Rest of the Semester

e Topics yet to cover
¢ Virtual memory

CIS 371 : E;S\;IV(Zr&&I{aaergy
Computer Organization and Design « Reliability

Data-level parallelism (SIMD, Vectors, and GPUs)
XBox 360 case study

Unit 10: Virtual Memory & I/O)
¢ Perennial problem:

¢ Only three lectures remaining...

¢ By design (we're actually “on schedule”)

« Will try to hit the highlights, give some context
¢ Try not to be overwhelmed

CIS 371 (Roth/Martin): Virtual Memory & 1/0 1 CIS 371 (Roth/Martin): Virtual Memory & 1/0

This Unit: Virtualization & I/O Readings

App || App | [App | e The operating system (OS) * P&H
System software « A super-application ¢ Virtual Memory: 5.4

cPU ¢ Hardware support for an 0S * 1/0 & Disks: 6.1-6.5, 6.8
e Virtual memory

¢ Page tables and address translation

¢ TLBs and memory hierarchy issues
e I/O

¢ Magnetic storage (disks)

¢ Solid-state storage (flash memory)

CIS 371 (Roth/Martin): Virtual Memory & 1/0 3 CIS 371 (Roth/Martin): Virtual Memory & 1/0

A Computer System: Hardware

e CPUs and memories
¢ Connected by memory bus
e I/0 peripherals: storage, input, display, network, ...
¢ With separate or built-in DMA
¢ Connected by system bus (which is connected to memory bus)

| Memory bus |~—'| System (I/0) bus |
] i | bridge i i i
[cPuss|[cPu/s| M [DMA] [DMA] [1Octrl]
emory
Disk NI
CIS 371 (Roth/Martin): Virtual Memory & I/O 5

A Computer System: + OS

A Computer System: + App Software

e Operating System (0S): virtualizes hardware for apps
¢ Abstraction: provides services (e.g., threads, files, etc.)
+ Simplifies app programming model, raw hardware is nasty
« Isolation: gives each app illusion of private CPU, memory, I/O
+ Simplifies app programming model
+ Increases hardware resource utilization

Application || Application || Application || Application
| Memory bus |~—'| System (I/O) bus
I I I bridge
[cPuss||cPus| Memory [DmA | | DMA | [1/Octrl|
D -
B
CIS 371 (Roth/Martin): Virtual Memory & I/O 7

e Application software: computer must do something

| Application sofware |

| Memory bus |~—'| System (I/0O) bus
I I I bridge
[cPuss|[cPu/s| Memory [DMA | [DMA | |1/Octrl]
D -
B
CIS 371 (Roth/Martin): Virtual Memory & I/0 6

Operating System (OS) and User Apps

e Sane system development requires a split
* Hardware itself facilitates/enforces this split

e Operating System (0S): a super-privileged process
¢ Manages hardware resource allocation/revocation for all processes
¢ Has direct access to resource allocation features
¢ Aware of many nasty hardware details
¢ Aware of other processes
o Talks directly to input/output devices (device driver software)

e User-level apps: ignorance is bliss
¢ Unaware of most nasty hardware details
¢ Unaware of other apps (and OS)
¢ Explicitly denied access to resource allocation features

CIS 371 (Roth/Martin): Virtual Memory & 1/0 8

System Calls

¢ Controlled transfers to/from OS

e System Call: a user-level app “function call” to OS
* Leave description of what you want done in registers

SYSCALL instruction (also called TRAP or INT)

¢ Can't allow user-level apps to invoke arbitrary OS code

e Restricted set of legal OS addresses to jump to (trap vector)
e Processor jumps to OS using trap vector

e Sets privileged mode
OS performs operation
OS does a “return from system call”

¢ Unsets privileged mode

CIS 371 (Roth/Martin): Virtual Memory & 1/0 9

Typical I/O Device Interface

Interrupts

¢ Operating system talks to the I/O device
¢ Send commands, query status, etc.
¢ Software uses special uncached load/store operations
e Hardware sends these reads/writes across I/O bus to device

e Direct Memory Access (DMA)
¢ For big transfers, the I/O device accesses the memory directly
e Example: DMA used to transfer an entire block to/from disk

e Interrupt-driven I/O
¢ The I/O device tells the software its transfer is complete
¢ Tells the hardware to raise an “interrupt” (door bell)
¢ Processor jumps into the OS
» Inefficient alternative: polling

