
CIS 371 (Roth/Martin): Virtual Memory & I/O 1

CIS 371
Computer Organization and Design

Unit 10: Virtual Memory & I/O

Rest of the Semester

•! Topics yet to cover

•! Virtual memory

•! Disks & I/O

•! Power & energy

•! Reliability

•! Data-level parallelism (SIMD, Vectors, and GPUs)

•! XBox 360 case study

•! Perennial problem:

•! Only three lectures remaining…

•! By design (we’re actually “on schedule”)

•! Will try to hit the highlights, give some context

•! Try not to be overwhelmed

CIS 371 (Roth/Martin): Virtual Memory & I/O 2

CIS 371 (Roth/Martin): Virtual Memory & I/O 3

This Unit: Virtualization & I/O

•! The operating system (OS)

•! A super-application

•! Hardware support for an OS

•! Virtual memory

•! Page tables and address translation

•! TLBs and memory hierarchy issues

•! I/O
•! Magnetic storage (disks)

•! Solid-state storage (flash memory)

CPU Mem I/O

System software

App App App

CIS 371 (Roth/Martin): Virtual Memory & I/O 4

Readings

•! P&H

•! Virtual Memory: 5.4

•! I/O & Disks: 6.1-6.5, 6.8

CIS 371 (Roth/Martin): Virtual Memory & I/O 5

A Computer System: Hardware

•! CPUs and memories
•! Connected by memory bus

•! I/O peripherals: storage, input, display, network, …
•! With separate or built-in DMA

•! Connected by system bus (which is connected to memory bus)

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) bus Memory bus

CPU/$

bridge

CPU/$

CIS 371 (Roth/Martin): Virtual Memory & I/O 6

A Computer System: + App Software

•! Application software: computer must do something

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) bus Memory bus

CPU/$

bridge

CPU/$

Application sofware

CIS 371 (Roth/Martin): Virtual Memory & I/O 7

A Computer System: + OS

•! Operating System (OS): virtualizes hardware for apps

•! Abstraction: provides services (e.g., threads, files, etc.)

+!Simplifies app programming model, raw hardware is nasty

•! Isolation: gives each app illusion of private CPU, memory, I/O

+!Simplifies app programming model

+!Increases hardware resource utilization

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) bus Memory bus

CPU/$

bridge

CPU/$

OS

Application Application Application Application

CIS 371 (Roth/Martin): Virtual Memory & I/O 8

Operating System (OS) and User Apps

•! Sane system development requires a split
•! Hardware itself facilitates/enforces this split

•! Operating System (OS): a super-privileged process
•! Manages hardware resource allocation/revocation for all processes

•! Has direct access to resource allocation features

•! Aware of many nasty hardware details

•! Aware of other processes

•! Talks directly to input/output devices (device driver software)

•! User-level apps: ignorance is bliss
•! Unaware of most nasty hardware details

•! Unaware of other apps (and OS)

•! Explicitly denied access to resource allocation features

CIS 371 (Roth/Martin): Virtual Memory & I/O 9

System Calls

•! Controlled transfers to/from OS

•! System Call: a user-level app “function call” to OS

•! Leave description of what you want done in registers

•! SYSCALL instruction (also called TRAP or INT)

•! Can’t allow user-level apps to invoke arbitrary OS code

•! Restricted set of legal OS addresses to jump to (trap vector)

•! Processor jumps to OS using trap vector

•! Sets privileged mode

•! OS performs operation

•! OS does a “return from system call”

•! Unsets privileged mode

CIS 371 (Roth/Martin): Virtual Memory & I/O 10

Interrupts

•! Exceptions: synchronous, generated by running app

•! E.g., illegal insn, divide by zero, etc.

•! Interrupts: asynchronous events generated externally
•! E.g., timer, I/O request/reply, etc.

•! “Interrupt” handling: same mechanism for both

•! “Interrupts” are on-chip signals/bits

•! Either internal (e.g., timer, exceptions) or connected to pins

•! Processor continuously monitors interrupt status, when one is high…

•! Hardware jumps to some preset address in OS code (interrupt vector)

•! Like an asynchronous, non-programmatic SYSCALL

•! Timer: programmable on-chip interrupt
•! Initialize with some number of micro-seconds

•! Timer counts down and interrupts when reaches 0

Typical I/O Device Interface

•! Operating system talks to the I/O device

•! Send commands, query status, etc.

