
CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 1

CIS 501
Introduction to Computer Architecture

Unit 7: Multiple Issue and Static Scheduling

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 2

Remainder of CIS501: Parallelism

• Last unit: pipeline-level parallelism

• Work on execute of one instruction in parallel with decode of next

• Next: instruction-level parallelism (ILP)

• Execute multiple independent instructions fully in parallel

• Today: limited multiple issue

• Next week: dynamic scheduling

• Extract much more ILP via out-of-order processing

• Data-level parallelism (DLP)

• Single-instruction, multiple data

• Example: one instruction, four 16-bit adds (using 64-bit registers)

• Thread-level parallelism (TLP)

• Multiple software threads running on multiple processors

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 3

This Unit: Multiple Issue/Static Scheduling

• Multiple issue scaling problems

• Dependence-checks

• Bypassing

• Multiple issue designs

• Statically-scheduled superscalar

• VLIW/EPIC (IA64)

• Advanced static scheduling

• Advanced hardware technique

• Grid processor

Application

OS

FirmwareCompiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 4

Readings

• H+P

• Chapter 4.1, 4.2, 4.3,
4.5 (“Conditional or Predicated Instructions”),
4.7

• Paper

• “Superscalar Instruction Execution in the
21164 Alpha Microprocessor” for Tuesday

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 5

Scalar Pipeline and the Flynn Bottleneck

• So far we have looked at scalar pipelines

• One instruction per stage

– Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1

– Limit is never even achieved (hazards)

– Diminishing returns from “super-pipelining” (hazards + overhead)

regfile

DI

B
P

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 6

Multiple-Issue Pipeline

• Overcome this limit using multiple issue

• Also sometimes called superscalar

• Two instructions per stage at once, or three, or four, or eight…

• “Instruction-Level Parallelism (ILP)” [Fisher]

regfile

DI

B
P

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 7

Superscalar Execution

W

12

MXDFld [r8]!r9
W

11

D
X
M
W

8

X
M
W

9

M
W

10

F
D
X
M
W

6

F
D
X
M
W

7

add r5,r7!r8

add r4,r6!r7
F
D
X
M
W

5

F
D
X
M

4

add r2,r3!r6

ld [r1+12]!r5
Fld [r1+8]!r4
DFld [r1+4]!r3
XDFld [r1+0]!r2

321Single-issue

M Wd* XDFadd r5,r7!r8

WMXDFld [r1+12]!r5
WMXDFld [r1+8]!r4

WMXDFld [r1+4]!r3

118 9 106 7

W

5

M

4

XDFld [r1+0]!r2

321Dual-issue

M WXDFadd r2,r3!r6

WX Md*DFadd r4,r6!r7

WMXd*Ds*Fld [r8]!r9

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 8

Superscalar Challenges - Front End

• Wide instruction fetch

• Modest: need multiple instructions per cycle

• Aggressive: predict multiple branches, trace cache

• Wide instruction decode

• Replicate decoders

• Wide instruction issue

• Determine when instructions can proceed in parallel

• Not all combinations possible

• More complex stall logic - order N2 for N-wide machine

• Wide register read

• One port for each register read

• Example, 4-wide superscalar ! 8 read ports

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 9

Superscalar Challenges - Back End

• Wide instruction execution

• Replicate arithmetic units

• Multiple cache ports

• Wide instruction register writeback

• One write port per instruction that writes a register

• Example, 4-wide superscalar ! 4 write ports

• Wide bypass paths

• More possible sources for data values

• Order (N2 * P) for N-wide machine with execute pipeline depth P

• Fundamental challenge:

• Amount of ILP (instruction-level parallelism) in the program

• Compiler must schedule code and extract parallelism

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 10

Simple Dual-issue Pipeline

• Fetch an entire 16B or 32B cache block

• 4 to 8 instructions (assuming 4-byte fixed length instructions)

• Predict a single branch per cycle

• Parallel decode

• Need to check for conflicting instructions

• Output of I1 is an input to I2

• Other stalls, too (for example, load-use delay)

regfile

DI

B
P

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 11

Simple Dual-issue Pipeline

• Multi-ported register file

• Larger area, latency, power, cost, complexity

• Multiple execution units

• Simple adders are easy, but bypass paths are expensive

• Memory unit

• Option #1: single load per cycle (stall at decode)

• Option #2: add a read port to data cache

• Larger area, latency, power, cost, complexity

regfile

DI

B
P

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 12

Another Approach: Split Int/FP

• Split integer and
floating point

• 1 integer + 1 FP

+ Limited modifications

– Limited speedup

I$

I-regfile

D$

F-regfile

E/

E
+

E
+

E* E* E*

B
P

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 13

Four-issue pipeline (2 integer, 2 FP)

• 2 integer + 2 FP

• Similar to
Alpha 21164

• Floating points
loads execute in
“integer” pipe

F-regfile

E/

E
+

E
+

E* E* E*

regfile

DI

B
P

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 14

Superscalar Challenges

• Next-generation machines are 4-, 6-, 8-issue machines

• Hardware challenges

• Wide instruction fetch

• Wide instruction decode

• Wide instruction issue

• Wide register read

• Wide instruction execution

• Wide instruction register writeback

• Wide bypass paths

• Extracting and exploiting available ILP

• Hardware and software

• Let’s talk about some of these issues…

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 15

Wide Fetch - Sequential Instructions

• What is involved in fetching multiple instructions per cycle?

• In same cache block? ! no problem

• Favors larger block size (independent of hit rate)

• Compilers align basic blocks to I$ lines (pad with nops)

– Reduces I$ capacity

+ Increases fetch bandwidth utilization (more important)

• In multiple blocks? ! Fetch block A and A+1 in parallel

• Banked I$ + combining network

– May add latency (add pipeline stages to avoid slowing down clock)

I$

1020

1022 1023

1021

B
P

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 16

Wide Fetch - Non-sequential

• Two related questions
• How many branches predicted per cycle?

• Can we fetch from multiple taken branches per cycle?

• Simplest, most common organization: “1” and “No”
• One prediction, discard post-branch insns if prediction is “Taken”

– Lowers effective fetch width and IPC

• Average number of instructions per taken branch?

• Assume: 20% branches, 50% taken ! ~10 instructions

• Consider a 10-instruction loop body with an 8-issue processor

• Without smarter fetch, ILP is limited to 5 (not 8)

• Compiler can help
• Unroll loops, reduce taken branch frequency

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 17

Parallel Non-Sequential Fetch

• Allowing “embedded” taken branches is possible

• Requires smart branch predictor, multiple I$ accesses in one cycle

• Can try pipelining branch prediction and fetch

• Branch prediction stage only needs PC

• Transmits two PCs to fetch stage, PC and target PC

– Elongates pipeline, increases branch penalty

• Pentium II & III do something like this

I$
b0
I$
b1

B
P

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 18

Trace Cache

• Trace cache (T$) [Peleg+Weiser, Rotenberg+]
• Overcomes serialization of prediction and fetch by combining them

• New kind of I$ that stores dynamic, not static, insn sequences

• Blocks can contain statically non-contiguous insns

• Tag: PC of first insn + N/T of embedded branches

• Used in Pentium 4 (actually stores decoded µops)

• Coupled with trace predictor (TP)
• Predicts next trace, not next branch

T$

T
P

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 19

Trace Cache Example

• Traditional instruction cache

• Trace cache

• Traces can pre-decode dependence information

• Helps fix the N2 dependence check problem

Ff*5: call #32
Ff*4: st r1,4(sp)
DF1: beq r1,#4
DF0: addi r1,4,r1

21

4
0
Tag

st,call #32,ld,add
addi,beq #4,ld,sub
Data (insns)

0:T
Tag

addi,beq #4,st,call #32
Data (insns)

DF5: call #32
DF4: st r1,4(sp)
DF1: beq r1,#4
DF0: addi r1,4,r1

21

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 20

Aside: Multiple-issue CISC

• How do we apply superscalar techniques to CISC
• Such as x86

• Or CISCy ugly instructions in some RISC ISAs

• Break “macro-ops” into “micro-ops”
• Also called “µops” or “RISC-ops”

• A typical CISCy instruction “add [r1], [r2] ! [r3]” becomes:

• Load [r1] ! t1 (t1 is a temp. register, not visible to software)

• Load [r2] ! t2

• Add t1, t2 ! t3

• Store t3![r3]

• However, conversion is expensive (latency, area, power)

• Solution: cache converted instructions in trace cache

• Used by Pentium 4

• Internal pipeline manipulates only these RISC-like instructions

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 21

Wide Decode

• What is involved in decoding multiple (N) insns per cycle?

• Actually doing the decoding?