CIS 371 (Roth/Martin): Virtual Memory & 1/0 11

e Exceptions: synchronous, generated by running app
¢ E.g., illegal insn, divide by zero, etc.
e Interrupts: asynchronous events generated externally
e E.g., timer, I/O request/reply, etc.
e "“Interrupt” handling: same mechanism for both
e “Interrupts” are on-chip signals/bits
e Either internal (e.g., timer, exceptions) or connected to pins
* Processor continuously monitors interrupt status, when one is high...
¢ Hardware jumps to some preset address in OS code (interrupt vector)
¢ Like an asynchronous, non-programmatic SYSCALL
e Timer: programmable on-chip interrupt
¢ Initialize with some number of micro-seconds
e Timer counts down and interrupts when reaches 0

CIS 371 (Roth/Martin): Virtual Memory & 1/0 10

Virtualizing Processors

e How do multiple apps (and OS) share the processors?
¢ Goal: applications think there are an infinite # of processors

e Solution: time-share the resource
» Trigger a context switch at a regular interval (~1ms)
¢ Pre-emptive: app doesn't yield CPU, OS forcibly takes it
+ Stops greedy apps from starving others
¢ Architected state: PC, registers
¢ Save and restore them on context switches
¢ Memory state?
* Non-architected state: caches, branch predictor tables, etc.
e Ignore or flush
e Operating responsible to handle context switching
¢ Hardware support is just a timer interrupt

CIS 371 (Roth/Martin): Virtual Memory & 1/0 12

Virtualizing Main Memory

¢ How do multiple apps (and the OS) share main memory?
¢ Goal: each application thinks it has infinite memory

¢ One app may want more memory than is in the system
e App’s insn/data footprint may be larger than main memory
* Requires main memory to act like a cache
¢ With disk as next level in memory hierarchy (slow)
o Write-back, write-allocate, large blocks or “pages”
¢ No notion of “program not fitting” in registers or caches (why?)
e Solution:
e Part #1: treat memory as a “cache”
e Store the overflowed blocks in “swap” space on disk
o Part #2: add a level of indirection (address translation)

CIS 371 (Roth/Martin): Virtual Memory & 1/0 13

Virtual Memory (VM)

¢ Virtual Memory (VM):
¢ Level of indirection (like register renaming)
» Application generated addresses are virtual addresses (VAs)
e Each process thinks it has its own 2N bytes of address space
¢ Memory accessed using physical addresses (PAs)
¢ VAs translated to PAs at some coarse granularity
¢ OS controls VA to PA mapping for itself and all other processes
* Logically: translation performed before every insn fetch, load, store
¢ Physically: hardware acceleration removes translation overhead

0S App1 App2
|||||| I'I'I'I'I'I—D]‘_||||||| VAs
‘ Dll‘ = I.|--|.'--| OS controlled VA—PA mappings
L PAs (physical memory)
CIS 371 (Roth/Martin): Virtual Memory & 1/O 15

Virtual Memory (VM)

Program e Programs use virtual addresses (VA)
code heap stack e 0..2N-1
¢ VA size also referred to as machine size
¢ E.g., 32-bit (embedded) or 64-bit (server)

[
J e Memory uses physical addresses (PA)
e 0...2M-1 (typically M<N, especially if N=64)
e 2Mis most physical memory machine supports
Main|M¢mory
A e VA—PA at page granularity (VP—PP)

e By “system”
¢ Mapping need not preserve contiguity
¢ VP need not be mapped to any PP
e Unmapped VPs live on disk (swap)

CIS 371 (Roth/Martin): Virtual Memory & I/O 14

VM is an Old Idea: Older than Caches

¢ Original motivation: single-program compatibility
¢ IBM System 370: a family of computers with one software suite
+ Same program could run on machines with different memory sizes
— Prior, programmers explicitly accounted for memory size

* But also: full-associativity + software replacement
e Memory t is high: extremely important to reduce %,

Parameter |1$/D$ L2 Main Memory

thic 2ns 10ns 30ns

toniss 10ns 30ns 10ms (10M ns)
Capacity 8-64KB 128KB-2MB 64MB-64GB

Block size 16-32B 32-256B 4+KB

Assoc./Repl. | 1-4, NMRU 4-16, NMRU Full, “working set”

CIS 371 (Roth/Martin): Virtual Memory & 1/0 16

Uses of Virtual Memory

e More recently: isolation and multi-programming

e Each app thinks it has 2N B of memory, its stack starts OxFFFFFFFF, ...