•! Software uses special uncached load/store operations

•! Hardware sends these reads/writes across I/O bus to device

•! Direct Memory Access (DMA)

•! For big transfers, the I/O device accesses the memory directly

•! Example: DMA used to transfer an entire block to/from disk

•! Interrupt-driven I/O
•! The I/O device tells the software its transfer is complete

•! Tells the hardware to raise an “interrupt” (door bell)

•! Processor jumps into the OS

•! Inefficient alternative: polling

CIS 371 (Roth/Martin): Virtual Memory & I/O 11 CIS 371 (Roth/Martin): Virtual Memory & I/O 12

Virtualizing Processors

•! How do multiple apps (and OS) share the processors?
•! Goal: applications think there are an infinite # of processors

•! Solution: time-share the resource
•! Trigger a context switch at a regular interval (~1ms)

•! Pre-emptive: app doesn’t yield CPU, OS forcibly takes it

+!Stops greedy apps from starving others

•! Architected state: PC, registers

•! Save and restore them on context switches

•! Memory state?

•! Non-architected state: caches, branch predictor tables, etc.

•! Ignore or flush

•! Operating responsible to handle context switching
•! Hardware support is just a timer interrupt

CIS 371 (Roth/Martin): Virtual Memory & I/O 13

Virtualizing Main Memory

•! How do multiple apps (and the OS) share main memory?

•! Goal: each application thinks it has infinite memory

•! One app may want more memory than is in the system

•! App’s insn/data footprint may be larger than main memory

•! Requires main memory to act like a cache

•! With disk as next level in memory hierarchy (slow)

•! Write-back, write-allocate, large blocks or “pages”

•! No notion of “program not fitting” in registers or caches (why?)

•! Solution:

•! Part #1: treat memory as a “cache”

•! Store the overflowed blocks in “swap” space on disk

•! Part #2: add a level of indirection (address translation)

CIS 371 (Roth/Martin): Virtual Memory & I/O 14

Virtual Memory (VM)

•! Programs use virtual addresses (VA)
•! 0…2N–1

•! VA size also referred to as machine size

•! E.g., 32-bit (embedded) or 64-bit (server)

•! Memory uses physical addresses (PA)
•! 0…2M–1 (typically M<N, especially if N=64)

•! 2M is most physical memory machine supports

•! VA!PA at page granularity (VP!PP)
•! By “system”

•! Mapping need not preserve contiguity

•! VP need not be mapped to any PP

•! Unmapped VPs live on disk (swap)

…

…

 Disk

Program

Main Memory

code heap stack

CIS 371 (Roth/Martin): Virtual Memory & I/O 15

Virtual Memory (VM)

•! Virtual Memory (VM):

•! Level of indirection (like register renaming)

•! Application generated addresses are virtual addresses (VAs)

•! Each process thinks it has its own 2N bytes of address space

•! Memory accessed using physical addresses (PAs)

•! VAs translated to PAs at some coarse granularity

•! OS controls VA to PA mapping for itself and all other processes

•! Logically: translation performed before every insn fetch, load, store

•! Physically: hardware acceleration removes translation overhead

…

OS

…

App1

…

App2
VAs

PAs (physical memory)

OS controlled VA!PA mappings

CIS 371 (Roth/Martin): Virtual Memory & I/O 16

VM is an Old Idea: Older than Caches

•! Original motivation: single-program compatibility
•! IBM System 370: a family of computers with one software suite

+! Same program could run on machines with different memory sizes

–! Prior, programmers explicitly accounted for memory size

•! But also: full-associativity + software replacement
•! Memory tmiss is high: extremely important to reduce %miss

Parameter I$/D$ L2 Main Memory

thit 2ns 10ns 30ns

tmiss 10ns 30ns 10ms (10M ns)

Capacity 8–64KB 128KB–2MB 64MB–64GB

Block size 16–32B 32–256B 4+KB

Assoc./Repl. 1–4, NMRU 4–16, NMRU Full, “working set”

CIS 371 (Roth/Martin): Virtual Memory & I/O 17

Uses of Virtual Memory

•! More recently: isolation and multi-programming
•! Each app thinks it has 2N B of memory, its stack starts 0xFFFFFFFF,…

•! Apps prevented from reading/writing each other’s memory

•! Can’t even address the other program’s memory!