• Easy if fixed length (multiple decoders), doable if variable length

• Reading input registers?
– 2N register read ports (latency " #ports)

+ Actually less than 2N, most values come from bypasses

• What about the stall logic?

regfile

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 22

N2 Dependence Cross-Check

• Stall logic for 1-wide pipeline with full bypassing

• Full bypassing = load/use stalls only

X/M.op==LOAD && (D/X.rs1==X/M.rd || D/X.rs2==X/M.rd)

• Two “terms”: " 2N

• Now: same logic for a 2-wide pipeline

X/M1.op==LOAD && (D/X1.rs1==X/M1.rd || D/X1.rs2==X/M1.rd) ||

X/M1.op==LOAD && (D/X2.rs1==X/M1.rd || D/X2.rs2==X/M1.rd) ||

X/M2.op==LOAD && (D/X1.rs1==X/M2.rd || D/X1.rs2==X/M2.rd) ||

X/M2.op==LOAD && (D/X2.rs1==X/M2.rd || D/X2.rs2==X/M2.rd)

• Eight “terms”: " 2N2

• This is the N2 dependence cross-check

• Not quite done, also need

• D/X2.rs1==D/X1.rd || D/X2.rs2==D/X1.rd

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 23

Superscalar Stalls

• Invariant: stalls propagate upstream to younger insns

• If older insn in pair stalls, younger insns must stall too

• What if younger insn stalls?

• Can older insn from younger group move up?

• Fluid: yes, but requires some muxing

± Helps CPI a little, hurts clock a little

• Rigid: no

± Hurts CPI a little, but doesn’t impact clock

F
D
D
X
W

5

p*
p*
d*
M

4

ld 4(r1),r8
p*Fst r3,0(r1)
p*Fsub r5,r2,r3
d*DFaddi r4,1,r4
XDFld 0(r1),r4

321Rigid

D
D
X
X
W

5

p*
p*
p*
d*
M

4

Fld 4(41),r8
p*Fst r3,0(r1)
DFsub r5,r2,r3

d*DFaddi r4,1,r4
XDFld 0(r1),r4

321Fluid

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 24

Wide Execute

• What is involved in executing multiple (N) insns per cycle?

• Multiple execution units … N of every kind?
• N ALUs? OK, ALUs are small

• N FP dividers? No, FP dividers are huge and fdiv is uncommon

• How many branches per cycle?

• How many loads/stores per cycle?

• Typically some mix of functional units proportional to insn mix

• Intel Pentium: 1 any + 1 ALU

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 25

Wide Memory Access

• How do we allow multiple loads/stores to execute?
• Option#1: Extra read ports on data cache

• Higher latency, etc.

• Option#2: “Bank” the cache

• Can support a load to an “odd” and an “even” address

• Problem: address not known to execute stage

• Complicates stall logic

• With two banks, conflicts will occur frequently

• Option #3: Replicate the cache

• Multiple read bandwidth only

• Larger area, but no conflicts, can be faster than more ports

• Independent reads to replicas, writes (stores) go to all replicas

• Example: the Alpha 21164
• 8KB L1-caches, supports two loads, but only one store

• They probably use option #3

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 26

N2 Bypass Network

• N2 stall and bypass logic

• Actually OK

• 5-bit and 1-bit quantities

• N2 bypass network

– 32-bit (or 64-bit) quantities

– Routing lengthens wires

– Expensive metal layer crossings

– N+1 input muxes at each ALU input

– And this is just one bypassing stage!

• Bit-slicing

• Mitigates routing problem somewhat

• 32 or 64 1-bit bypass networks

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 27

Clustering

• Clustering: mitigates N2 bypass

• Group FUs into K clusters

• Full bypassing within a cluster

• Limited bypassing between clusters

• With a one cycle delay

• (N/K) + 1 inputs at each mux

• (N/K)2 bypass paths in each cluster

• Steering: key to performance

• Steer dependent insns to same cluster

• Statically (compiler) or dynamically

• E.g., Alpha 21264

• Bypass wouldn’t fit into clock cycle

• 4-wide, 2 clusters, static steering

• Replicates register file, too

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 28

Wide Writeback

• What is involved in multiple (N) writebacks per cycle?
– N register file write ports (latency " #ports)

• Usually less than N, stores and branches don’t do writeback

• Multiple exceptions per cycle?

