
CIS 501 (Martin/Roth): Pipelining 1

CIS 501
Introduction to Computer Architecture

Unit 6: Pipelining

CIS 501 (Martin/Roth): Pipelining 2

This Unit: Pipelining

• Basic Pipelining

• Single, in-order issue

• Clock rate vs. IPC

• Data Hazards

• Hardware: stalling and bypassing

• Software: pipeline scheduling

• Control Hazards

• Branch prediction

• Precise state

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

CIS 501 (Martin/Roth): Pipelining 3

Readings

• H+P

• Appendix A.1 - A.6

• Background slides

• http://…/~amir/cse371/lecture_notes/pipeline.pdf

CIS 501 (Martin/Roth): Pipelining 4

Quick Review

• Basic datapath: fetch, decode, execute

• Single-cycle control: hardwired
+ Low CPI (1)

– Long clock period (to accommodate slowest instruction)

• Multi-cycle control: micro-programmed
+ Short clock period

– High CPI

• Can we have both low CPI and short clock period?
• Not if datapath executes only one instruction at a time

• No good way to make a single instruction go faster

insn0.fetch, dec, exec

Single-cycle

Multi-cycle

insn1.fetch, dec, exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

CIS 501 (Martin/Roth): Pipelining 5

Pipelining

• Important performance technique

• Improves instruction throughput rather instruction latency

• Begin with multi-cycle design

• When instruction advances from stage 1 to 2

• Allow next instruction to enter stage 1

• Form of parallelism: “insn-stage parallelism”

• Individual instruction takes the same number of stages

+ But instructions enter and leave at a much faster rate

• Automotive assembly line analogy

insn0.decinsn0.fetch

insn1.decinsn1.fetchMulti-cycle

Pipelined

insn0.exec

insn1.exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

CIS 501 (Martin/Roth): Pipelining 6

5 Stage Pipelined Datapath

• Temporary values (PC,IR,A,B,O,D) re-latched every stage

• Why? 5 insns may be in pipeline at once, they share a single PC?

• Notice, PC not latched after ALU stage (why not?)

PC I$
Register

File

s1 s2 d D$

+
4

PC

IR

PC

A

B

IR

O

B
IR

O

D

IR

CIS 501 (Martin/Roth): Pipelining 7

Pipeline Terminology

• Five stage: Fetch, Decode, eXecute, Memory, Writeback
• Nothing magical about the number 5 (Pentium 4 has 22 stages)

• Latches (pipeline registers) named by stages they separate
• PC, F/D, D/X, X/M, M/W

PC I$
Register

File

s1 s2 d D$

+
4

PC

IR

PC

A

B

IR

O

B
IR

O

D

IR
PC

F/D D/X X/M M/W

CIS 501 (Martin/Roth): Pipelining 8

Pipeline Control

• One single-cycle controller, but pipeline the control signals

PC I$
Register

File

s1 s2 d D$

+
4

PC

IR

PC

A

B

IR

O

B
IR

O

D

IR

CTRL

xC

mC

wC

mC

wC

wC

CIS 501 (Martin/Roth): Pipelining 9

Abstract Pipeline

• This is an integer pipeline

• Execution stages are X,M,W

• Usually also one or more floating-point (FP) pipelines

• Separate FP register file

• One “pipeline” per functional unit: E+, E*, E/

• “Pipeline”: functional unit need not be pipelined (e.g, E/)

• Execution stages are E+,E+,W (no M)

regfile

D$

PC F/D D/X X/M M/W

I$

+
4

CIS 501 (Martin/Roth): Pipelining 10

Floating Point Pipelines

I$

I-regfile

D$

+
4

F-regfile

E/

E
+

E
+

E* E* E*

CIS 501 (Martin/Roth): Pipelining 11

Pipeline Diagram

• Pipeline diagram

• Cycles across, insns down

• Convention: X means ld r4,0(r5) finishes execute stage and

writes into X/M latch at end of cycle 4

• Reverse stream analogy

• “Downstream”: earlier stages, younger insns

• “Upstream”: later stages, older insns

• Reverse? instruction stream fixed, pipeline flows over it

• Architects see instruction stream as fixed by program/compiler

WMXDFst r6,4(r7)

WMXDFld r4,0(r5)

WMXDFadd r3,r2,r1

987654321

CIS 501 (Martin/Roth): Pipelining 12

Pipeline Performance Calculation

• Back of the envelope calculation

• Branch: 20%, load: 20%, store: 10%, other: 50%

• Single-cycle

• Clock period = 50ns, CPI = 1

• Performance = 50ns/insn

• Pipelined

• Clock period = 12ns

• CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)

• Performance = 12ns/insn

CIS 501 (Martin/Roth): Pipelining 13

Principles of Pipelining

• Let: insn execution require N stages, each takes tn time

• L1 (1-insn latency) = !tn

• T (throughput) = 1/L1

• LM (M-insn latency, where M>>1) = M*L1

• Now: N-stage pipeline

• L1+P = L1

• T+P = 1/max(tn) " N/L1

• If tn are equal (i.e., max(tn) = L1/N), throughput = N/L1

• LM+P = M*max(tn) # M*L1/N

• S+P (speedup) = [M*L1 / (# M*L1/N)] = ! N

• Q: for arbitrarily high speedup, use arbitrarily high N?

