CIS 371
Computer Organization and Design

Unit 13: Exploiting Data-Level Parallelism with Vectors

CIS 371 (Roth/Martin): Vectors 1

Better Alternative: Data-Level Parallelism

Best Way to Compute This Fast?

e Sometimes you want to perform the same operations on
many data items for (I = 0; I < 1024; I++)
o Surprise example: SAXPY 2L = A=X[I) + X[1);

0: 1df X(rl),fl // I is in rl
mulf £0,f1,f2 // A is in £0

1df Y(rl), £3
addf £2,£3,f4
stf £4,7Z(rl)
addi rl,4,rl
blti rl,4096,0
¢ One approach: superscalar (instruction-level parallelism)
¢ Loop unrolling with static scheduling —or— dynamic scheduling

¢ Problem: wide-issue superscalar scaling issues
— N2 bypassing, N2 dependence check, wide fetch
— More register file & memory traffic (ports)

e Can we do better?

CIS 371 (Roth/Martin): Vectors 2

Example Vector ISA Extensions

o Data-level parallelism (DLP)
¢ Single operation repeated on multiple data elements
o SIMD (Single-Instruction, Multiple-Data)
o Less general than ILP: parallel insns are all same operation
¢ Exploit with vectors

¢ Old idea: Cray-1 supercomputer from late 1970s
o Eight 64-entry x 64-bit floating point “Vector registers”
¢ 4096 bits (0.5KB) in each register! 4KB for vector register file
e Special vector instructions to perform vector operations
» Load vector, store vector (wide memory operation)
¢ Vector+Vector addition, subtraction, multiply, etc.
¢ Vector+Constant addition, subtraction, multiply, etc.
¢ In Cray-1, each instruction specifies 64 operations!

CIS 371 (Roth/Martin): Vectors 3

o Extend ISA with floating point (FP) vector storage ...
o Vector register: fixed-size array of 32- or 64- bit FP elements
Vector length: For example: 4, 8, 16, 64, ...

e ... and example operations for vector length of 4
Load vector: 1df.v X(rl),vl

1df X+0(rl),v1[O]

1df X+1(rl),vl[1]

1df X+2(rl),vl1[2]

1df X+3(rl),v1[3]
Add two vectors: addf.vv vl1,v2,v3

addf v1[i],v2[i],v3[i] (where i is 0,1,2,3)
Add vector to scalar: addf.vs v1,£2,v3

addf v1[i],bf2,v3[i] (where i is 0,1,2,3)

CIS 371 (Roth/Martin): Vectors 4



Example Use of Vectors — 4-wide

1df X(rl),fl 1df.v X(rl),vl
mulf £0,f1,£f2 mulf.vs vl,£f0,v2
1df Y(rl),£3 1df.v ¥(rl),v3
addf f£2,£3,f4 addf.vv v2,v3,v4
stf £4,Z(rl) stf.v v4,Z(rl)
addi r1,4,rl addi rl,16,rl

blti rl,4096,0 blti rl,4096,0
7x1024 instructions 7x256 instructions

° Operations (4x fewer instructions)

e Load vector: 1df.v X(rl),vl
o Multiply vector to scalar: mulf.vs v1,£2,v3
e Add two vectors: addf.vv v1,v2,v3
e Store vector: stf.v vl1l,X(rl)
e Performance?
o If CPI is one, 4x speedup
e But, vector instructions don't always have single-cycle throughput

¢ Execution width (implementation) vs vector width (ISA)
CIS 371 (Roth/Martin): Vectors 5

Intel’s SSE2/SSE3/SSEA4...

Vector Datapath & Implementatoin

¢ Intel SSE2 (Streaming SIMD Extensions 2) - 2001
o 16 128bit floating point (FP) registers (xmm0—xmm15)
e Each can be treated as 2x64b FP or 4x32b FP (“packed FP")
o Or 2x64b or 4x32b or 8x16b or 16x8b ints (“packed integer”)
¢ Or 1x64b or 1x32b FP (just normal scalar floating point)
¢ Original SSE: only 8 registers, no packed integer support

e Other vector extensions
e AMD 3DNow!: 64b (2x32b)
e PowerPC AltiVEC/VMX: 128b (2x64b or 4x32b)

¢ Looking forward for x86
¢ Intel’s “"Sandy Bridge” will bring 256-bit vectors to x86

¢ Intel’s “Larrabee” graphics chip will bring 512-bit vectors to x86
CIS 371 (Roth/Martin): Vectors 7

e Vector insn. are just like normal insn... only “wider”
¢ Single instruction fetch (no extra N2 checks)
Wide register read & write (not multiple ports)
Wide execute: replicate floating point unit (same as superscalar)
Wide bypass (avoid N2 bypass problem)
Wide cache read & write (single cache tag check)

e Execution width (implementation) vs vector width (ISA)
¢ Example: Pentium 4 and “Core 1" executes vector ops at half width
o “Core 2" executes them at full width

e Because they are just instructions...
e ...superscalar execution of vector instructions is common
¢ Multiple n-wide vector instructions per cycle

CIS 371 (Roth/Martin): Vectors 6

Other Vector Instructions

¢ These target specific domains: e.g., image processing, crypto

e Some examples
¢ Vector reduction (sum all elements of a vector)
e Geometry processing: 4x4 translation/rotation matrices
¢ Saturating (non-overflowing) subword add/sub: image processing
¢ Byte asymmetric operations: blending and composition in graphics
¢ Byte shuffle/permute: crypto
¢ Population (bit) count: crypto
e Max/min/argmax/argmin: video codec
¢ Absolute differences: video codec
¢ Multiply-accumulate: digital-signal processing

CIS 371 (Roth/Martin): Vectors 8



Options for Using Vectors in Your Code Recap: Vectors for Exploiting DLP

e Write in assembly e Vectors are an efficient way of capturing parallelism
e Ugh o Data-level parallelism

e Avoid the N2 problems of superscalar

¢ Avoid the difficult fetch problem of superscalar

e Use “intrinsic” functions and data types
¢ Area efficient, power efficient

e For example: _mm_mul_ps() and “__m128" datatype

e The catch?

¢ Need code that is “vector-izable”
e Let them do_ the hard work e Need to modify program (unlike dynamic-scheduled superscalar)
* Matrix and linear algebra packages ¢ Requires some help from the programmer

e Use a library someone else wrote

e Let the compiler do it (automatic vectorization) « Looking forward: Intel Larrabee’s vectors
* GCC's "-ftree-vectorize” option * More flexible (vector “masks”, scatter, gather) and wider

CIS 371 (Roth/Martin): Vectors 9 CIS 371 (Roth/Martin): Vectors 10