• No just the oldest one

regfile

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 29

Multiple-Issue Implementations

• Statically-scheduled (in-order) superscalar
+ Executes unmodified sequential programs

– Hardware must figure out what can be done in parallel

• E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide)

• Very Long Instruction Word (VLIW)
+ Hardware can be dumb and low power

– Compiler must group parallel insns, requires new binaries

• E.g., TransMeta Crusoe (4-wide)

• Explicitly Parallel Instruction Computing (EPIC)
• A compromise: compiler does some, hardware does the rest

• E.g., Intel Itanium (6-wide)

• Dynamically-scheduled superscalar
• Pentium Pro/II/III (3-wide), Alpha 21264 (4-wide)

• We’ll already talked about statically-scheduled superscalar

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 30

VLIW

• Hardware-centric multiple issue problems
– Wide fetch+branch prediction, N2 bypass, N2 dependence checks

– Hardware solutions have been proposed: clustering, trace cache

• Software-centric: very long insn word (VLIW)
• Effectively, a 1-wide pipeline, but unit is an N-insn group

• Compiler guarantees insns within a VLIW group are independent

• If no independent insns, slots filled with nops

• Group travels down pipeline as a unit

+ Simplifies pipeline control (no rigid vs. fluid business)

+ Cross-checks within a group un-necessary

• Downstream cross-checks still necessary

• Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.

+ Further simplification

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 31

History of VLIW

• Started with “horizontal microcode”

• Academic projects

• Yale ELI-512 [Fisher, ‘85]

• Illinois IMPACT [Hwu, ‘91]

• Commercial attempts
• Multiflow [Colwell+Fisher, ‘85] ! failed

• Cydrome [Rau, ‘85] ! failed

• Motorolla/TI embedded processors ! successful

• Intel Itanium [Colwell,Fisher+Rau, ‘97] ! ??

• Transmeta Crusoe [Ditzel, ‘99] ! mostly failed

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 32

Pure and Tainted VLIW

• Pure VLIW: no hardware dependence checks at all
• Not even between VLIW groups

+ Very simple and low power hardware

• Compiler responsible for scheduling stall cycles

• Requires precise knowledge of pipeline depth and structure

– These must be fixed for compatibility

– Doesn’t support caches well

• Used in some cache-less micro-controllers, but not generally useful

• Tainted (more realistic) VLIW: inter-group checks
• Compiler doesn’t schedule stall cycles

+ Precise pipeline depth and latencies not needed, can be changed

+ Supports caches

• TransMeta Crusoe

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 33

What Does VLIW Actually Buy Us?

+ Simpler I$/branch prediction

• No trace cache necessary

+ Slightly simpler dependence check logic

• Bypasses are the same

• Clustering can help VLIW, too

– Not compatible across machines of different widths

• Is non-compatibility worth all of this?

• PS how does TransMeta deal with compatibility problem?

• Dynamically translates x86 to internal VLIW

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 34

EPIC

• Tainted VLIW

• Compatible across pipeline depths

– But not across pipeline widths and slot structures

– Must re-compile if going from 4-wide to 8-wide

• TransMeta sidesteps this problem by re-compiling transparently

• EPIC (Explicitly Parallel Insn Computing)

• New VLIW (Variable Length Insn Words)

• Implemented as “bundles” with explicit dependence bits

• Code is compatible with different “bundle” width machines

• Compiler discovers as much parallelism as it can, hardware does rest

• E.g., Intel Itanium (IA-64)

• 128-bit bundles (3 41-bit insns + 4 dependence bits)

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 35

ILP and Static Scheduling

• No point to having an N-wide pipeline…

• …if average number of parallel insns per cycle (ILP) << N

• How can the compiler help extract parallelism?

• These techniques applicable to regular superscalar

• These techniques critical for VLIW/EPIC

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 36

Code Example: SAXPY

• SAXPY (Single-precision A X Plus Y)
• Linear algebra routine (used in solving systems of equations)

• Part of early “Livermore Loops” benchmark suite

for (i=0;i<N;i++)

Z[i]=A*X[i]+Y[i];

0: ldf X(r1),f1 // loop
1: mulf f0,f1,f2 // A in f0
2: ldf Y(r1),f3 // X,Y,Z are constant addresses
3: addf f2,f3,f4
4: stf f4,Z(r1)
5: addi r1,4,r1 // i in r1
6: blt r1,r2,0 // N*4 in r2