CIS 501 (Martin/Roth): Pipelining 14

No, Part I: Pipeline Overhead

• Let: O be extra delay per pipeline stage

• Latch overhead: pipeline latches take time

• Clock/data skew

• Now: N-stage pipeline with overhead

• Assume max(tn) = L1/N

• L1+P+O = L1 + N*O

• T+P+O = 1/(L1/N + O) = 1/(1/T + O) " T, ! 1/O

• LM+P+O = M*L1/N + M*O = LM+P + M*O

• S+P+O = [M*L1 / (M*L1/N + M*O)] = " N = S+P, ! L1/O

• O limits throughput and speedup ! useful N

CIS 501 (Martin/Roth): Pipelining 15

No, Part II: Hazards

• Dependence: relationship that serializes two insns

• Structural: two insns want to use same structure, one must wait

• Data: two insns use same storage location

• Control: one instruction affects whether another executes at all

• Hazard: dependence and both insns in pipeline together

• Possibility for getting order wrong

• Often fixed with stalls: insn stays in same stage for multiple cycles

• Let: H be average number of hazard stall cycles per instruction

• L1+P+H = L1+P (no hazards for one instruction)

• T+P+H = [N/(N+H)]*N/L1 = [N/(N+H)] * T+P

• LM+P+H = M* L1/N * [(N+H)/N] = [(N+H)/N] * LM+P

• S+P+H = M*L1 / M*L1/N*[(N+H)/N] = [N/(N+H)]*S+P

• H also limit throughput, speedup ! useful N

• N"! H" (more insns “in flight” ! dependences become hazards)

• Exact H depends on program, requires detailed simulation

CIS 501 (Martin/Roth): Pipelining 16

Clock Rate vs. IPC

• Deeper pipeline (bigger N)
+ frequency"

– IPC#

• Ultimate metric is IPC * frequency

• But people buy frequency, not IPC * frequency

• Trend has been for deeper pipelines

• Intel example:

• 486: 5 stages (50+ gate delays / clock)

• Pentium: 7 stages

• Pentium II/III: 12 stages

• Pentium 4: 22 stages (10 gate delays / clock)

• 800 MHz Pentium III was faster than 1 GHz Pentium4

• Next Intel core: fewer pipeline stages than Pentium 4

CIS 501 (Martin/Roth): Pipelining 17

Optimizing Pipeline Depth

• Parameterize clock cycle in terms of gate delays

• G gate delays to process (fetch, decode, execute) a single insn

• O gate delays overhead per stage

• X average stall per instruction per stage

• Simplistic: real X function much, much more complex

• Compute optimal N (pipeline stages) given G,O,X

• IPC = 1 / (1 + X * N)

• f = 1 / (G / N + O)

• Example: G = 80, O = 1, X = 0.16,

0.0400.1660.3320

0.0420.1100.3810

0.0330.0590.565

IPC*freqfreq=1/(80/N+1)IPC = 1/(1+0.16*N)N

CIS 501 (Martin/Roth): Pipelining 18

Managing a Pipeline

• Proper flow requires two pipeline operations
• Mess with latch write-enable and clear signals to achieve

• Operation I: stall
• Effect: stops some insns in their current stages

• Use: make younger insns wait for older ones to complete

• Implementation: de-assert write-enable

• Operation II: flush
• Effect: removes insns from current stages

• Use: see later

• Implementation: assert clear signals

• Both stall and flush must be propagated to younger insns

CIS 501 (Martin/Roth): Pipelining 19

Structural Hazards

• Structural hazard: resource needed twice in one cycle

• Example: shared I/D$

WMXDFst r6,0(r1)

WMXDFsub r1,r3,r5

WMXDFadd r1,r3,r4

WMXDFld r2,0(r1)

987654321

CIS 501 (Martin/Roth): Pipelining 20

Fixing Structural Hazards

• Can fix structural hazards by stalling
• s* = structural stall

• Q: which one to stall: ld or st?

• Always safe to stall younger instruction (here st)

• Fetch stall logic: (D/X.op == ld || D/X.op == st)

• But not always the best thing to do performance wise (?)

+ Low cost, simple

– Decreases IPC

• Upshot: better to avoid by design, then to fix

WMXDFs*st r6,0(r1)

WMXDFsub r1,r3,r5

WMXDFadd r1,r3,r4

WMXDFld r2,0(r1)

987654321

CIS 501 (Martin/Roth): Pipelining 21

Avoiding Structural Hazards

• Replicate the contended resource

+ No IPC degradation

– Increased area, power, latency (interconnect delay?)

• For cheap, divisible, or highly contended resources (e.g, I$/D$)

• Pipeline the contended resource

+ No IPC degradation, low area, power overheads

– Sometimes tricky to implement (e.g., for RAMs)

• For multi-cycle resources (e.g., multiplier)

• Design ISA/pipeline to reduce structural hazards (RISC)

• Each insn uses a resource at most once (same insn hazards)

• Always in same pipe stage (hazards between two of same insn)

• Reason why integer operations forced to go through M stage

• And always for one cycle

CIS 501 (Martin/Roth): Pipelining 22

Data Hazards

• Real insn sequences pass values via registers/memory

• Three kinds of data dependences (where’s the fourth?)

add r2,r3!r1

sub r1,r4!r2

or r6,r3!r1

Read-after-write (RAW)

True-dependence

add r2,r3!r1

sub r5,r4!r2

or r6,r3!r1

Write-after-read (WAR)

Anti-dependence

add r2,r3!r1

sub r1,r4!r2

or r6,r3!r1

Write-after-write (WAW)

Output-dependence

• Only one dependence between any two insns (RAW has priority)

• Data hazards: function of data dependences and pipeline

• Potential for executing dependent insns in wrong order

• Require both insns to be in pipeline (“in flight”) simultaneously

CIS 501 (Martin/Roth): Pipelining 23

Dependences and Loops

• Data dependences in loops

• Intra-loop: within same iteration

• Inter-loop: across iterations

• Example: DAXPY (Double precision A X Plus Y)

for (i=0;i<100;i++)

Z[i]=A*X[i]+Y[i];

0: ldf f2,X(r1)

1: mulf f2,f0,f4

2: ldf f6,Y(r1)

3: addf f4,f6,f8

4: stf f8,Z(r1)

5: addi r1,8,r1

6: cmplti r1,800,r2

7: beq r2,Loop

• RAW intra: 0!1(f2), 1!3(f4), 2!
3(f6), 3!4(f8), 5!6(r1), 6!7(r2)

• RAW inter: 5!0(r1), 5!2(r1), 5!
4(r1), 5!5(r1)

• WAR intra: 0!5(r1), 2!5(r1), 4!5(r1)

• WAR inter: 1!0(f2), 3!1(f4), 3!
2(f6), 4!3(f8), 6!5(r1), 7!6(r2)

• WAW intra: none

• WAW inter: 0!0(f2), 1!1(f4), 2!
2(f6), 3!3(f8), 6!6(r2)

CIS 501 (Martin/Roth): Pipelining 24

RAW

• Read-after-write (RAW)

add r2,r3!r1

sub r1,r4!r2

or r6,r3!r1

• Problem: swap would mean sub uses wrong value for r1

• True: value flows through this dependence

• Using different output register for add doesn’t help

CIS 501 (Martin/Roth): Pipelining 25

RAW: Detect and Stall

• Stall logic: detect and stall reader in D

(F/D.rs1 & (F/D.rs1==D/X.rd | F/D.rs1==X/M.rd | F/D.rs1==M/W.rd)) |

(F/D.rs2 & (F/D.rs2==D/X.rd | F/D.rs2==X/M.rd | F/D.rs2==M/W.rd))

• Re-evaluated every cycle until no longer true

+ Low cost, simple

– IPC degradation, dependences are the common case

regfile

D$

PC F/D D/X X/M M/W

I$

+
4

CIS 501 (Martin/Roth): Pipelining 26

Two Stall Timings (without bypassing)

• Depend on how D and W stages share regfile
• Each gets regfile for half a cycle

– 1st half D reads, 2nd half W writes 3 cycle stall

• d* = data stall, p* = propagated stall

+ 1st half W writes, 2nd half D reads 2 cycle stall

• How does the stall logic change here?