•! Protection
•! Each page with a read/write/execute permission set by OS

•! Enforced by hardware

•! Inter-process communication.
•! Map same physical pages into multiple virtual address spaces

•! Or share files via the UNIX mmap() call

…

OS

…

App1

…

App2

CIS 371 (Roth/Martin): Virtual Memory & I/O 18

Disk

Virtual Memory: The Basics

•! Programs use virtual addresses (VA)
•! VA size (N) aka machine size (e.g., Core 2 Duo: 48-bit)

•! Memory uses physical addresses (PA)
•! PA size (M) typically M<N, especially if N=64

•! 2M is most physical memory machine supports

•! VA!PA at page granularity (VP!PP)
•! Mapping need not preserve contiguity

•! VP need not be mapped to any PP

•! Unmapped VPs live on disk (swap) or nowhere (if not yet touched)

…

OS

…

App1

…

App2

CIS 371 (Roth/Martin): Virtual Memory & I/O 19

Address Translation

•! VA!PA mapping called address translation
•! Split VA into virtual page number (VPN) & page offset (POFS)

•! Translate VPN into physical page number (PPN)

•! POFS is not translated

•! VA!PA = [VPN, POFS] ! [PPN, POFS]

•! Example above
•! 64KB pages ! 16-bit POFS

•! 32-bit machine ! 32-bit VA ! 16-bit VPN

•! Maximum 256MB memory ! 28-bit PA ! 12-bit PPN

POFS[15:0] virtual address[31:0] VPN[31:16]

POFS[15:0] physical address[25:0] PPN[27:16]

translate don’t touch

CIS 371 (Roth/Martin): Virtual Memory & I/O 20

Address Translation Mechanics I

•! How are addresses translated?
•! In software (for now) but with hardware acceleration (a little later)

•! Each process allocated a page table (PT)
•! Software data structure constructed by OS

•! Maps VPs to PPs or to disk (swap) addresses

•! VP entries empty if page never referenced

•! Translation is table lookup

struct {
 int ppn;
 int is_valid, is_dirty, is_swapped;
} PTE;
struct PTE page_table[NUM_VIRTUAL_PAGES];

int translate(int vpn) {
 if (page_table[vpn].is_valid)
 return page_table[vpn].ppn;
}

PT

v
p

n

Disk(swap)

CIS 371 (Roth/Martin): Virtual Memory & I/O 21

Page Table Size

•! How big is a page table on the following machine?
•! 32-bit machine

•! 4B page table entries (PTEs)

•! 4KB pages

•! 32-bit machine ! 32-bit VA ! 4GB virtual memory

•! 4GB virtual memory / 4KB page size ! 1M VPs

•! 1M VPs * 4B PTE ! 4MB

•! How big would the page table be with 64KB pages?

•! How big would it be for a 64-bit machine?

•! Page tables can get big
•! There are ways of making them smaller

CIS 371 (Roth/Martin): Virtual Memory & I/O 22

Multi-Level Page Table (PT)

•! One way: multi-level page tables
•! Tree of page tables

•! Lowest-level tables hold PTEs

•! Upper-level tables hold pointers to lower-level tables

•! Different parts of VPN used to index different levels

•! Example: two-level page table for machine on last slide
•! Compute number of pages needed for lowest-level (PTEs)

•! 4KB pages / 4B PTEs ! 1K PTEs/page

•! 1M PTEs / (1K PTEs/page) ! 1K pages

•! Compute number of pages needed for upper-level (pointers)

•! 1K lowest-level pages ! 1K pointers

•! 1K pointers * 32-bit VA ! 4KB ! 1 upper level page

CIS 371 (Roth/Martin): Virtual Memory & I/O 23

Multi-Level Page Table (PT)

•! 20-bit VPN

•! Upper 10 bits index 1st-level table

•! Lower 10 bits index 2nd-level table
1st-level
“pointers”

2nd-level
PTEs

VPN[9:0] VPN[19:10]

struct {
 int ppn;
 int is_valid, is_dirty, is_swapped;
} PTE;
struct { struct PTE ptes[1024]; } L2PT;
struct L2PT *page_table[1024];

int translate(int vpn) {
 index1 = (vpn >> 10); // upper 10 bits
 index2 = (vpn & 0x3ff); // lower 10 bits
 struct L2PT *l2pt = page_table[index1];
 if (l2pt != NULL &&
 l2pt->ptes[index2].is_valid)
 return l2pt->ptes[index2].ppn;
}

pt “root”

CIS 371 (Roth/Martin): Virtual Memory & I/O 24

Multi-Level Page Table (PT)

•! Have we saved any space?

•! Isn’t total size of 2nd level tables same as single-level
table (i.e., 4MB)?

•! Yes, but…

•! Large virtual address regions unused

•! Corresponding 2nd-level tables need not exist

•! Corresponding 1st-level pointers are null

•! Example: 2MB code, 64KB stack, 16MB heap

•! Each 2nd-level table maps 4MB of virtual addresses

•! 1 for code, 1 for stack, 4 for heap, (+1 1st-level)

•! 7 total pages = 28KB (much less than 4MB)

CIS 371 (Roth/Martin): Virtual Memory & I/O 25

Page-Level Protection

•! Page-level protection

•! Piggy-back page-table mechanism

•! Map VPN to PPN + Read/Write/Execute permission bits

•! Attempt to execute data, to write read-only data?

•! Exception ! OS terminates program

•! Useful (for OS itself actually)

struct {
 int ppn;
 int is_valid, is_dirty, is_swapped, permissions;
} PTE;
struct PTE page_table[NUM_VIRTUAL_PAGES];

int translate(int vpn, int action) {
 if (page_table[vpn].is_valid &&
 !(page_table [vpn].permissions & action)) kill;
 …
}

CIS 371 (Roth/Martin): Virtual Memory & I/O 26

Address Translation Mechanics II

•! Conceptually
•! Translate VA to PA before every cache access

•! Walk the page table before every load/store/insn-fetch

–! Would be terribly inefficient (even in hardware)

•! In reality
•! Translation Lookaside Buffer (TLB): cache translations

•! Only walk page table on TLB miss

•! Hardware truisms
•! Functionality problem? Add indirection (e.g., VM)

•! Performance problem? Add cache (e.g., TLB)

CIS 371 (Roth/Martin): Virtual Memory & I/O 27

Translation Lookaside Buffer

•! Translation lookaside buffer (TLB)

•! Small cache: 16–64 entries

•! Associative (4+ way or fully associative)

+! Exploits temporal locality in page table

•! What if an entry isn’t found in the TLB?

•! Invoke TLB miss handler

VPN PPN

VPN PPN

VPN PPN

“tag” “data”

CPU

D$

L2

Main
Memory

I$

TLB

VA

PA

TLB

CIS 371 (Roth/Martin): Virtual Memory & I/O 28

Serial TLB & Cache Access

•! “Physical” caches
•! Indexed and tagged by physical addresses

+! Natural, “lazy” sharing of caches between apps/OS

•! VM ensures isolation (via physical addresses)

•! No need to do anything on context switches

•! Multi-threading works too

+! Cached inter-process communication works

•! Single copy indexed by physical address

–! Slow: adds at least one cycle to thit

•! Note: TLBs are by definition virtual
•! Indexed and tagged by virtual addresses

•! Flush across context switches

•! Or extend with process id tags

CPU

D$

L2

Main
Memory

I$

TLB

VA

PA

TLB

CIS 371 (Roth/Martin): Virtual Memory & I/O 29

Parallel TLB & Cache Access

•! What about parallel access?

•! What if
(cache size) / (associativity) ! page size

•! Index bits same in virt. and physical addresses!

•! Access TLB in parallel with cache
•! Cache access needs tag only at very end

+! Fast: no additional thit cycles

+! No context-switching/aliasing problems
•! Dominant organization used today

•! Example: Core 2, 4KB pages,
32KB, 8-way SA L1 data cache
•! Implication: associativity allows bigger caches

CPU

D$

L2

Main
Memory

I$ TLB
VA

PA TLB

[4:0] tag [31:12] index [11:5]

VPN [31:16] page offset [15:0]

?

page offset [15:0] PPN[27:16]

CIS 371 (Roth/Martin): Virtual Memory & I/O 30

TLB Organization

•! Like caches: TLBs also have ABCs

•! Capacity

•! Associativity (At least 4-way associative, fully-associative common)

•! What does it mean for a TLB to have a block size of two?

