•  Columns = stages (dispatch, issue, etc)
•  Rows = instructions
•  Content of boxes = cycles

•  For our purposes: issue/exec = 1 cycle
•  Ignore preg read latency, etc
•  Load-use, mul, div, and FP longer

104

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of order pipeline diagrams

Instruction Disp Issue WB Commit

Ld [p1] -> p2

add p2 + p3 -> p4

xor p4 ^ p5 -> p6

ld [p7] -> p8

2-wide
Infinite ROB, IQ, Pregs
Loads: 3 cycles

105

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of order pipeline diagrams

Instruction Disp Issue WB Commit

Ld [p1] -> p2

add p2 + p3 -> p4

xor p4 ^ p5 -> p6

ld [p7] -> p8

1

1

Cycle 1:
•  Dispatch ld and add

106

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of order pipeline diagrams

Instruction Disp Issue WB Commit

Ld [p1] -> p2

add p2 + p3 -> p4

xor p4 ^ p5 -> p6

ld [p7] -> p8

1

1

2 5

2

2

Cycle 1:
•  Dispatch xor and ld
•  1st Ld issues -- also note WB cycle while you do this

 (Note: don’t issue if WB ports full)

107

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of order pipeline diagrams

Instruction Disp Issue WB Commit

Ld [p1] -> p2

add p2 + p3 -> p4

xor p4 ^ p5 -> p6

ld [p7] -> p8

1

1

2 5

2

2 3 6

Cycle 3:
•  add and xor are not ready
•  2nd load is- issue it

108

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of order pipeline diagrams

Instruction Disp Issue WB Commit

Ld [p1] -> p2

add p2 + p3 -> p4

xor p4 ^ p5 -> p6

ld [p7] -> p8

1

1

2 5

2

2 3 6

5 6

Cycle 4:
•  Nothing

Cycle 5:
•  Add can issue

109

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of order pipeline diagrams

Instruction Disp Issue WB Commit

Ld [p1] -> p2

add p2 + p3 -> p4

xor p4 ^ p5 -> p6

ld [p7] -> p8

1

1

2 5

2

2 3 6

5 6

6 7

6

Cycle 6:
•  1st load can commit (oldest instruction and finished)
•  xor can issue

110

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of order pipeline diagrams

Instruction Disp Issue WB Commit

Ld [p1] -> p2

add p2 + p3 -> p4

xor p4 ^ p5 -> p6

ld [p7] -> p8

1

1

2 5

2

2 3 6

5 6

6 7

6

7

Cycle 7:
•  Add can commit

111

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of order pipeline diagrams

Instruction Disp Issue WB Commit

Ld [p1] -> p2

add p2 + p3 -> p4

xor p4 ^ p5 -> p6

ld [p7] -> p8

1

1

2 5

2

2 3 6

5 6

6 7

6

7

8

8

Cycle 8:
•  Commit xor and ld (2-wide: can do both at once)

112

CIS 371 (Hilton/Roth/Martin): Scheduling 113

Dynamically Scheduling Memory Ops
•  Compilers must schedule memory ops conservatively
•  Options for hardware:

•  Don’t execute any load until all prior stores execute (conservative)
•  Execute loads as soon as possible, detect violations (aggressive)

•  When a store executes, it checks if any later loads executed too
 early (to same address). If so, flush pipeline

•  Learn violations over time, selectively reorder (predictive)
Before
ld r2,4(sp)
ld r3,8(sp)
add r3,r2,r1 //stall
st r1,0(sp)
ld r5,0(r8)
ld r6,4(r8)
sub r5,r6,r4 //stall
st r4,8(r8)

Wrong(?)
ld r2,4(sp)
ld r3,8(sp)
ld r5,0(r8) //does r8==sp?
add r3,r2,r1
ld r6,4(r8) //does r8+4==sp?
st r1,0(sp)
sub r5,r6,r4
st r4,8(r8)

CIS 371 (Hilton/Roth/Martin): Scheduling

Loads and Stores

Instruction Disp Issue WB Commit

fdiv p1 / p2 ->p3

st p4 -> [p5]

st p3 -> [p6]

ld [p7] -> p8

1

1

2 25

2

2

2

Cycle 3:
•  Can ld [p7] -> p8 execute?
•  Why or why not?

3

114

CIS 371 (Hilton/Roth/Martin): Scheduling

Loads and Stores

Instruction Disp Issue WB Commit

fdiv p1 / p2 ->p3

st p4 -> [p5]

st p3 -> [p6]

ld [p7] -> p8

1

1

2 25

2

2

2

Aliasing (again)
•  p5 == p7?
•  p6 == p7?