W

10

MXDFp*p*p*add r5,r6!r7

WMXDd*d*d*Fsub r1,r4!r2

WMXDFadd r2,r3!r1

987654321

10

WMXDFp*p*add r5,r6!r7

WMXDd*d*Fsub r1,r4!r2

WMXDFadd r2,r3!r1

987654321

CIS 501 (Martin/Roth): Pipelining 27

Reducing RAW Stalls with Bypassing

• Why wait until W stage? Data available after X or M stage
• Bypass (aka forward) data directly to input of X or M

• MX: from beginning of M (X output) to input of X

• WX: from beginning of W (M output) to input of X

• WM: from beginning of W (M output) to data input of M

• Two each of MX, WX (figure shows 1) + WM = full bypassing

+ Reduces stalls in a big way

– Additional wires and muxes may increase clock cycle

regfile

D$

D/X X/M M/W

CIS 501 (Martin/Roth): Pipelining 28

Bypass Logic

• Bypass logic: similar to but separate from stall logic
• Stall logic controls latches, bypass logic controls mux inputs

• Complement one another: can’t bypass ! must stall

• ALU input mux bypass logic

• (D/X.rs2 & X/M.rd==D/X.rs2) ! 2 // check first

• (D/X.rs2 & M/W.rd==D/X.rs2) ! 1 // check second

• (D/X.rs2) ! 0 // check last

regfile

D$

D/X X/M M/W

CIS 501 (Martin/Roth): Pipelining 29

Pipeline Diagrams with Bypassing

• If bypass exists, “from”/“to” stages execute in same cycle

• Example: full bypassing, use MX bypass
10

WMXDFsub r1,r4!r2

WMXDFadd r2,r3!r1

987654321

• Example: full bypassing, use WX bypass

10

WMXDFsub r1,r4!r2

WMXDFld [r7]!r5

WMXDFadd r2,r3!r1

987654321

10

WMXDF?

WMXDFadd r2,r3!r1

987654321

• Example: WM bypass

• Can you think of a code example that uses the WM bypass?

CIS 501 (Martin/Roth): Pipelining 30

Load-Use Stalls

• Even with full bypassing, stall logic is unavoidable

• Load-use stall

• Load value not ready at beginning of M ! can’t use MX bypass

• Use WX bypass

10

WMXd*DFsub r1,r4!r2

WMXDFld [r3+4]!r1

987654321

• Aside: with WX bypassing, stall logic can be in D or X

10

WMXDd*Fsub r1,r4!r2

WMXDFld [r3+4]!r1

987654321

• Aside II: how does stall/bypass logic handle cache misses?

CIS 501 (Martin/Roth): Pipelining 31

Compiler Scheduling

• Compiler can schedule (move) insns to reduce stalls

• Basic pipeline scheduling: eliminate back-to-back load-use pairs

• Example code sequence: a = b + c; d = f – e;

• MIPS Notation:

• “ld r2,4(sp)” is “ld [sp+4]!r2” “st r1, 0(sp)” is “st r1![sp+0]”

Before

ld r2,4(sp)

ld r3,8(sp)

add r3,r2,r1 //stall

st r1,0(sp)

ld r5,16(sp)

ld r6,20(sp)

sub r5,r6,r4 //stall

st r4,12(sp)

After

ld r2,4(sp)

ld r3,8(sp)

ld r5,16(sp)

add r3,r2,r1 //no stall

ld r6,20(sp)

st r1,0(sp)

sub r5,r6,r4 //no stall

st r4,12(sp)

CIS 501 (Martin/Roth): Pipelining 32

Compiler Scheduling Requires

• Large scheduling scope

• Independent instruction to put between load-use pairs

+ Original example: large scope, two independent computations

– This example: small scope, one computation

Before

ld r2,4(sp)

ld r3,8(sp)

add r3,r2,r1 //stall

st r1,0(sp)

After

ld r2,4(sp)

ld r3,8(sp)

add r3,r2,r1 //stall

st r1,0(sp)

CIS 501 (Martin/Roth): Pipelining 33

Compiler Scheduling Requires

• Enough registers

• To hold additional “live” values

• Example code contains 7 different values (including sp)

• Before: max 3 values live at any time ! 3 registers enough

• After: max 4 values live ! 3 registers not enough ! WAR violations

Original

ld r2,4(sp)

ld r1,8(sp)

add r1,r2,r1 //stall

st r1,0(sp)

ld r2,16(sp)

ld r1,20(sp)

sub r2,r1,r1 //stall

st r1,12(sp)

Wrong!

ld r2,4(sp)

ld r1,8(sp)

ld r2,16(sp)

add r1,r2,r1 //WAR

ld r1,20(sp)

st r1,0(sp) //WAR

sub r2,r1,r1

st r1,12(sp)

CIS 501 (Martin/Roth): Pipelining 34

Compiler Scheduling Requires

• Alias analysis

• Ability to tell whether load/store reference same memory locations

• Effectively, whether load/store can be rearranged

• Example code: easy, all loads/stores use same base register (sp)

• New example: can compiler tell that r8 = sp?

