CIS 371
Computer Organization and Design

Unit 11: Reliability

CIS 371 (Martin/Roth): Reliability 1

DRAM Error Detection

Reliability of Logic and Memory

e As transistors get smaller, they are less reliable
e Wasn't a problem a few years ago, becoming a big problem
¢ Small transistors means fewer electrons represent 1 or 0

¢ Transient faults
¢ A bit “flips” randomly, temporarily
¢ Cosmic rays and such (more common at higher altitudes!)
* Memory cells (especially memory) vulnerable today, logic soon

¢ Permanent (hard) faults
¢ A gate or memory cell wears out, breaks and stays broken
e Temperature & electromigration gradually deform components

¢ Solution for both: use redundancy to detect and tolerate
CIS 371 (Martin/Roth): Reliability 2

DRAM Error Detection

e Idea: add extra state to DRAM to detect a bit flip

e Parity: simplest scheme
¢ One extra bit, detects any single bit flip
¢ Parity bit = XOR(datay_4, ..., data;, data,)

e Example:
e 010101 O0AINONINONL =17 so parity is “odd” (versus “even”)
e So, store 010101 1” in memory
¢ When you read the data, and re-calculate the parity, say
* 011101 1, if the parity bit doesn't match, error detected

e Multiple bit errors? more redundancy can detect more

CIS 371 (Martin/Roth): Reliability 3

e What to do on a parity error?

e Crash
¢ Dead programs tell no lies
¢ Fail-stop is better than silent data corruption
¢ Avoiding writing that “$1m check”

e For user-level data, OS can Kkill just the program
¢ Not the whole system, unless it was OS data

¢ Alternative: correct the error

CIS 371 (Martin/Roth): Reliability 4

SEC Error Correction Code (ECC)

e SEC: single-error correct (a hamming code)

e Example: Four data bits, three “code” bits
e dydy,d;dsc,c,c5—c¢,¢c,d; c3d,d;d,
e ¢,=d;~d,Nd,, ¢, =dy Nd;MNd,, c5=d, M d; N dy
¢ Syndrome: ¢; ~ ;= 0 ? no error
» Otherwise, then ¢;' ¢,’, ¢,’ points to flipped-bit

e Working example
e Original data = 0110 - ¢;=1,¢,=1,¢,=0
e Flipd, =0010 - c;=0,c,=1,c5=1
¢ Syndrome = 101 (binary 5) — 5th bit? D,
e Fipc,=c;=1,c,=0,c5=0
¢ Syndrome = 010 (binary 2) — 2nd bit? ¢,

CIS 371 (Martin/Roth): Reliability 5

Disk Reliability: RAID

e Error correction: more important for disk than for memory
o Error correction/detection per block (handled by disk hardware)
* Mechanical disk failures (entire disk lost) most common failure mode
* Many disks means high failure rates
e Entire file system can be lost

¢ RAID (redundant array of inexpensive disks)
¢ Add redundancy
e Similar to DRAM error correction, but...
¢ Major difference: which disk failed is known
» Even parity can be used to recover from single failures
* Parity disk can be used to reconstruct data faulty disk
¢ RAID design balances bandwidth and fault-tolerance
¢ Implemented in hardware (faster, more expensive) or software

CIS 371 (Martin/Roth): Reliability 7

SECDED Error Correction Code (ECC)

e SECDED: single error correct, double error detect

e Example:D=4—-C=4
e dydy,d;dsc,c,c5—c¢,c,d; c3d,d;d,cy
e =N Ndy Mg Mdy, Ndy N d,
¢ Syndrome == 0 and ¢, == ¢, — no error
e Syndrome != 0 and ¢, != ¢, — 1-bit error
e Syndrome != 0 and ¢, == ¢, — 2-bit error
e Syndrome == 0 and ¢, != ¢, — ¢, error
¢ In general: C = log,D + 2
¢ Many machines today use 64-bit SECDED code
e C = 8 (64bits + 8bits = 72bits, 12% overhead)
o ChipKill - correct any aligned 4-bit error

o If an entire DRAM chips dies, the system still works!

CIS 371 (Martin/Roth): Reliability

Simple RAIDs

¢ Simplest: mirroring
¢ N disks (for example, 2 disks)
o Write all disks
e Read any one disk

¢ Bit-level parity
¢ dedicated parity disk
o N+1 disks, calculate parity
(write all, read all)
¢ Good sequential read/write
bandwidth, poor random
accesses

o If N=8, only 13% overhead

-
nN
oy
w

= 3 & =] [()

EEEEleE]|

n
—_

= &G [EFE])

N

5] (5] 6] G (4 [=])
BlelEIEIEE]

SR

© 2003 Elsevier Science

CIS 371 (Martin/Roth): Reliability

RAID with Block-level Parity

RAID with Block-level Parity

New data 1. Read 2. Read 3. Read

« RAID with block parity[o | [][] [ez][ee][]
e Reads: only data you need

e Writes: require reads,
calculate parity, write data &

parity
« Naive approach to writes ERENENEE
1. Read all disks 4. Write 5. Write
2. Calculate parity Newdata 1. Read 2. Read
loo| [oo][or|[oe]|[os]]r]

3. Write data & parity disks
e Better approach to writes \é&‘ /

e Read old data & parity XOR

e Calculate parity

e Write new data & parity | DO | D1 | | D2 I | D3 l | P
e Writes are 4 disk accesses 3. Write 4. Wiite
CIS 371 (Martin/Roth): Reliability ©2003 Elsevier Science 2

Aside: Storage Backup

¢ Data is more valuable than hardware!
¢ Almost always true

¢ Protecting data - three aspects
¢ User error - accidental deletion
¢ Aside: “.snapshot” on enaic-l/halfdome filesystem
* Disk failure - mechanical, wears out over time
¢ Disk arrays (RAID) works well
+ Disaster recovery - An entire site is disabled

¢ Two approaches:
¢ Frequent tape backups, taken off site (most common today)
¢ Handle each problem distinctly
« File system, redundant disks, network-based remote backup

CIS 371 (Martin/Roth): Reliability 11

¢ Rotates the parity disk, avoid single-disk bottleneck

~ w

3] 5] 5] [=] (5])

n
o

3] 2] (5] B [)

n
n

R EEE R

n

=] & &[] =) E)

(
(
(
(
(
(

RAID 4
CIS 371 (Martin/Roth): Reliability

FEEEEE]
B R & EE]

© 2003 Elsevier Science

= G R FE()
pislElERIR]l
= G E G E[F()

n
w

(
(
(
"

RAID 5

—_
@

3 E GG E(