3

115

CIS 371 (Hilton/Roth/Martin): Scheduling

Loads and Stores

Instruction Disp Issue WB Commit

fdiv p1 / p2 ->p3

st p4 -> [p5]

st p3 -> [p6]

ld [p7] -> p8

1

1

2 25

2

2

2

Suppose p5 == p7 and p6 != p7
 Can ld execute now?

3

116

CIS 371 (Hilton/Roth/Martin): Scheduling

Memory Forwarding

•  Stores write cache at commit
•  Commit is in-order, delayed by all instructions
•  Allows stores to be “undone” on branch mis-predictions, etc.

•  Loads read cache
•  Early execution of loads is critical

•  Forwarding
•  Allow store -> load communication before store commit
•  Conceptually like reg. bypassing, but different implementation

•  Why? Addresses unknown until execute

117

CIS 371 (Hilton/Roth/Martin): Scheduling

Forwarding: Store Queue
•  Store Queue

•  Holds all in-flight stores
•  CAM: searchable by address
•  Age logic: determine youngest

matching store older than load

•  Store execution
•  Write Store Queue

•  Address + Data

•  Load execution
•  Search SQ

•  Match? Forward
•  Read D$

value address
== == == == == == == ==

age

Data cache

head

tail

load position
address data in data out

Store Queue (SQ)

118

CIS 371 (Hilton/Roth/Martin): Scheduling

Load scheduling

•  Store->Load Forwarding:
•  Get value from executed (but not comitted) store to load

•  Load Scheduling:
•  Determine when load can execute with regard to older stores

•  Conservative load scheduling:
•  All older stores have executed
•  Some architectures: split store address / store data

•  Only require known address
•  Advantage: always safe
•  Disadvantage: performance (limits out-of-orderness)

119

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before

ld [r1] -> r5
ld [r2] -> r6
add r5 + r6 -> r7 With conservative load scheduling,
st r7 -> [r3] what can go out of order?
ld 4[r1] -> r5
ld 4[r2] -> r6
add r5 + r6 -> r7
st r7 -> 4[r3]
// loop control here

120

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

Suppose 2 wide, conservative scheduling. May issue 1 load
per cycle. Loads take 3 cycles to complete.

1

1

121

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

1

1

2

2

2

5

122

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

1

1

2

2

2

5

3 6

3

3

123

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

Conservative load scheduling: can’t issue ld4[p1]->p8

1

1

2

2

2

5

3 6

3

3

4

4

124

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

1

1

2

2

2

5

3 6

3

3

4

4

6 7

6

125

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

1

1

2

2

2

5

3 6

3

3

4

4

6 7

7 8

6

7

126

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

1

1

2

2

2

5

3 6

3

3

4

4

6 7

7 8

6

7

8

8 11

127

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

1

1

2

2

2

5

3 6

3

3

4

4

6 7

7 8

6

7

8

8 11

9

9 12

128

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

1

1

2

2

2

5

3 6

3

3

4

4

6 7

7 8

6

7

8

8 11

9

9 12

12

12 13

129

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

1

1

2

2

2

5

3 6

3

3

4

4

6 7

7 8

6

7

8

8 11

9

9 12

12

12 13

13

13 14

130

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

1

1

2

2

2

5

3 6

3

3

4

4

6 7

7 8

6

7

8

8 11

9

9 12

12

12 13

13

13 14

14

131

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

Our 2-wide ooo processor may as well be 1-wide in-order!

1

1

2

2

2

5

3 6

3

3

4

4

6 7

7 8

6

7

8

8 11

9

9 12

12

12 13

13

13 14

14

15

132

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]
•  It would be nice if we could issue ld 4[p1]->p8 in c4.

•  Can we speculate and issue it then?

1

1

2

2

2

5

3 6

3

3

4

4

4 7

133

CIS 371 (Hilton/Roth/Martin): Scheduling

Load Speculation

•  Speculation requires two things…..
•  Detection of mis-speculations

•  How can we do this?

•  Recovery from mis-speculations
•  Squash from offending load
•  Saw how to squash from branches: same method

134

CIS 371 (Hilton/Roth/Martin): Scheduling

Load Queue

•  Detects load ordering
violations

•  Load execution: Write
address into LQ
•  Also note any store

forwarded from

•  Store execution: Search LQ
•  Younger load with same

addr?
•  Didn’t forward from younger

store?

== == == == == == == ==

Data Cache

head

tail

load queue (LQ)

address
== == == == == == == ==

tail

head

age

store position flush?

SQ

135

CIS 371 (Hilton/Roth/Martin): Scheduling

Store Queue + Load Queue

•  Store Queue: handles forwarding
•  Written by stores (@ execute)
•  Searched by loads (@ execute)
•  Read from to write data cache (@ commit)

•  Load Queue: detects ordering violations
•  Written by loads (@ execute)
•  Searched by stores (@ execute)

•  Both together
•  Allows aggressive load scheduling

•  Stores don’t constrain load execution

136

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]
•  Aggressive load scheduling?