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 37

SAXPY Performance and Utilization

• Scalar pipeline

• Full bypassing, 5-cycle E*, 2-cycle E+, branches predicted taken

• Single iteration (7 insns) latency: 16–5 = 11 cycles

• Performance: 7 insns / 11 cycles = 0.64 IPC

• Utilization: 0.64 actual IPC / 1 peak IPC = 64%

20191817

W

16

M
W

15

X
M
W

14

D
X
M
W

13

F
D
X
M
W

12

F
D
X

E+

11

F
D
E+

W

10

p*
d*

E*

9

p*
d*
W
E*

8

p*
d*
M
E*

7

F
D
X
E*

6

ldf X(r1),f1

blt r1,r2,0

addi r1,4,r1

F
D
E*
W

5

p*
d*
M

4

stf f4,Z(r1)

addf f2,f3,f4
Fldf Y(r1),f3
DFmulf f0,f1,f2
XDFldf X(r1),f1

321

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 38

SAXPY Performance and Utilization

• Dual issue pipeline (fluid)
• Same + any two insns per cycle + embedded taken branches

+ Performance: 7 insns / 10 cycles = 0.70 IPC

– Utilization: 0.70 actual IPC / 2 peak IPC = 35%

– More hazards ! more stalls (why?)

– Each stall is more expensive (why?)

2019181716

W
W

15

M
M
W

14

X
X
M
W

13

D
d*
X
M
W

12

F
D
D
X

E+

11

p*
p*
d*
E+

W

10

p*
p*
p*
d*

E*

9

p*
p*
p*
d*

E*

8

p*
p*
p*
d*
W
E*

7

p*
p*
p*
d*
M
E*

6

ldf X(r1),f1
Fblt r1,r2,0
Faddi r1,4,r1
D
D
X
E*
W

5

p*
p*
p*
d*
M

4

Fstf f4,Z(r1)
p*Faddf f2,f3,f4
DFldf Y(r1),f3
d*DFmulf f0,f1,f2
XDFldf X(r1),f1

321

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 39

Schedule and Issue

• Issue: time at which insns execute

• Want to maintain issue rate of N

• Schedule: order in which insns execute

• In in-order pipeline, schedule + stalls determine issue

• A good schedule that minimizes stalls is important

• For both performance and utilization

• Schedule/issue combinations

• Pure VLIW: static schedule, static issue

• Tainted VLIW: static schedule, partly dynamic issue

• Superscalar, EPIC: static schedule, dynamic issue

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 40

Instruction Scheduling

• Idea: place independent insns between slow ops and uses

• Otherwise, pipeline stalls while waiting for RAW hazards to resolve

• Have already seen pipeline scheduling

• To schedule well need … independent insns

• Scheduling scope: code region we are scheduling

• The bigger the better (more independent insns to choose from)

• Once scope is defined, schedule is pretty obvious

• Trick is creating a large scope (must schedule across branches)

• Compiler scheduling (really scope enlarging) techniques

• Loop unrolling (for loops)

• Trace scheduling (for non-loop control flow)

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 41

Aside: Profiling

• Profile: statistical information about program tendencies
• Software’s answer to everything

• Collected from previous program runs (different inputs)

± Works OK depending on information

• Memory latencies (cache misses)

+ Identities of frequently missing loads stable across inputs

– But are tied to cache configuration

• Memory dependences

+ Stable across inputs

– But exploiting this information is hard (need hw help)

• Branch outcomes

– Not so stable across inputs

– More difficult to use, need to run program and then re-compile

• Popular research topic

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 42

Loop Unrolling SAXPY

• Goal: separate dependent insns from one another

• SAXPY problem: not enough flexibility within one iteration

• Longest chain of insns is 9 cycles

• Load (1)

• Forward to multiply (5)

• Forward to add (2)

• Forward to store (1)

– Can’t hide a 9-cycle chain using only 7 insns

• But how about two 9-cycle chains using 14 insns?

