Homework Assignment 5
CIS501 Fall 2005

Due: Wednesday, December 14th, 2005 at 7:00 PM.

Instructions: This assignment serves as both the questions and the worksheet. You should
answer all of the questions on this assignment/worksheet, except for the graph on
Question 3, which should be drawn via computer on a separate sheet of paper.

Question 1 (10 points):
In the previous assignment we applied loop unrolling to increase the amount of ILP
available in a statically scheduled machine. In this assignment, we will explore the exe-
cution of code on a dynamically scheduled (or out-of-order) processor implementation.

Consider the following code:

start:

#1 1df [r1] -> f1

#2 mulf f1 x f2 -> £3
#3 stf £f3 > [r2]

#4 14 [ri1+4] > r1

#5 1d [r2+4] -> r2

#6 bz rl, done

#7 bnz r2, start

Complete the pipeline diagram for two iterations of this loop for an out-of-order
pipelines. The machine has 1-cycle load-use penalty loads, 3-cycle floating point multi-
plications (mulf), 2-cycle floating point adds (addf), and all other operations take one
cycle. The pipeline is two-way superscalar (i.e. it can fetch, dispatch, issue, and retire
two instructions per cycle), has full bypassing, has fully pipelined functional units (for
multicycle operations). Assume that the processor can writeback any number of in-
structions per cycle, and that all branches are predicted correctly. Also, the processor
is capable of executing two loads and retiring one store in a cycle. Stores require one
cycle for address generation (X), and a second cycle to write their value into the store
queue (M). Stores need their address input for the X stage, but do not need their data
input until the M stage.

(a). Complete the pipeline diagram assuming the processor implements conservative
load scheduling.

(b). Complete the pipeline diagram assuming the processor implements optimistic
load scheduling. Assume that no memory ordering violations occur.

Jrels ‘gl zuq

L#

Quop ‘11 zq | 9#

[¢1] — [p+c1] p1 | o#

(1] — [p+1a pr | o#

[c] — g3 s | g#

€] < T 5 13N | gH#

13 < [13] Jp1 | 1#

v imMm|X |1 alda 1IR)s ‘gl zuq | L#

MM X | alda ouop ‘11 zq | 9#

MM N XTI alda [c1] — [p+ca p1 | o#

M| M| IN| X |1 alda (11 — [p+13 p1 | $#

g M| IN|X|I ajld [c1] — ¢pps | e#

MM X|X| XTI ald €] < T 4 T3 | g#

MIM|IN|X|T|alda 13 < (11 Jp1 | 1#
[1zloz]et[st]2rfor]arwrer]er]urfor] 6 [s]2]olg]v]e]a]r1](eamedTuonsen |

rels ‘gl zuq

L

ouop ‘11 zq | 9#
[c1] — [p+c1 p1 | G#
(11 « [p+11] p1 | 7#
(2] — gp s | ¢#
¢} < T & 13 JInw | g#
13 < [13] yp1 | 1#
Y M| X | I alda eys ‘g1 zuq | L4
| M| X |1 alda ouop ‘11 zq | 9#
4 M|IIN | X|T|dlda [c1] — [p+za p1 | o#
Y MIIN|X|T|alda (11 — [p+13 p1 | ¥#
MIM|IN| X 1T ald [c1] — g1 s | ¢#
M| X[X|X]|I ald €] — T & TJ I | g
Y |M|IN|X|T1]|dl4a 15 < (19 3p1 | 1#
[tzfoz et [st]2tforetlvler]artrforl 68l 2]olalw]ela]1](qsedTuonsonp]

Question 2 (10 points):

A two processor system uses an MSI cache-coherence protocol. The processors use
16-bit addresses, and each processor has an 16-byte direct mapped cache with two
8-byte blocks. In the space provided below, the first column shows which processor
is taking an action (i.e., processor 0 or processor 1), and the second column indicates
what operation that processor takes (i.e. Ld or St. The third column is the address
of the operation. For each operation, fill in the next four columns with the state of
each processor’s cache after the action is concluded—the state should be written as
the MSI state, followed by the tag (except for I, which needs no tag). For example,
M:123 means “Tag 123 in the Modified state”. All addresses are given as hexadecimal
numbers. Finally, in the last column, categorize the result as one of the following:

e Hit
e Upgrade miss

e Compulsory miss

Conflict miss

Capacity miss

Coherence miss

CPU 0’s cache | CPU 1’s cache
CPU7 | Op | Addr Line O | Line 1 | Line 0 | Line 1 Result
Initial State: | S:000 M:001 S:000 M:111 —
0 St 0004
0 St OFOQF
1 Ld | 0000
1 St 111F
0 Ld | 0018
0 St OF08
0 Ld | 0004
1 Ld | 111F
0 St 0004
1 Ld | 0000

How might the results change if the block size was halved (to 4-byte blocks)?

Question 3 (5 points): Pretend you're a designer looking to create the a next-generation
processor. The current-generation processor is 4-way superscalar with a 32-entry in-
struction window. Given the choice, which change would improve performance more:
(a) increasing the instruction window size from 32 to 128 or (b) increasing the width
of the processor from a 4-issue to a 8-issue pipeline?

To answer this question, download the timing simulator (sim-R10K) from
“cisb01/SimpleScalar/hwk5/ and build it with make. There is a script provided
(run.sh) that will prompt for window size, pipeline width, and benchmark name and
then run the simulator with the corresponding parameters. Run twolf and vpr.route
for both 4-wide and 8-wide pipelines at window sizes of 32, 64, and 128. Fill in the
following table with the IPCs of each run (each entry is width x window, i.e., 4 x 64
is for the 4 wide machine with a window size of 64).

’ \ twolf \ vpr.route ‘

4 x 32
4 x 64
4 x 128
8 x 32
8 x 64
8 x 128

Next, draw a line graph with IPC as the y-axis and window size as the x-axis. Finally,
answer the question from above in the space below:

