
Homework Assignment 1
CIS501 Fall 2005

Due: Tuesday, September 27th at noon.

Instructions: Your submission for this assignment must be type-written,
except for your answers to Question 4, parts (a) and (b), which must
be completed on the enclosed worksheet. To submit the assignment,
you will hand in a print out of your answers, along with the worksheet
at the start of class on the 27th.

Question 1: Processor X has a clock speed of 1 GHz, and takes 1 cycle for
integer operations, 2 cycles for memory operations, and 4 cycles for
floating point operations. Empirical data shows that programs run on
Processor X typically are composed of 35% floating point operations,
30% memory operations, and 35% integer operations. You are design-
ing Processor Y, an improvement on Processor X which will run the
same programs and you have 2 options to improve the performance:

1. Increase the clock speed to 1.2 GHz, but memory operations take
3 cycles

2. Decrease the clock speed to 900 MHz, but floating point operations
only take 3 cycles

Compute the speedup for both options and decide the option Processor
Y should take.

Question 2: You have learned about the difference between RISC and CISC
ISAs, as well as many of the advantages of a RISC ISA for actual hard-
ware. Consider for a moment, a virtual machine– a piece of software
that decodes and executes instructions (for example, a Java virtual ma-
chine executes Java instructions in Java bytecode). Suppose that you
were asked to design a new ISA which will only be implemented in a
vitual machine, never in hardware. Analyze the benefits and disadvan-
tages of RISC vs CISC features for this new ISA. Some of the features
you should include in your analysis are:

• Load/store vs other operand models

1



• Simple instructions “small” instructions vs instructions which per-
form complex tasks

• Fixed Length instructions vs Variable length instructions

Question 3: Consider the expressions:

D = A * B - C;

E = (D + B) * A * B;

Where variables A, B, and C are initially in memory and the destina-
tions of D and E are also in memory.

1. Write down pseudo-assembly code for this sequence for machines
using for both “load-store” and “memory-only” operand models.
Try to optimize the code.

2. Two evaluation criteria for code are:

(i). static code size, and

(ii). data memory traffic (i.e., traffic to and from memory).

Assume that all data values are 4 bytes, opcodes are 1 byte, ad-
dresses are 2 bytes, and register specifiers are 1 nibble (half a
byte). Also assume that instructions must be integral numbers
of bytes. What is the static code size and data memory traffic
associated for both implementations?

Question 4: For this question, you will be using the SimpleScalar simulator
(see below) on two benchmarks- twolf (from SpecInt) and art (from
SpecFP).

1. Run the functional simulator on each of the programs. Fill in
the table on the worksheet with the count and percentage of in-
structions that are loads, stores, control instructions, system calls,
integer operations, and floating point operations.

2. In the Alpha ISA, load and store instructions may contain a 16
bit offset field, which is added to the register operand to compute
the address. Modify the simulator code so that whenever such
an instruction executes, it computes how many bits of the offset
field were actually used, and maintains a count of the number

2



of instructions utilizing each bit-length, then outputs the counts
with the simulation statistics. Fill in the table on the worksheet
with the percentage of loads and stores which have each length
offset. Then compute the cumulative percentage of all loads and
stores which use an offset of bit length less than or equal to a
given length, and fill in the appropriate entries. Some entries are
filled in to help you check your work. NOTE: you should modify
the simulator to gather an array of statistics, and run it once.

3. Suppose that the immediate field was reduced from 16 bits to 8
bits. Assume that

• Loads and stores take 2 cycles to execute and all other in-
structions take 1 cycle.

• An instruction which has too long of an offset must be fixed
by inserting one add instruction before it.

How does this change affect performace (i.e. what is the speedup
or slowdown) for twolf and art?

4. Suppose instead that the immediate field is removed completely,
however, loads and store can complete in one cycle (and an ad-
ditional add instruction must be inserted where needed). What
speedup does this give for twolf and art?

5. Is part the scenario of part (d) always a good idea? If not, explain
at least one effect that would occur in a real processor which it
overlooks.

3



Additional information for Question 4:
In order to obtain the source code for SimpleScalar for this homework,

copy the contents of ~cis501/SimpleScalar/hwk1/ to your home directory,
your computer, or wherever you plan to edit the code. You should be able
to build the simulator simply by running “make”. The SimpleScalar distri-
bution for this homework is stripped down to contain only the functional
simulator sim-func. A functional simulation means that only the effects of
the instructions are simulated, not timing or power information.

SimpleScalar does not run the operating system, instead it reads a file
which contains the program, as well as the results of system calls (i.e. the
inputs of the program). The two programs you will be experimenting with
in this assignment are found in the “programs” directory. In order to run
the functional simulator on twolf, for example, you would do:

./sim-func programs/twolf.eio

Note that on eniac-l, twolf takes about 45 seconds, and art takes about 4
minutes to run.

For part (b) of Question 4, you are asked to modify the code for the
simulator. In order to simplify this task, we have indicated where you will
need to modify the simulator. If you look in sim-func.c, you will find 3
comments stating /* YOUR CODE GOES HERE */. One of these is found in
the function sim_aux_stats, which prints the simulation statistics. This
is where you should insert your code to print out the counts you gather.
To accomplish this task, you should use the print_counter function which
takes 4 arguments- the stream to print to, the name of the statistic being
printed, the value, and a description of the statistic.

The second /* YOUR CODE GOES HERE */ comment is found inside the
sim_sample_on function- the main loop of the simulator which executes the
instructions. We have provided code which tests if the current instruction
is a load or store, and if it has an immediate offset. Additionally, we have
provided code to extract that immediate offset into the variable “immediate”
as a signed integer.

The final /* YOUR CODE GOES HERE */ comment is found in sim_start,
which is called once before the simulation starts. If your solution needs any
one time initalization code, it should be placed here. These comments are
only hints, not requirements. If you want to write a solution which ignores
these hints, you are free to do so.
Two final warnings:

4



1. When counting things, it is advisable to use the datatype counter_t

instead of int, as programs may execute more than 2 billion instruc-
tions.

2. Remember that for part (b), you are looking at a signed offset. Be care-
ful about this when determining how many bits are needed to represent
a number. For example, the number 1 requires two bits to represent as
a signed number (i.e. 01) while -1 can be represented by 1 bit (with 1
bit, you can represent -1 and 0).

5



Question 4 (a) and (b) Worksheet
Homework Assignment 1

CIS501 Fall 2005

Name:

Part (a):

Insn type Count in twolf % in twolf Count in art % in art

Loads
Stores

Control Ops
Sys calls
Int Ops
Fp Ops

Part (b):

Bit length % in twolf Cmltv % in twolf % in art Cmltv % in art

0 38.81 38.81
1 1.74 40.56
2 1.04 41.60
3 0.20 41.80
4
5
6
7
8
9
10
11
12
13
14
15
16 16.9 100 100

6