¢ Apps prevented from reading/writing each other’s memory
e Can't even address the other program’s memory!
¢ Protection
o Each page with a read/write/execute permission set by OS
¢ Enforced by hardware
¢ Inter-process communication.
¢ Map same physical pages into multiple virtual address spaces
¢ Or share files via the UNIX mmap () call

0S App1 App2

oo i

i

CIS 371 (Roth/Martin): Virtual Memory & 1/0 17

Address Translation

Virtual Memory: The Basics

foafio

virtual address[31:0] | VPN[31:16] | POFS[15:0] |
translate | | don’t touch
physical address[25:0] | PPN[27:16] | POFS[15:0] |

e VA—PA mapping called address translation
¢ Split VA into virtual page number (VPN) & page offset (POFS)
¢ Translate VPN into physical page number (PPN)
e POFS is not translated
¢ VA—PA = [VPN, POFS] — [PPN, POFS]

e Example above
¢ 64KB pages — 16-bit POFS
¢ 32-bit machine — 32-bit VA — 16-bit VPN
e Maximum 256MB memory — 28-bit PA — 12-bit PPN

CIS 371 (Roth/Martin): Virtual Memory & 1/0 19

e Programs use virtual addresses (VA)
¢ VA size (N) aka machine size (e.g., Core 2 Duo: 48-bit)
e Memory uses physical addresses (PA)
¢ PA size (M) typically M<N, especially if N=64
e 2Mis most physical memory machine supports
e VA—PA at page granularity (VP—PP)
¢ Mapping need not preserve contiguity
¢ VP need not be mapped to any PP
¢ Unmapped VPs live on disk (swap) or nowhere (if not yet touched)

0S App1

Yy Vv YV vy

CIS 371 (Roth/Martin): Virtual Memory & 1/0 18

Address Translation Mechanics I

e How are addresses translated?
¢ In software (for now) but with hardware acceleration (a little later)
e Each process allocated a page table (PT)
+ Software data structure constructed by OS
e Maps VPs to PPs or to disk (swap) addresses
¢ VP entries empty if page never referenced

PT

¢ Translation is table lookup

struct {
int ppn;

vpn
II
)

int is_valid, is_dirty, is_swapped;

} PTE; | : I

struct PTE page table[NUM VIRTUAL PAGES];

int translate(int vpn) {
if (page_table[vpn].is_valid)
return page_table[vpn].ppn;

Disk(swap)
}

CIS 371 (Roth/Martin): Virtual Memory & 1/0 20

Page Table Size

Multi-Level Page Table (PT)

e How big is a page table on the following machine?
¢ 32-bit machine
¢ 4B page table entries (PTEs)
e 4KB pages

e 32-bit machine — 32-bit VA — 4GB virtual memory
e 4GB virtual memory / 4KB page size — 1M VPs
e 1M VPs * 4B PTE — 4MB

e How big would the page table be with 64KB pages?
e How big would it be for a 64-bit machine?

¢ Page tables can get big

e There are ways of making them smaller

CIS 371 (Roth/Martin): Virtual Memory & 1/0

Multi-Level Page Table (PT)

21

¢ One way: multi-level page tables

Tree of page tables

Lowest-level tables hold PTEs

Upper-level tables hold pointers to lower-level tables
Different parts of VPN used to index different levels

e Example: two-level page table for machine on last slide
¢ Compute number of pages needed for lowest-level (PTEs)
» 4KB pages / 4B PTEs — 1K PTEs/page
e 1M PTEs / (1K PTEs/page) — 1K pages
¢ Compute number of pages needed for upper-level (pointers)
¢ 1K lowest-level pages — 1K pointers
¢ 1K pointers * 32-bit VA — 4KB — 1 upper level page

CIS 371 (Roth/Martin): Virtual Memory & 1/0 22

Multi-Level Page Table (PT)

e 20-bit VPN [veNi19:101 | VPN[:0] | 2nd-level

PTEs

¢ Upper 10 bits index 1st-level table

. 1st-level
e Lower 10 bits index 2nd-level table ot “root’|_“pointers”

struct { T]
int ppn; H

>

int is_valid, is_dirty, is_swapped;