•! Two consecutive VPs share a single tag

•! Like caches: there can be L2 TLBs

•! Example: AMD Opteron
•! 32-entry fully-assoc. TLBs, 512-entry 4-way L2 TLB (insn & data)

•! 4KB pages, 48-bit virtual addresses, four-level page table

•! Rule of thumb: TLB should “cover” L2 contents
•! In other words: (#PTEs in TLB) * page size ! L2 size

•! Why? Think about relative miss latency in each…

CIS 371 (Roth/Martin): Virtual Memory & I/O 31

TLB Misses

•! TLB miss: translation not in TLB, but in page table

•! Two ways to “fill” it, both relatively fast

•! Software-managed TLB: e.g., Alpha

•! Short (~10 insn) OS routine walks page table, updates TLB

+! Keeps page table format flexible

–! Latency: one or two memory accesses + OS call (pipeline flush)

•! Hardware-managed TLB: e.g., x86
•! Page table root in hardware register, hardware “walks” table

+! Latency: saves cost of OS call (pipeline flush)

–! Page table format is hard-coded

CIS 371 (Roth/Martin): Virtual Memory & I/O 32

Page Faults

•! Page fault: PTE not in TLB or page table

•! ! page not in memory

•! Starts out as a TLB miss, detected by OS/hardware handler

•! OS software routine:

•! Choose a physical page to replace

•! “Working set”: refined LRU, tracks active page usage

•! If dirty, write to disk

•! Read missing page from disk

•! Takes so long (~10ms), OS schedules another task

•! Requires yet another data structure: frame map (why?)

•! Treat like a normal TLB miss from here

CIS 371 (Roth/Martin): Virtual Memory & I/O 33

A Computer System: I/O Subsystem

•! I/O subsystem: kind of boring, kind of important
•! I/O devices: storage, input, display, network, …

•! I/O bus

•! Software:
•! Virtualized by OS

•! Device drivers

•! Presents synchronous interface for asynchronous devices

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) bus Memory bus

CPU/$

bridge

CPU/$

CIS 371 (Roth/Martin): Virtual Memory & I/O 34

I/O Devices

•! Primary characteristic: data rate (bandwidth)

•! Latency really only an issue for disk (and network)

•! Contributing factors: input-output-both? partner?

•! “Interesting” devices have high data rates

Device Partner I/O Data Rate (KB/s)

Keyboard Human I 2 B/key * 10 key/s = 0.02

Mouse Human I 2 B/sample * 10 sample/s = 0.02

0.5Mp DVD recorder Human I 4 B/pixel * 0.5M pixel/disp * 60 disp/s = 120,000.00

Speaker Human O 0.60

Printer Human O 200.00

SVGA display Human O 4 B/pixel * 1M pixel/disp * 60 disp/s = 240,000.00

Ethernet card Machine I/O 10,000.00

Disk Machine I/O 10,000.00–100,000.00

CIS 371 (Roth/Martin): Virtual Memory & I/O 35

One Instance of I/O: Swap Space

•! Have briefly seen one instance of I/O

•! Disk: bottom of memory hierarchy

•! Use as “swap space”

•! Exploits large capacity of disks

•! Cheaper per bit than DRAM

•! Other use of disk
•! Non-volatile storage:

Retains state when power is off

CPU

D$

L2

Main
Memory

I$

Disk

CIS 371 (Roth/Martin): Virtual Memory & I/O 36

Anatomy of a Disk Drive

•! Disk: rotates like a CD/DVD player
•! Except magnetic (not optical)

•! Collection of platters
•! Each with read/write head

•! Platters divided into concentric tracks
•! Head seeks to track

•! All heads move in unison

•! Each track divided into sectors
•! More sectors on outer tracks

•! Sectors rotate under head

•! Controller
•! Seeks heads, waits for sectors

•! Turns heads on/off

•! May have its own cache (a few MBs)

•! Exploit spatial locality

platter
head

sector

track

CIS 371 (Roth/Martin): Virtual Memory & I/O 37

Disk Latency

•! Disk read/write latency has four components

•! Seek delay (tseek): head seeks to right track

•! Average of ~5ms - 15ms

•! Less in practice because of shorter seeks)

•! Rotational delay (trotation): right sector rotates under head

•! On average: time to go halfway around disk

•! Based on rotation speed (RPM)