• Loop unrolling: schedule two or more iterations together

• Fuse iterations

• Pipeline schedule to reduce RAW stalls

• Pipeline schedule introduces WAR violations, rename registers to fix

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 43

Unrolling SAXPY I: Fuse Iterations

• Combine two (in general K) iterations of loop
• Fuse loop control: induction variable (i) increment + branch

• Adjust implicit induction uses

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blt r1,r2,0
ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blt r1,r2,0

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)

ldf X+4(r1),f1
mulf f0,f1,f2
ldf Y+4(r1),f3
addf f2,f3,f4
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 44

Unrolling SAXPY II: Pipeline Schedule

• Pipeline schedule to reduce RAW stalls

• Have already seen this: pipeline scheduling

ldf X(r1),f1
ldf X+4(r1),f1
mulf f0,f1,f2
mulf f0,f1,f2
ldf Y(r1),f3
ldf Y+4(r1),f3
addf f2,f3,f4
addf f2,f3,f4
stf f4,Z(r1)
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
ldf X+4(r1),f1
mulf f0,f1,f2
ldf Y+4(r1),f3
addf f2,f3,f4
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 45

Unrolling SAXPY III: Rename Registers

• Pipeline scheduling causes WAR violations

• Rename registers to correct

ldf X(r1),f1
ldf X+4(r1),f5
mulf f0,f1,f2
mulf f0,f5,f6
ldf Y(r1),f3
ldf Y+4(r1),f7
addf f2,f3,f4
addf f6,f7,f8
stf f4,Z(r1)
stf f8,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

ldf X(r1),f1
ldf X+4(r1),f1
mulf f0,f1,f2
mulf f0,f1,f2
ldf Y(r1),f3
ldf Y+4(r1),f3
addf f2,f3,f4
addf f2,f3,f4
stf f4,Z(r1)
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 46

Unrolled SAXPY Performance/Utilization

+ Performance: 12 insn / 13 cycles = 0.92 IPC

+ Utilization: 0.92 actual IPC / 1 peak IPC = 92%

+ Speedup: (2 * 11 cycles) / 13 cycles = 1.69

WMXDFstf f8,Z+4(r1)

WE+p*E+Dp*Faddf f6,f7,f8

Ws*s*MXDFldf Y+4(r1),f7

WE*E*E*E*E*DFmulf f0,f5,f6

WMXDFldf X+4(r1),f5

2019

W

18

M
W

17

X
M
W

16

D
X
M

15

F
D
X

W

14

F
D

M

W

13

F

X

s*

12

D

E+

11

F

E+

W

10

d*

W

E*

9

D

M

E*

8

F

X

E*

7

D

E*

6

ldf X(r1),f1

blt r1,r2,0

addi r1,8,r1

F

E*

W

5

D

M

4

stf f4,Z(r1)

addf f2,f3,f4

ldf Y(r1),f3

Fmulf f0,f1,f2

XDFldf X(r1),f1

321

No propagation?
Different pipelines

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 47

Loop Unrolling Shortcomings

– Static code growth more I$ misses

– Limits practical unrolling limit

– Poor scheduling along “seams” of unrolled copies

– Need more registers to resolve WAR hazards

– Doesn’t handle recurrences (inter-iteration dependences)

– Handled by software pipelining (not further discussed)

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 48

Beyond Scheduling Loops

• Problem: not everything is a loop

• How to create large scheduling scopes from non-loop code?

• Idea: trace scheduling [Ellis, ‘85]

• Find common paths in program (profile)

• Realign basic blocks to form straight-line “traces”

• Basic-block: single-entry, single-exit insn sequence

• Trace: fused basic block sequence

• Schedule insns within a trace

• This is the easy part

• Create fixup code outside trace

• In case implicit trace path doesn’t equal actual path

• Nasty

• Good scheduling needs ISA support for software speculation

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 49

Trace Scheduling Example

• Problem: separate #6 (3 cycles) from #7

• How to move mulf above if-then-else?

• How to move ldf?

A = Y[i];
if (A == 0)
 A = W[i];
else
 Y[i] = 0;
Z[i] = A*X[i];

0: ldf Y(r1),f2
1: fbne f2,4
2: ldf W(r1),f2
3: jump 5
4: stf f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT T

A

B C

D

4 basic blocks: A,B,C,DSource code

Machine code

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 50

Superblocks

• First trace scheduling construct: superblock

• Use when branch is highly biased

• Fuse blocks from most frequent path: A,C,D

• Schedule

• Create repair code in case real path was A,B,D

0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT=5% T=95%

A

B C

D

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 51

Superblock and Repair Code

• What did we do?