} PTE;
struct { struct PTE ptes[1024]; } L2PT;
struct L2PT *page table[1024];

int translate(int vpn) {
indexl = (vpn >> 10); // upper 10 bits

index2 = (vpn & O0x3ff); // lower 10 bits
struct L2PT *12pt = page_table[indexl];
if (12pt !'= NULL &&
12pt->ptes[index2] .is_valid)
return 12pt->ptes[index2] .ppn;
}

AT ws m PRSI R Y S I] A &)

23

» Have we saved any space?

o Isn't total size of 2nd level tables same as single-level >
table (i.e., 4MB)?
e Yes, but...
e Large virtual address regions unused _|
¢ Corresponding 2nd-level tables need not exist

¢ Corresponding 1st-level pointers are null

e Example: 2MB code, 64KB stack, 16MB heap
e Each 2nd-level table maps 4MB of virtual addresses
o 1 for code, 1 for stack, 4 for heap, (+1 1st-level)
¢ 7 total pages = 28KB (much less than 4MB)

CIS 371 (Roth/Martin): Virtual Memory & 1/0 24

Page-Level Protection

Address Translation Mechanics 11

¢ Page-level protection
* Piggy-back page-table mechanism
e Map VPN to PPN + Read/Write/Execute permission bits
o Attempt to execute data, to write read-only data?
¢ Exception — OS terminates program
o Useful (for OS itself actually)

struct {

int ppn;

int is_valid, is dirty, is_swapped, permissions;
} PTE;
struct PTE page table[NUM VIRTUAL PAGES];

int translate(int vpn, int action) ({
if (page_table[vpn].is_valid &&
! (page_table [vpn].permissions & action)) kill;

}

do U \INUL I G VAU IV Y A 4 Py

Translation Lookaside Buffer

e Conceptually
¢ Translate VA to PA before every cache access
¢ Walk the page table before every load/store/insn-fetch
— Would be terribly inefficient (even in hardware)

e In reality
¢ Translation Lookaside Buffer (TLB): cache translations
¢ Only walk page table on TLB miss

e Hardware truisms
¢ Functionality problem? Add indirection (e.g., VM)
¢ Performance problem? Add cache (e.g., TLB)

CIS 371 (Roth/Martin): Virtual Memory & 1/0 26

Serial TLB & Cache Access

¢ Translation lookaside buffer (TLB)

CPU
¢ Small cache: 16—64 entries
VA e Associative (4+ way or fully associative)
==z + Exploits temporal locality in page table
PA" "« Whatif an entry isn't found in the TLB?

[1$ | D$ | s Invoke TLB miss handler

| L2 | l“tag”

. “data’..
| PPN
Main PPN

Memory PIzN

CIS 371 (Roth/Martin): Virtual Memory & 1/0 27

e “"Physical” caches

¢ Indexed and tagged by physical addresses

+ Natural, “lazy” sharing of caches between apps/OS
¢ VM ensures isolation (via physical addresses)
* No need to do anything on context switches
¢ Multi-threading works too

+ Cached inter-process communication works

CPU

¢ Single copy indexed by physical address
ﬁ — Slow: adds at least one cycle to t;
I ¢ Note: TLBs are by definition virtual
Main ¢ Indexed and tagged by virtual addresses
Memory ¢ Flush across context switches

¢ Or extend with process id tags

CIS 371 (Roth/Martin): Virtual Memory & 1/0 28

Parallel TLB & Cache Access

tag [31:12] ?
CPU page offset [15:0]
PPN[27:16] page offset [15:0]
wA What about parallel access?
LENENIPRETLE oAy What i
(cache size) / (associativity) < page size
| L2 | o Index bits same in virt. and physical addresses!
' e Access TLB in parallel with cache
Main ¢ Cache access needs tag only at very end
Memory + Fast: no additional t,; cycles
+ No context-switching/aliasing problems
« Dominant organization used today
e Example: Core 2, 4KB pages,
32KB, 8-way SA L1 data cache
¢ Implication: associativity allows bigger caches
CIS 371 (Roth/Martin): Virtual Memory & I/O 29

TLB Misses

TLB Organization

e TLB miss: translation not in TLB, but in page table
o Two ways to “fill” it, both relatively fast

e Software-managed TLB: e.g., Alpha
¢ Short (~10 insn) OS routine walks page table, updates TLB
+ Keeps page table format flexible
— Latency: one or two memory accesses + OS call (pipeline flush)

e Hardware-managed TLB: e.g., x86
¢ Page table root in hardware register, hardware “walks” table
+ Latency: saves cost of OS call (pipeline flush)
— Page table format is hard-coded

CIS 371 (Roth/Martin): Virtual Memory & 1/0 31

e Like caches: TLBs also have ABCs
¢ Capacity
¢ Associativity (At least 4-way associative, fully-associative common)
o What does it mean for a TLB to have a block size of two?
¢ Two consecutive VPs share a single tag
¢ Like caches: there can be L2 TLBs

e Example: AMD Opteron
e 32-entry fully-assoc. TLBs, 512-entry 4-way L2 TLB (insn & data)
* 4KB pages, 48-bit virtual addresses, four-level page table

¢ Rule of thumb: TLB should “cover” L2 contents
¢ In other words: (#PTEs in TLB) * page size > L2 size

e Why? Think about relative miss latency in each...
CIS 371 (Roth/Martin): Virtual Memory & I/O 30

Page Faults

e Page fault: PTE not in TLB or page table
e — page not in memory
e Starts out as a TLB miss, detected by OS/hardware handler

¢ OS software routine:
¢ Choose a physical page to replace

* "Working set”: refined LRU, tracks active page usage
If dirty, write to disk
Read missing page from disk

¢ Takes so long (~10ms), OS schedules another task
Requires yet another data structure: frame map (why?)
Treat like a normal TLB miss from here

CIS 371 (Roth/Martin): Virtual Memory & 1/0 32

A Computer System: I/O Subsystem

I/O Devices

e I/O subsystem: kind of boring, kind of important
e I/0 devices: storage, input, display, network, ...
e I/0 bus
e Software:
¢ Virtualized by OS
» Device drivers
* Presents synchronous interface for asynchronous devices

| Memory bus |~—'| System (I/0) bus |
I I I bridge I
[cPuss||cPu/s| Memory [DMA | [DMA | |I/OIctrI|

Disk display

NIC
B

CIS 371 (Roth/Martin): Virtual Memory & 1/0

One Instance of I/O: Swap Space

33

e Primary characteristic: data rate (bandwidth)
o Latency really only an issue for disk (and network)
¢ Contributing factors: input-output-both? partner?
¢ “Interesting” devices have high data rates

Device Partner | I/O | Data Rate (KB/s)

Keyboard Human |1 2 B/key * 10 key/s = 0.02
Mouse Human |I 2 B/sample * 10 sample/s = 0.02
0.5Mp DVD recorder | Human |1 4 B/pixel * 0.5M pixel/disp * 60 disp/s = 120,000.00
Speaker Human |O 0.60
Printer Human |O 200.00
SVGA display Human |O 4 B/pixel * 1M pixel/disp * 60 disp/s = 240,000.00
Ethernet card Machine | I/O 10,000.00
Disk Machine | I/O 10,000.00-100,000.00

CIS 371 (Roth/Martin): Virtual Memory & 1/0

34

Anatomy of a Disk Drive

CPU

¢ Disk: bottom of memory hierarchy
¢ Use as “swap space”
[1$ | D$ | * Exploits large capacity of disks

¢ Cheaper per bit than DRAM
| L2 |

e Other use of disk

y__ ¢ Non-volatile storage:
Main Retains state when power is off
Memory

N

CIS 371 (Roth/Martin): Virtual Memory & 1/0

¢ Have briefly seen one instance of I/O

35

CIS 371 (Roth/Martin): Virtual Memory & 1/0

head e Disk: rotates like a CD/DVD player

¢ Except magnetic (not optical)
Collection of platters

e Each with read/write head

Platters divided into concentric tracks

e Head seeks to track

¢ All heads move in unison

Each track divided into sectors

¢ More sectors on outer tracks

e Sectors rotate under head
Controller

o Seeks heads, waits for sectors

e Turns heads on/off

¢ May have its own cache (a few MBs)

» Exploit spatial locality
36

Disk Latency

Disk Latency Example

¢ Disk read/write latency has four components
¢ Seek delay (t...,): head seeks to right track
¢ Average of ~5ms - 15ms
e Less in practice because of shorter seeks)
¢ Rotational delay (t,,..i0n): right sector rotates under head
¢ On average: time to go halfway around disk
e Based on rotation speed (RPM)
« 10,000 to 15,000 RPMs
e ~3ms
¢ Transfer time (t,,,...): data actually being transferred
* Fast for small blocks
e Controller delay (t ,noner): CONtroller overhead (on either side)
¢ Fast (no moving parts)

® tdisk = tseek + trotation + ttransfer + tcontroller
CIS 371 (Roth/Martin): Virtual Memory & I/O 37

Disk Bandwidth: Sequential vs Random

e Example: time to read a 4KB chunk assuming...

¢ 128 sectors/track, 512 B/sector, 6000 RPM, 10 mS t..q, 1 MS tniroiier

6000 RPM — 100 R/s — 10 ms/R — tztion = 10 Ms /2 =5ms
4 KB page — 8 sectors — tinerer = 10 ms * 8/128 = 0.6 ms

° t"disk = tseek + t"rotation + ttransfer + tcontroller = 16.6 ms

CIS 371 (Roth/Martin): Virtual Memory & 1/0

ty = 10 +5+0.6 + 1 = 16.6 ms

Some (Old) Example Disks (Hitachi)

¢ Disk is bandwidth-inefficient for page-sized transfers
¢ Sequential vs random accesses
¢ Random accesses:
¢ One read each disk access latency (~10ms)
¢ Randomly reading 4KB pages
¢ 10ms is 0.01 seconds — 100 access per second
¢ 4KB * 100 access/sec — 400KB/second bandwidth
¢ Sequential accesses:
e Stream data from disk (no seeks)
e 128 sectors/track, 512 B/sector, 6000 RPM
» 64KB per rotation, 100 rotation/per sec
¢ 6400KB/sec — 6.4MB/sec
¢ Sequential access is ~10x or more bandwidth than random
¢ Still no where near the 1GB/sec to 10GB/sec of memory

CIS 371 (Roth/Martin): Virtual Memory & 1/0 39

Ultrastar Travelstar Microdrive
Diameter 3.5 2.5 1.0”
Capacity 300 GB 40 GB 4GB
Cache 8 MB 2 MB 128KB
RPM 10,000 RPM 4200 RPM 3600 RPM
Seek 4.5 ms 12 ms 12 ms
Sustained Data Rate 100 MB/s 40 MB/s 10 MB/s
Cost $450 $120 $70
Use Desktop Notebook some iPods

¢ Flash: non-volatile CMOS storage
e The “new disk”: replacing disk in many

CIS 371 (Roth/Martin): Virtual Memory & 1/0

Increasing Disk Performance

Designing an I/O System for Bandwidth

o Software can help
* More sequential seeks (layout files on disk intelligently)

 Raw latency/bandwidth determined by technology
¢ Mechanical disks (~5ms seek time), rotation time
¢ Higher RPMs help bandwidth (but not really latency)

¢ Bandwidth is mostly determined by cost
¢ “You can always buy bandwidth”
o Disk arrays: buy more disks, stripe data across multiple disks
¢ Increases both sequential and random access bandwidth
¢ Use the extra resources in parallel
¢ Yet another example of parallelism

CIS 371 (Roth/Martin): Virtual Memory & 1/0 41

Disk Access Time Calculation

e Approach
¢ Find bandwidths of individual components
¢ Configure components you can change...
¢ To match bandwidth of bottleneck component you can't
¢ Caveat: real I/O systems modeled with simulation
e Example parameters
¢ 300 MIPS CPU, 150K insns per I/O operation, random reads
e I/O bus: 200 MB/s Disk controllers: 30 MB/s, up to 7 disks each
¢ Workload has multiple tasks to keep CPUs busy during I/O
e Determine
¢ What is the access time for the random access of a specific size?
e 4KB, 64KB, 256KB
¢ What is the maximum sustainable I/O rate for random accesses?