Before

ld r2,4(sp)

ld r3,8(sp)

add r3,r2,r1 //stall

st r1,0(sp)

ld r5,0(r8)

ld r6,4(r8)

sub r5,r6,r4 //stall

st r4,8(r8)

Wrong(?)

ld r2,4(sp)

ld r3,8(sp)

ld r5,0(r8)

add r3,r2,r1

ld r6,4(r8)

st r1,0(sp)

sub r5,r6,r4

st r4,8(r8)

CIS 501 (Martin/Roth): Pipelining 35

WAW Hazards

• Write-after-write (WAW)
add r2,r3,r1

sub r1,r4,r2

or r6,r3,r1

• Compiler effects
• Scheduling problem: reordering would leave wrong value in r1

• Later instruction reading r1 would get wrong value

• Artificial: no value flows through dependence

• Eliminate using different output register name for or

• Pipeline effects

• Doesn’t affect in-order pipeline with single-cycle operations

• One reason for making ALU operations go through M stage

• Can happen with multi-cycle operations (e.g., FP or cache misses)

CIS 501 (Martin/Roth): Pipelining 36

Handling WAW Hazards

• What to do?
• Option I: stall younger instruction (addf) at writeback

+ Intuitive, simple

– Lower performance, cascading W structural hazards

• Option II: cancel older instruction (divf) writeback

+ No performance loss

– What if divf or stf cause an exception (e.g., /0, page fault)?

WE+E+DFaddf f0,f1!f2

10

WMXd*d*d*DFstf f2![r1]

WE/E/E/E/E/DFdiv f0,f1!f2

987654321

CIS 501 (Martin/Roth): Pipelining 37

Handling Interrupts/Exceptions

• How are interrupts/exceptions handled in a pipeline?

• Interrupt: external, e.g., timer, I/O device requests

• Exception: internal, e.g., /0, page fault, illegal instruction

• We care about restartable interrupts (e.g. stf page fault)

WE+E+DFaddf f0,f1!f2

10

WMXd*d*d*DFstf f2![r1]

WE/E/E/E/E/DFdivf f0,f1!f2

987654321

• VonNeumann says

• “Insn execution should appear sequential and atomic”

• Insn X should complete before instruction X+1 should begin

+ Doesn’t physically have to be this way (e.g., pipeline)

• But be ready to restore to this state at a moments notice

• Called precise state or precise interrupts

CIS 501 (Martin/Roth): Pipelining 38

Handling Interrupts

• In this situation
• Make it appear as if divf finished and stf, addf haven’t started

• Allow divf to writeback

• Flush stf and addf (so that’s what a flush is for)

• But addf has already written back

– Keep an “undo” register file? Complicated

– Force in-order writebacks? Slow

• Invoke exception handler

• Restart stf

WE+E+DFaddf f0,f1!f2

10

WMXd*d*d*DFstf f2![r1]

WE/E/E/E/E/DFdivf f0,f1!f2

987654321

CIS 501 (Martin/Roth): Pipelining 39

More Interrupt Nastiness

• What about two simultaneous in-flight interrupts
• Example: stf page fault, divf /0

• Interrupts must be handled in program order (stf first)

• Handler for stf must see program as if divf hasn’t started

• Must defer interrupts until writeback and force in-order writeback

• Kind of a bogus example, /0 is non-restartable

• In general: interrupts are really nasty
• Some processors (Alpha) only implement precise integer interrupts

• Easier because fewer WAW scenarios

• Most floating-point interrupts are non-restartable anyway

WE/E/E/E/E/DFdivf f0,f4!f2

10

WMXd*d*d*DFstf f2![r1]

WE/E/E/E/E/DFdivf f0,f1!f2

987654321

CIS 501 (Martin/Roth): Pipelining 40

Research: Runahead Execution

• In-order writebacks essentially imply stalls on D$ misses
• Can save power … or use idle time for performance

• Runahead execution [Dundas+]
• Shadow regfile kept in sync with main regfile (write to both)

• D$ miss: continue executing using shadow regfile (disable stores)

• D$ miss returns: flush pipe and restart with stalled PC

+ Acts like a smart prefetch engine

+ Performs better as cache tmiss grows (relative to clock period)

regfile

DI

+
4

S-regfile

CIS 501 (Martin/Roth): Pipelining 41

WAR Hazards

• Write-after-read (WAR)
add r2,r3,r1

sub r5,r4,r2

or r6,r3,r1

• Compiler effects
• Scheduling problem: reordering would mean add uses wrong value

for r2

• Artificial: solve using different output register name for sub

• Pipeline effects
• Can’t happen in simple in-order pipeline

• Can happen with out-of-order execution (after mid-term)