• Change sense (test) of branch 1

• Original taken target now fall-thru

• Created repair block

• May need to duplicate some code (here basic-block D)

• Haven’t actually scheduled superblock yet

0: ldf Y(r1),f2
1: fbeq f2,2
4: stf f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
5’: ldf X(r1),f4
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 52

Superblocks Scheduling I

• First scheduling move: move insns 5 and 6 above insn 4

• Hmmm: moved load (5) above store (4)

• We can tell this is OK, but can the compiler

• If yes, fine

• Otherwise, need to do something

0: ldf Y(r1),f2
1: fbeq f2,2
5: ldf X(r1),f4
6: mulf f4,f2,f6
4: stf f0,Y(r1)
7: stf f6,Z(r1)

2: ldf W(r1),f2
5’: ldf X(r1),f4
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 53

ISA Support for Load/Store Speculation

• IA-64: change insn 5 to advanced load ldf.a

• “Advanced” means advanced past some unknown store

• Processor stores [address, reg] of advanced loads in table

• Memory Conflict Buffer (MCB), Advanced Load Alias Table (ALAT)

• Later stores search ALAT: matching address ! invalidate register

• Insert check insn chk.a to make sure register is still good

• If not, jump to some more repair code (arghhh…)

0: ldf Y(r1),f2
1: fbeq f2,2
5: ldf.a X(r1),f4
6: mulf f4,f2,f6
4: stf f0,Y(r1)
8: chk.a f4,9
7: stf f6,Z(r1)

2: ldf W(r1),f2
5’: ldf X(r1),f4
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

Repair code 2

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 54

Superblock Scheduling II

• Second scheduling move: move insn 5 and 6 above insn 1
• That’s OK, load did not depend on branch…

• And would have executed anyway

• Scheduling non-move: don’t move insn 4 above insn 1
• Why? Hard (but possible) to undo a store in repair code

• Success: scheduled 3 insns between 6 and 7

0: ldf Y(r1),f2
5: ldf.a X(r1),f4
6: mulf f4,f2,f6
1: fbeq f2,2
4: stf f0,Y(r1)
8: chk.a f4,9
7: stf f6,Z(r1)

2: ldf W(r1),f2
5’: ldf X(r1),f4
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

Repair code 2

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 55

What If…

• … branch 1 had the opposite bias?

0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT=95% T=5%

A

B C

D

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 56

The Other Superblock and Repair Code

• Notice

• Branch 1 sense (test) unchanged

• Original taken target now in repair code

0: ldf Y(r1),f2
1: fbne f2,4
2: ldf W(r1),f2
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

4: stf f0,Y(r1)
5’: ldf X(r1),f4
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 57

Superblock Scheduling III

• First scheduling move: move insns 2, 5, and 6 above insn 1
• Rename f2 to f8 to avoid WAR violation

• Notice, can remove copy of insn 5 from repair code

• Is this scheduling move legal?

• From a store standpoint, yes

• What about from a fault standpoint? What if insn 2 faults?

0: ldf Y(r1),f2
2: ldf W(r1),f8
5: ldf X(r1),f4
6: mulf f4,f8,f6
1: fbne f2,4
7: stf f6,Z(r1)

4: stf f0,Y(r1)
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 58

ISA Support for Load-Branch Speculation

• IA-64: change insn 2 to speculative load ldf.s
• “Speculative” means advanced past some unknown branch

• Processor keeps exception bit with register f8

• Inserted insn chk.s checks exception bit

• If exception, jump to yet more repair code (arghhh…)

• IA-64 also contains ldf.sa

0: ldf Y(r1),f2
2: ldf.s W(r1),f8
5: ldf X(r1),f4
6: mulf f4,f8,f6
1: fbne f2,4
8: chk.s f8
7: stf f6,Z(r1)

4: stf f0,Y(r1)
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

Repair code 2

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 59

Non-Biased Branches: Use Predication

0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT=50% T=50%

A

B C

D

0: ldf Y(r1),f2
1: fspne f2,p1
2: ldf.p p1,W(r1),f2
4: stf.np p1,f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

"

Using Predication

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 60

Predication

• Conventional control
• Conditionally executed insns also conditionally fetched

• Predication
• Conditionally executed insns unconditionally fetched

• Full predication (ARM, IA-64)

• Can tag every insn with predicate, but extra bits in instruction

• Conditional moves (Alpha, IA-32)

• Construct appearance of full predication from one primitive

cmoveq r1,r2,r3 // if (r1==0) r3=r2;

– May require some code duplication to achieve desired effect

+ Only good way of adding predication to an existing ISA

• If-conversion: replacing control with predication
+ Good if branch is unpredictable (save mis-prediction)

– But more instructions fetched and “executed”

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 61

ISA Support for Predication

• IA-64: change branch 1 to set-predicate insn fspne

• Change insns 2 and 4 to predicated insns
• ldf.p performs ldf if predicate p1 is true

