
CIS 371 (Martin/Roth): Reliability 1

CIS 371
Computer Organization and Design

Unit 11: Reliability

Reliability of Logic and Memory

•! As transistors get smaller, they are less reliable
•! Wasn’t a problem a few years ago, becoming a big problem

•! Small transistors means fewer electrons represent 1 or 0

•! Transient faults
•! A bit “flips” randomly, temporarily

•! Cosmic rays and such (more common at higher altitudes!)

•! Memory cells (especially memory) vulnerable today, logic soon

•! Permanent (hard) faults
•! A gate or memory cell wears out, breaks and stays broken

•! Temperature & electromigration gradually deform components

•! Solution for both: use redundancy to detect and tolerate

CIS 371 (Martin/Roth): Reliability 2

CIS 371 (Martin/Roth): Reliability 3

DRAM Error Detection

•! Idea: add extra state to DRAM to detect a bit flip

•! Parity: simplest scheme
•! One extra bit, detects any single bit flip

•! Parity bit = XOR(dataN–1, …, data1, data0)

•! Example:
•! 010101 0^1^0^1^0^1 = “1” so parity is “odd” (versus “even”)

•! So, store “010101 1” in memory

•! When you read the data, and re-calculate the parity, say

•! 011101 1, if the parity bit doesn’t match, error detected

•! Multiple bit errors? more redundancy can detect more

DRAM Error Detection

•! What to do on a parity error?

•! Crash

•! Dead programs tell no lies

•! Fail-stop is better than silent data corruption

•! Avoiding writing that “$1m check”

•! For user-level data, OS can kill just the program

•! Not the whole system, unless it was OS data

•! Alternative: correct the error

CIS 371 (Martin/Roth): Reliability 4

CIS 371 (Martin/Roth): Reliability 5

SEC Error Correction Code (ECC)

•! SEC: single-error correct (a hamming code)

•! Example: Four data bits, three “code” bits
•! d1 d2 d3 d4 c1 c2 c3 ! c1 c2 d1 c3 d2 d3 d4

•! c1 = d1 ^ d2 ^ d4 , c2 = d1 ^ d3 ^ d4 , c3 = d2 ^ d3 ^ d4

•! Syndrome: ci ^ c’i = 0 ? no error

•! Otherwise, then c3’ c2’, c1’ points to flipped-bit

•! Working example
•! Original data = 0110 ! c1 = 1, c2 = 1, c3 = 0

•! Flip d2 = 0010 ! c’1 = 0, c’2 = 1, c’3 = 1

•! Syndrome = 101 (binary 5) ! 5th bit? D2

•! Flip c2 ! c’1 = 1, c’2 = 0, c’3 = 0

•! Syndrome = 010 (binary 2) ! 2nd bit? c2

CIS 371 (Martin/Roth): Reliability 6

SECDED Error Correction Code (ECC)

•! SECDED: single error correct, double error detect

•! Example: D = 4 ! C = 4
•! d1 d2 d3 d4 c1 c2 c3 ! c1 c2 d1 c3 d2 d3 d4 c4

•! c4 = c1 ^ c2 ^ d1 ^ c3 ^ d2 ^ d3 ^ d4

•! Syndrome == 0 and c’4 == c4 ! no error

•! Syndrome != 0 and c’4 != c4 ! 1-bit error

•! Syndrome != 0 and c’4 == c4 ! 2-bit error

•! Syndrome == 0 and c’4 != c4 ! c4 error

•! In general: C = log2D + 2

•! Many machines today use 64-bit SECDED code
•! C = 8 (64bits + 8bits = 72bits, 12% overhead)

•! ChipKill - correct any aligned 4-bit error

•! If an entire DRAM chips dies, the system still works!

CIS 371 (Martin/Roth): Reliability 7

Disk Reliability: RAID

•! Error correction: more important for disk than for memory

•! Error correction/detection per block (handled by disk hardware)

•! Mechanical disk failures (entire disk lost) most common failure mode

•! Many disks means high failure rates

•! Entire file system can be lost

•! RAID (redundant array of inexpensive disks)

•! Add redundancy

•! Similar to DRAM error correction, but…

•! Major difference: which disk failed is known

•! Even parity can be used to recover from single failures

•! Parity disk can be used to reconstruct data faulty disk

•! RAID design balances bandwidth and fault-tolerance

•! Implemented in hardware (faster, more expensive) or software

CIS 371 (Martin/Roth): Reliability 8

Simple RAIDs

•! Simplest: mirroring

•! N disks (for example, 2 disks)

•! Write all disks

•! Read any one disk

•! Bit-level parity

•! dedicated parity disk

•! N+1 disks, calculate parity
(write all, read all)

•! Good sequential read/write
bandwidth, poor random
accesses

•! If N=8, only 13% overhead

© 2003 Elsevier Science

CIS 371 (Martin/Roth): Reliability 9

RAID with Block-level Parity

© 2003 Elsevier Science

•! RAID with block parity

•! Reads: only data you need

•! Writes: require reads,
calculate parity, write data &
parity

•! Naïve approach to writes

1.! Read all disks

2.! Calculate parity

3.! Write data & parity disks

•! Better approach to writes

•! Read old data & parity

•! Calculate parity

•! Write new data & parity

•! Writes are 4 disk accesses
CIS 371 (Martin/Roth): Reliability 10

RAID with Block-level Parity

•! Rotates the parity disk, avoid single-disk bottleneck

© 2003 Elsevier Science

CIS 371 (Martin/Roth): Reliability 11

Aside: Storage Backup

•! Data is more valuable than hardware!
•! Almost always true

•! Protecting data - three aspects
•! User error - accidental deletion

•! Aside: “.snapshot” on enaic-l/halfdome filesystem

•! Disk failure - mechanical, wears out over time

•! Disk arrays (RAID) works well

•! Disaster recovery - An entire site is disabled

•! Two approaches:
•! Frequent tape backups, taken off site (most common today)

•! Handle each problem distinctly

•! File system, redundant disks, network-based remote backup