CIS 501 (Martin/Roth): Pipelining 42

Memory Data Hazards

• So far, have seen/dealt with register dependences

• Dependences also exist through memory

st r2![r1]

ld [r1]!r4

st r5![r1]

Read-after-write (RAW)

st r2![r1]

ld [r1]!r4

st r5![r1]

Write-after-read (WAR)

st r2![r1]

ld [r1]!r4

st r5![r1]

Write-after-write (WAW)

• But in an in-order pipeline like ours, they do not become hazards

• Memory read and write happen at the same stage

• Register read happens three stages earlier than register write

• In general: memory dependences more difficult than register

10

WMXDFld [r1]!r4

WMXDFst r2![r1]

987654321

CIS 501 (Martin/Roth): Pipelining 43

Control Hazards

• Control hazards
• Must fetch post branch insns before branch outcome is known

• Default: assume “not-taken” (at fetch, can’t tell it’s a branch)

• Control hazards indicated with c* (or not at all)

• Taken branch penalty is 2 cycles

• Back of the envelope calculation
• Branch: 20%, other: 80%, 75% of branches are taken

• CPIBASE = 1

• CPIBASE+BRANCH = 1 + 0.20*0.75*2 = 1.3

– Branches cause 30% slowdown

WMXDFc*c*st r6![r7+4]

WMXDFbnez r3,targ

WMXDFaddi r1,1!r3

987654321

CIS 501 (Martin/Roth): Pipelining 44

ISA Branch Techniques

• Fast branch: resolves at D, not X

• Test must be comparison to zero or equality, no time for ALU

+ New taken branch penalty is 1

– Additional comparison insns (e.g., cmplt, slt) for complex tests

– Must bypass into decode now, too

• Delayed branch: branch that takes effect one insn later

• Insert insns that are independent of branch into “branch delay slot”

• Preferably from before branch (always helps then)

• But from after branch OK too

• As long as no undoable effects (e.g., a store)

• Upshot: short-sighted feature (MIPS regrets it)

– Not a big win in today’s pipelines

– Complicates interrupt handling

CIS 501 (Martin/Roth): Pipelining 45

Big Idea: Speculation

• Speculation

• “Engagement in risky transactions on the chance of profit”

• Speculative execution

• Execute before all parameters known with certainty

• Correct speculation

+ Avoid stall, improve performance

• Incorrect speculation (mis-speculation)

– Must abort/flush/squash incorrect instructions

– Must undo incorrect changes (recover pre-speculation state)

The “game”: [%correct * gain] – [(1–%correct) * penalty]

CIS 501 (Martin/Roth): Pipelining 46

Control Hazards: Control Speculation

• Deal with control hazards with control speculation
• Unknown parameter: are these the correct insns to execute next?

• Mechanics
• Guess branch target, start fetching at guessed position

• Execute branch to verify (check) guess

• Correct speculation? keep going

• Mis-speculation? Flush mis-speculated insns

• Don’t write registers or memory until prediction verified

• Speculation game for in-order 5 stage pipeline
• Gain = 2 cycles

• Penalty = 0 cycles

• No penalty ! mis-speculation no worse than stalling

• %correct = branch prediction

• Static (compiler) OK, dynamic (hardware) much better

CIS 501 (Martin/Roth): Pipelining 47

Control Speculation and Recovery

• Mis-speculation recovery: what to do on wrong guess

• Not too painful in an in-order pipeline

• Branch resolves in X

+ Younger insns (in F, D) haven’t changed permanent state

• Flush insns currently in F/D and D/X (i.e., replace with nops)

WMXDFtarg:add r4,r5!r4

WMXDF st r6![r7+4]

WMXDF bnez r3,targ

WMXDF addi r1,1!r3

987654321

WMXDFtarg:add r4,r5!r4

--------Ftarg:add r4,r5!r4

------DF st r6![r7+4]

WMXDF bnez r3,targ

WMXDF addi r1,1!r3

987654321

Correct:

Recovery:

speculative

CIS 501 (Martin/Roth): Pipelining 48

Dynamic Branch Prediction

• BP part I: target predictor
• Applies to all control transfers

• Supplies target PC, tells if insn is a branch prior to decode

+ Easy

• BP part II: direction predictor
• Applies to conditional branches only

• Predicts taken/not-taken

– Harder

regfile

DI

B
P

CIS 501 (Martin/Roth): Pipelining 49

Branch Target Buffer

• Branch target buffer (BTB)

• A small cache: address = PC, data = target-PC

• Hit? This is a control insn and it’s going to target-PC (if “taken”)

• Miss? Not a control insn, or one I have never seen before

• Partial data/tags: full tag not necessary, target-PC is just a guess

• Aliasing: tag match, but not actual match (OK for BTB)

• Pentium4 BTB: 2K entries, 4-way set-associative

[13:2][19:10]

[9:2] 1:0[31:10]

[13:2][19:10]

PC

= [9:2] 1:0[31:13] [13:2]

target-PCbranch?