•! 10,000 to 15,000 RPMs

•! ~3ms

•! Transfer time (ttransfer): data actually being transferred

•! Fast for small blocks

•! Controller delay (tcontroller): controller overhead (on either side)

•! Fast (no moving parts)

•! tdisk = tseek + trotation + ttransfer + tcontroller
CIS 371 (Roth/Martin): Virtual Memory & I/O 38

Disk Latency Example

•! Example: time to read a 4KB chunk assuming…

•! 128 sectors/track, 512 B/sector, 6000 RPM, 10 ms tseek, 1 ms tcontroller

•! 6000 RPM ! 100 R/s ! 10 ms/R ! trotation = 10 ms / 2 = 5 ms

•! 4 KB page ! 8 sectors ! ttransfer = 10 ms * 8/128 = 0.6 ms

•! tdisk = tseek + trotation + ttransfer + tcontroller = 16.6 ms

•! tdisk = 10 + 5 + 0.6 + 1 = 16.6 ms

CIS 371 (Roth/Martin): Virtual Memory & I/O 39

Disk Bandwidth: Sequential vs Random

•! Disk is bandwidth-inefficient for page-sized transfers
•! Sequential vs random accesses

•! Random accesses:
•! One read each disk access latency (~10ms)

•! Randomly reading 4KB pages

•! 10ms is 0.01 seconds ! 100 access per second

•! 4KB * 100 access/sec ! 400KB/second bandwidth

•! Sequential accesses:
•! Stream data from disk (no seeks)

•! 128 sectors/track, 512 B/sector, 6000 RPM

•! 64KB per rotation, 100 rotation/per sec

•! 6400KB/sec ! 6.4MB/sec

•! Sequential access is ~10x or more bandwidth than random
•! Still no where near the 1GB/sec to 10GB/sec of memory

CIS 371 (Roth/Martin): Virtual Memory & I/O 40

Some (Old) Example Disks (Hitachi)

•! Flash: non-volatile CMOS storage

•! The “new disk”: replacing disk in many

Ultrastar Travelstar Microdrive

Diameter 3.5” 2.5” 1.0”

Capacity 300 GB 40 GB 4 GB

Cache 8 MB 2 MB 128KB

RPM 10,000 RPM 4200 RPM 3600 RPM

Seek 4.5 ms 12 ms 12 ms

Sustained Data Rate 100 MB/s 40 MB/s 10 MB/s

Cost $450 $120 $70

Use Desktop Notebook some iPods

CIS 371 (Roth/Martin): Virtual Memory & I/O 41

Increasing Disk Performance

•! Software can help

•! More sequential seeks (layout files on disk intelligently)

•! Raw latency/bandwidth determined by technology

•! Mechanical disks (~5ms seek time), rotation time

•! Higher RPMs help bandwidth (but not really latency)

•! Bandwidth is mostly determined by cost

•! “You can always buy bandwidth”

•! Disk arrays: buy more disks, stripe data across multiple disks

•! Increases both sequential and random access bandwidth

•! Use the extra resources in parallel

•! Yet another example of parallelism

CIS 371 (Roth/Martin): Virtual Memory & I/O 42

Designing an I/O System for Bandwidth

•! Approach

•! Find bandwidths of individual components

•! Configure components you can change…

•! To match bandwidth of bottleneck component you can’t

•! Caveat: real I/O systems modeled with simulation

•! Example parameters

•! 300 MIPS CPU, 150K insns per I/O operation, random reads

•! I/O bus: 200 MB/s Disk controllers: 30 MB/s, up to 7 disks each

•! Workload has multiple tasks to keep CPUs busy during I/O

•! Determine

•! What is the access time for the random access of a specific size?

•! 4KB, 64KB, 256KB

•! What is the maximum sustainable I/O rate for random accesses?

•! How many disk controllers and disks does it require?