•  Issue ld 4[p1]->p8 in cycle 4

1

1

2

2

2

5

3 6

3

3

4

4

4 7

137

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

1

1

2

2

2

5

3 6

3

3

4

4

4 7

5 8

138

CIS 371 (Hilton/Roth/Martin): Scheduling

Our example from before
 Disp Issue WB Commit
ld [p1] -> p5
ld [p2] -> p6
add p5 + p6 -> p7
st p7 -> [p3]
ld 4[p1] -> p8
ld 4[p2] -> p9
add p8 + p9 -> p4
st p4 -> 4[p3]

Saves 4 cycles over conservative
Actually uses ooo-ness

1

1

2

2

2

5

3 6

3

3

4

4

4 7

5 8

6

6

7

7

7

8

8

8

9

9

9

9

10

10

10 11

139

CIS 371 (Hilton/Roth/Martin): Scheduling

Aggressive Load scheduling

•  Allows loads to issue before older stores
•  Increases out-of-orderness
+  When no conflict, increases performance
-  Conflict => squash => worse performance than waiting

•  Some loads might forward from stores
•  Always aggressive will squash a lot

•  Can we have our cake AND eat it too?

140

CIS 371 (Hilton/Roth/Martin): Scheduling

Predictive Load scheduling

•  Predict which loads must wait for stores

•  Fool me once, shame on you-- fool me twice?
•  Loads default to aggressive
•  Keep table of load PCs that have been caused squashes

•  Schedule these conservatively
+  Simple predictor
-  Makes “bad” loads wait for all older stores is not so great

•  More complex predictors used in practice
•  Predict which stores loads should wait for

141

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of Order: Window Size

•  Scheduling scope = ooo window size
•  Larger = better
•  Constrained by physical registers (#preg)

•  ROB roughly limited by #preg = ROB size + #logical registers
•  Big register file = hard/slow

•  Constrained by issue queue
•  Limits number of un-executed instructions
•  CAM = can’t make big (power + area)

•  Constrained by load + store queues
•  Limit number of loads/stores
•  CAMs
•  Active area of research: scaling window sizes

•  Usefulness of large window: limited by branch prediction
•  95% branch mis-prediction rate: 1 in 20 branches, or 1 in 100 insn.

142

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of Order: Benefits

•  Allows speculative re-ordering
•  Loads / stores
•  Branch prediction

•  Schedule can change due to cache misses
•  Different schedule optimal from on cache hit

•  Done by hardware
•  Compiler may want different schedule for different hw configs
•  Hardware has only its own configuration to deal with

143

CIS 371 (Hilton/Roth/Martin): Scheduling 144

Recap: Dynamic Scheduling
•  Dynamic scheduling

•  Totally in the hardware
•  Also called “out-of-order execution” (OoO)

•  Fetch many instructions into instruction window
•  Use branch prediction to speculate past (multiple) branches
•  Flush pipeline on branch misprediction

•  Rename to avoid false dependencies
•  Execute instructions as soon as possible

•  Register dependencies are known
•  Handling memory dependencies more tricky

•  “Commit” instructions in order
•  Anything strange happens before commit, just flush the pipeline

•  Current machines: 100+ instruction scheduling window

CIS 371 (Hilton/Roth/Martin): Scheduling

Out of Order: Top 5 Things to Know
•  Register renaming

•  How to perform is and how to recover it

•  Commit
•  Precise state (ROB)
•  How/when registers are freed

•  Issue/Select
•  Wakeup: CAM
•  Choose N oldest ready instructions

•  Stores
•  Write at commit
•  Forward to loads via LQ

•  Loads
•  Conservative/aggressive/predictive scheduling
•  Violation detection

145

CIS 371 (Hilton/Roth/Martin): Scheduling 146

Static vs Dynamic Scheduling

•  If we can do this in software…
•  …why build complex (slow-clock, high-power) hardware?

+  Performance portability
•  Don’t want to recompile for new machines

+  More information available
•  Memory addresses, branch directions, cache misses

+  More registers available
•  Compiler may not have enough to schedule well

+  Speculative memory operation re-ordering
•  Compiler must be conservative, hardware can speculate

–  But compiler has a larger scope
•  Compiler does as much as it can (not much)
•  Hardware does the rest

CIS 371 (Hilton/Roth/Martin): Scheduling 147

This Unit: Code Scheduling

•  Pipelining and superscalar review

•  Code scheduling
•  To reduce pipeline stalls
•  To increase ILP (insn level parallelism)

•  Two approaches
•  Static scheduling by the compiler
•  Dynamic scheduling by the hardware

•  Up next: multiprocessing

CPU Mem I/O

System software

App App App