CIS 501 (Martin/Roth): Pipelining 50

Why Does a BTB Work?

• Because control insn targets are stable

• Direct means constant target, indirect means register target

+ Direct conditional branches? Check

+ Direct calls? Check

+ Direct unconditional jumps? Check

+ Indirect conditional branches? Not that useful!not widely supported

• Indirect calls? Two idioms

+ Dynamically linked functions (DLLs)? Check

+ Dynamically dispatched (virtual) functions? Pretty much check

• Indirect unconditional jumps? Two idioms

– Switches? Not really, but these are rare

– Returns? Nope, but…

CIS 501 (Martin/Roth): Pipelining 51

Return Address Stack (RAS)

• Return addresses are easy to predict without a BTB
• Hardware return address stack (RAS) tracks call sequence

• Calls push PC+4 onto RAS

• Prediction for returns is RAS[TOS]

• Q: how can you tell if an insn is a return before decoding it?

• RAS is not a cache

• A: attach pre-decode bits to I$

• Written after first time insn executes

• Two useful bits: return?, conditional-branch?

I$

PC

BTBDIRP RAS
+4

instruction next-PC

CIS 501 (Martin/Roth): Pipelining 52

Branch Direction Prediction

• Direction predictor (DIRP)

• Map conditional-branch PC to taken/not-taken (T/N) decision

• Seemingly innocuous, but quite difficult

• Individual conditional branches often unbiased or weakly biased

• 90%+ one way or the other considered “biased”

CIS 501 (Martin/Roth): Pipelining 53

Branch History Table (BHT)

• Branch history table (BHT): simplest direction predictor

• PC indexes table of bits (0 = N, 1 = T), no tags

• Essentially: branch will go same way it went last time

• Problem: consider inner loop branch below (* = mis-prediction)

for (i=0;i<100;i++)

 for (j=0;j<3;j++)

 // whatever

– Two “built-in” mis-predictions per inner loop iteration

– Branch predictor “changes its mind too quickly”

N

T*

T

T

T

T

TNTTTNTTTOutcome

N*T*TTN*T*TTN*State/prediction

CIS 501 (Martin/Roth): Pipelining 54

Two-Bit Saturating Counters (2bc)

• Two-bit saturating counters (2bc) [Smith]

• Replace each single-bit prediction

• (0,1,2,3) = (N,n,t,T)

• Force DIRP to mis-predict twice before “changing its mind”

+ Fixes this pathology (which is not contrived, by the way)

N

T*

T

T

T

T

TNTTTNTTTOutcome

tT*TTtT*tn*N*State/prediction

CIS 501 (Martin/Roth): Pipelining 55

Correlated Predictor

• Correlated (two-level) predictor [Patt]

• Exploits observation that branch outcomes are correlated

• Maintains separate prediction per (PC, BHR)

• Branch history register (BHR): recent branch outcomes

• Simple working example: assume program has one branch

• BHT: one 1-bit DIRP entry

• BHT+2BHR: 4 1-bit DIRP entries

– We didn’t make anything better, what’s the problem?

BHR=TT

BHR=TN

BHR=NT

BHR=NN TTTTTTTTTTTN*State/prediction

TTTTTTTTTTN*N“active pattern”

TTTTTTTN*NNNN

N

T*

T

N*

T

N

TNTTTNTTTOutcome

NT*N*NNT*N*NN

CIS 501 (Martin/Roth): Pipelining 56

Correlated Predictor

• What happened?

• BHR wasn’t long enough to capture the pattern

• Try again: BHT+3BHR: 8 1-bit DIRP entries

+ No mis-predictions after predictor learns all the relevant patterns

NNNNNNNNNNNNBHR=TTT

TTTTTTTN*NNNNBHR=TTN

TTTTTTN*NNNNNBHR=TNT

NNNNNNNNNNNNBHR=TNN

BHR=NTT

BHR=NTN

BHR=NNT

BHR=NNN TTTTTTTTTTTN*State/prediction

TTTTTTTTTTN*N

NNNNNNNNNNNN

N

T

T

T

T

T

TNTTTNTTTOutcome

TTTTTTN*NN“active pattern”

CIS 501 (Martin/Roth): Pipelining 57

Correlated Predictor

• Design choice I: one global BHR or one per PC (local)?
• Each one captures different kinds of patterns

• Global is better, captures local patterns for tight loop branches

• Design choice II: how many history bits (BHR size)?
• Tricky one

+ Given unlimited resources, longer BHRs are better, but…

– BHT utilization decreases

– Many history patterns are never seen

– Many branches are history independent (don’t care)

• PC ^ BHR allows multiple PCs to dynamically share BHT

• BHR length < log2(BHT size)

– Predictor takes longer to train

• Typical length: 8–12

CIS 501 (Martin/Roth): Pipelining 58

Hybrid Predictor

• Hybrid (tournament) predictor [McFarling]

• Attacks correlated predictor BHT utilization problem

• Idea: combine two predictors

• Simple BHT predicts history independent branches

• Correlated predictor predicts only branches that need history

• Chooser assigns branches to one predictor or the other

• Branches start in simple BHT, move mis-prediction threshold

+ Correlated predictor can be made smaller, handles fewer branches

+ 90–95% accuracy

PC

BHR

B
H

T

B
H

T

c
h

o
o

s
e
r

CIS 501 (Martin/Roth): Pipelining 59

Research: Perceptron Predictor

• Perceptron predictor [Jimenez]
• Attacks BHR size problem using machine learning approach

• BHT replaced by table of function coefficients Fi (signed)

• Predict taken if !(BHRi*Fi)> threshold

+ Table size #PC*|BHR|*|F| (can use long BHR: ~60 bits)

– Equivalent correlated predictor would be #PC*2|BHR|

• How does it learn? Update Fi when branch is taken

• BHRi == 1 ? Fi++ : Fi– –;

• “don’t care” Fi bits stay near 0, important Fi bits saturate

+ Hybrid BHT/perceptron accuracy: 95–98%

PC

BHR

F

! Fi*BHRi > thresh

CIS 501 (Martin/Roth): Pipelining 60

Branch Prediction Performance

• Same parameters

• Branch: 20%, load: 20%, store: 10%, other: 50%

• 75% of branches are taken

• Dynamic branch prediction

• Branches predicted with 95% accuracy

• CPI = 1 + 0.20*0.05*2 = 1.02

CIS 501 (Martin/Roth): Pipelining 61

Pipeline Performance Summary

• Base CPI is 1, but hazards increase it

• Nothing magical about a 5 stage pipeline

• Pentium4 has 22 stage pipeline

• Increasing pipeline depth

+ Increases clock frequency (that’s why companies do it)

– But decreases IPC

• Branch mis-prediction penalty becomes longer

• More stages between fetch and whenever branch computes

• Non-bypassed data hazard stalls become longer

• More stages between register read and write

• At some point, CPI losses offset clock gains, question is when?

CIS 501 (Martin/Roth): Pipelining 62

Dynamic Pipeline Power

• Remember control-speculation game

• [2 cycles * %correct] – [0 cycles * (1–%correct)]

• No penalty ! mis-speculation no worse than stalling

• This is a performance-only view

• From a power standpoint, mis-speculation is worse than stalling

• Power control-speculation game

• [0 nJ * %correct] – [X nJ * (1–%correct)]

• No benefit ! correct speculation no better than stalling

• Not exactly, increased execution time increases static power

• How to balance the two?

CIS 501 (Martin/Roth): Pipelining 63

Research: Speculation Gating

• Speculation gating [Manne+]

• Extend branch predictor to give prediction + confidence

• Speculate on high-confidence (mis-prediction unlikely) branches

• Stall (save energy) on low-confidence branches

• Confidence estimation

• What kind of hardware circuit estimates confidence?

• Hard in absolute sense, but easy relative to given threshold

• Counter-scheme similar to %miss threshold for cache resizing

• Example: assume 90% accuracy is high confidence

• PC-indexed table of confidence-estimation counters

• Correct prediction? table[PC]+=1 : table[PC]–=9;

• Prediction for PC is confident if table[PC] > 0;

CIS 501 (Martin/Roth): Pipelining 64

Research: Razor

• Razor [Uht, Ernst+]
• Identify pipeline stages with narrow signal margins (e.g., X)

• Add “Razor” X/M latch: relatches X/M input signals after safe delay

• Compare X/M latch with “safe” razor X/M latch, different?

• Flush F,D,X & M

• Restart M using X/M razor latch, restart F using D/X latch

+ Pipeline will not “break” ! reduce VDD until flush rate too high

+ Alternatively: “over-clock” until flush rate too high

regfile

DI

B
P

==

CIS 501 (Martin/Roth): Pipelining 65

Summary

• Principles of pipelining

• Effects of overhead and hazards

• Pipeline diagrams

• Data hazards

• Stalling and bypassing

• Control hazards

• Branch prediction

• Power techniques

• Dynamic power: speculation gating

• Static and dynamic power: razor latches