CIS 371 (Roth/Martin): Virtual Memory & I/O 43

Disk Access Time Calculation

•! Time to read a random chunk assuming…

•! 1024 sectors/track, 512 B/sector, 12000 RPM

•! tseek is 6.5 ms, tcontroller is 0.375 ms

•! First, calculate trotation

•! 12000 RPM ! 200 R/s ! 5 ms/R ! trotation = 5 ms / 2 = 2.5 ms

•! Next, calculate ttransfer
•! 4KB read ! 8 sectors ! ttransfer = 5 ms * 8/1024 = 0.039 ms

•! 64KB read ! 128 sectors ! ttransfer = 5 ms * 128/1024 = 0.625 ms

•! 256KB read ! 512 sectors ! ttransfer = 5 ms * 512/1024 = 2.5 ms

•! Finally, tdisk = tseek + trotation + ttransfer + tcontroller

•! tdisk for 4KB = 6.5 + 2.5 + 0.039 + 0.375 = 9.4 ms

•! tdisk for 64KB = 6.5 + 2.5 + 0.625 + 0.375 = 10 ms

•! tdisk for 256KB = 6.5 + 2.5 + 2.5 + 0.375 = 11.9 ms

CIS 371 (Roth/Martin): Virtual Memory & I/O 44

Calculation for 4KB Random Reads

•! First: determine I/O rates of components we can’t change

•! CPU: (300M insn/s) / (150K Insns/IO) = 2000 IO/s

•! I/O bus: (200MB/s) / (4K B/IO) = 51200 IO/s

•! Peak I/O rate determined by cpu: 2000 IO/s

•! 2000 IO/s * 4KB per IO = 7.8MB/s

•! Second: configure remaining components to match rate
•! Disk: 9.4 ms is 0.0094 sec, so each disk is 106 IO/s & 0.41MB/sec

•! How many disks?

•! (2000 IO/s) / (106 IO/s) = 19 disks

•! How many controllers?

•! At 0.4 MB/sec per disk, 75 disks max for each 30MB/s controller

•! But each controller can only support 7 disks…

•! Thus, for 19 disks, we need 3 controllers

CIS 371 (Roth/Martin): Virtual Memory & I/O 45

Calculation for 64KB Random Reads

•! First: determine I/O rates of components we can’t change

•! CPU: (300M insn/s) / (150K Insns/IO) = 2000 IO/s

•! I/O bus: (200MB/s) / (64K B/IO) = 3200 IO/s

•! Peak I/O rate determined by cpu: 2000 IO/s

•! 2000 IO/s * 64KB per IO = 128MB/s

•! Second: configure remaining components to match rate
•! Disk: 10 ms is 0.01 seconds, so each disk is 100 IO/s & 6.4MB/sec

•! How many disks?

•! (2000 IO/s) / (100 IO/s) = 20 disks

•! How many controllers?

•! At 6.4 MB/sec per disk, 4 disks max for each 30MB/s controller

•! For 20 disks, we need 5 controllers

CIS 371 (Roth/Martin): Virtual Memory & I/O 46

Calculation for 256KB Random Reads

•! First: determine I/O rates of components we can’t change

•! CPU: (300M insn/s) / (150K Insns/IO) = 2000 IO/s

•! I/O bus: (200MB/s) / (256K B/IO) = 800 IO/s

•! Peak I/O rate determined by I/O bus: 800 IO/s

•! 800 IO/s * 256KB per IO = 200MB/s

•! Second: configure remaining components to match rate
•! Disk: 11.9 ms is 0.0119 sec, so each disk is 84 IO/s & 21MB/sec

•! How many disks?

•! (800 IO/s) / (84 IO/s) = 10 disks

•! How many controllers?

•! At 21 MB/sec per disk, 1 disk max for each 30MB/s controller

•! For 10 disks, we need 10 controllers

CIS 371 (Roth/Martin): Virtual Memory & I/O 47

Designing an I/O System for Latency

•! Previous system designed for bandwidth

•! Some systems have latency requirements as well
•! E.g., database system may require maximum or average latency

•! Latencies are actually harder to deal with than bandwidths

•! Unloaded system: few concurrent IO transactions

•! Latency is easy to calculate

•! Loaded system: many concurrent IO transactions

•! Contention can lead to queuing

•! Latencies can rise dramatically

•! Queuing theory can help if transactions obey fixed distribution

•! Otherwise simulation is needed

Summary

•! OS virtualizes memory and I/O devices

•! Virtual memory

•! “infinite” memory, isolation, protection, inter-process communication

•! Page tables

•! Translation buffers

•! Parallel vs serial access, interaction with caching

•! Page faults

•! I/O
•! Disk latency and bandwidth

•! Disk arrays & RAID

•! Flash memory

CIS 371 (Roth/Martin): Virtual Memory & I/O 48