¢ How many disk controllers and disks does it require?
CIS 371 (Roth/Martin): Virtual Memory & I/O 42

Calculation for 4KB Random Reads

e Time to read a random chunk assuming...
e 1024 sectors/track, 512 B/sector, 12000 RPM
o toe 1S 6.5 MS, toirorer iS 0.375 ms
e First, calculate t, i tion
e 12000 RPM — 200 R/s — 5 ms/R — tyiztion =5 Ms /2 =2.5ms
e Next, calculate ti e
e 4KB read — 8 sectors — t.srer = 5 Ms * 8/1024 = 0.039 ms
e 64KB read — 128 sectors — t,,,eer = 5 Ms * 128/1024 = 0.625 ms
e 256KB read — 512 sectors — ti e = 5 Ms * 512/1024 = 2.5 ms

* Fina”y’ tdisk = tseek + trotation + 1:’cransfer + tv:ontroller
e tygfor 4KB = 6.5 + 2.5 + 0.039 + 0.375 = 9.4 ms

oty for 64KB = 6.5 + 2.5 + 0.625 + 0.375 = 10 ms
o tyqfor 256KB = 6.5 + 2.5 + 2.5 + 0.375 = 11.9 ms

CIS 371 (Roth/Martin): Virtual Memory & 1/0 43

¢ First: determine I/O rates of components we can't change
 CPU: (300M insn/s) / (150K Insns/I0) = 2000 IO/s
e 1/0 bus: (200MB/s) / (4K B/10) = 51200 IO/s
¢ Peak I/O rate determined by cpu: 2000 I0/s
¢ 2000 IO/s * 4KB per IO = 7.8MB/s

e Second: configure remaining components to match rate
e Disk: 9.4 ms is 0.0094 sec, so each disk is 106 I0/s & 0.41MB/sec
¢ How many disks?
« (2000 IO/s) / (106 10/s) = 19 disks
e How many controllers?
o At 0.4 MB/sec per disk, 75 disks max for each 30MB/s controller
¢ But each controller can only support 7 disks...

¢ Thus, for 19 disks, we need 3 controllers
CIS 371 (Roth/Martin): Virtual Memory & I/O 44

Calculation for 64KB Random Reads

¢ First: determine I/O rates of components we can't change
 CPU: (300M insn/s) / (150K Insns/I0) = 2000 IO/s
« 1/0 bus: (200MB/s) / (64K B/IO) = 3200 IO/s
¢ Peak I/0O rate determined by cpu: 2000 I0/s
¢ 2000 IO/s * 64KB per IO = 128MB/s

e Second: configure remaining components to match rate
¢ Disk: 10 ms is 0.01 seconds, so each disk is 100 IO/s & 6.4MB/sec
¢ How many disks?
« (2000 IO/s) / (100 IO/s) = 20 disks
¢ How many controllers?
¢ At 6.4 MB/sec per disk, 4 disks max for each 30MB/s controller
e For 20 disks, we need 5 controllers

CIS 371 (Roth/Martin): Virtual Memory & 1/0 45

Designing an I/O System for Latency

Calculation for 256KB Random Reads

e Previous system designed for bandwidth

¢ Some systems have latency requirements as well
¢ E.g., database system may require maximum or average latency

¢ Latencies are actually harder to deal with than bandwidths
¢ Unloaded system: few concurrent IO transactions
e Latency is easy to calculate
¢ Loaded system: many concurrent IO transactions
¢ Contention can lead to queuing
e Latencies can rise dramatically
¢ Queuing theory can help if transactions obey fixed distribution
¢ Otherwise simulation is needed

CIS 371 (Roth/Martin): Virtual Memory & 1/0 47

¢ First: determine I/O rates of components we can't change
 CPU: (300M insn/s) / (150K Insns/I0) = 2000 IO/s
« 1/0 bus: (200MB/s) / (256K B/I10) = 800 I0/s
¢ Peak I/O rate determined by I/O bus: 800 I0/s
* 800 IO/s * 256KB per I0 = 200MB/s

e Second: configure remaining components to match rate
e Disk: 11.9 ms is 0.0119 sec, so each disk is 84 I10/s & 21MB/sec
¢ How many disks?
* (800 I0O/s) / (84 10/s) = 10 disks

¢ How many controllers?
e At 21 MB/sec per disk, 1 disk max for each 30MB/s controller
e For 10 disks, we need 10 controllers

CIS 371 (Roth/Martin): Virtual Memory & 1/0 46

Summary

e OS virtualizes memory and I/O devices

e Virtual memory
* “infinite” memory, isolation, protection, inter-process communication
¢ Page tables
¢ Translation buffers
« Parallel vs serial access, interaction with caching
¢ Page faults

e I/O
¢ Disk latency and bandwidth
¢ Disk arrays & RAID
¢ Flash memory

CIS 371 (Roth/Martin): Virtual Memory & 1/0 48