• stf.np performs stf if predicate p1 is false

0: ldf Y(r1),f2
1: fspne f2,p1
2: ldf.p p1,W(r1),f2
4: stf.np p1,f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 62

Hyperblock Scheduling

• Second trace scheduling construct: hyperblock

• Use when branch is not highly biased

• Fuse all four blocks: A,B,C,D

• Use predication to conditionally execute insns in B and C

• Schedule

0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT=50% T=50%

A

B C

D

0: ldf Y(r1),f2
1: fspne f2,p1
2: ldf.p p1,W(r1),f2
4: stf.np p1,f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 63

Research: Frames

• New experimental scheduling construct: frame

• rePLay [Patel+Lumetta]

• Frame: an atomic superblock

• Atomic means all or nothing, i.e., transactional

• Two new insns

• begin_frame: start buffering insn results

• commit_frame: make frame results permanent

• Hardware support required for buffering

• Any branches out of frame: abort the entire thing

+ Eliminates nastiest part of trace scheduling … nasty repair code

• If frame path is wrong just jump to original basic block code

• Repair code still exists, but it’s just the original code

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 64

Frames

• What about frame optimizations?

+ Load-branch optimizations can be done without support

• Natural branch “undo”

• Load-store optimizations still require ISA support

• Fixup code still simpler

8: begin_frame
0: ldf Y(r1),f2
2: ldf W(r1),f2
5: ldf X(r1),f4
6: mulf f4,f2,f6
1: fbne f2,0
7: stf f6,Z(r1)
9: commit_frame

Frame
0: ldf Y(r1),f2
1: fbne f2,4
2: ldf W(r1),f2
3: jump 5
4: stf f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

Repair Code

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 65

Research: Grid Processor

• Grid processor architecture (aka TRIPS)

• [Nagarajan, Sankaralingam, Burger+Keckler]

• EDGE (Explicit Dataflow Graph Execution) execution model

• Holistic attack on many fundamental superscalar problems

• Specifically, the nastiest one: N2 bypassing

• But also N2 dependence check

• And wide-fetch + branch prediction

• Two-dimensional VLIW

• Horizontal dimension is insns in one parallel group

• Vertical dimension is several vertical groups

• Executes atomic hyperblocks

• IBM looking into building it

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 66

Grid Processor

• Components

• next h-block logic/predictor (NH), I$, D$, regfile

• NxN ALU grid: here 4x4

• Pipeline stages

• Fetch h-block to grid

• Read registers

• Execute/memory

• Cascade

• Write registers

• Block atomic

• No intermediate regs

• Grid limits size/shape

ALU

read read read read

regfile

ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

I$

D$

NH

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 67

Grid Processor SAXPY

• An h-block for this Grid processor has 5 4-insn words

• The unit is all 5

• Some notes about Grid ISA
• read: read register from register file

• pass: null operation

• –1,0,1: routing directives send result to next word

• one insn left (-1), insn straight down (0), one insn right (1)

• Directives specify value flow, no need for interior registers

stf Zpass 0,r1nopblt
addf 0pass 1addipass 0
ldf Y,0mulf 1pass 0,1pass 0
ldf X,-1pass -1,1pass 1pass 0
nopread r1,0,1read f1,0read r2,0

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 68

Grid Processor SAXPY Cycle 1

• Map hyperblock to grid

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 69

Grid Processor SAXPY Cycle 2

• Read registers

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 70

Grid Processor SAXPY Cycle 3

• Execute first grid row

• Execution proceeds in “data flow” fashion

• Not lock step

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 71

Grid Processor SAXPY

• When all instructions are done

• Write registers and next hyperblock PC

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 72

Grid Processor SAXPY Performance

• Performance

• 1 cycle fetch

• 1 cycle read regs

• 8 cycles execute

• 1 cycle write regs

• 11 cycles total (same)

• Utilization

• 7 / (11 * 16) = 4%

• What’s the point?

+ Simpler components

+ Faster clock?

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$

D$

NH

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 73

Grid Processor Pros and Cons

+ Naturally aligned I$

+ No hardware dependence checks period
• Insns explicitly encode rather than hardware reconstruct

• Still get dynamic issue

+ Simple, forward only, short-wire bypassing
• No wraparound routing, no metal layer crossings, low input muxes

– Code size
• Lots of nop and pass operations

– Poor scheduling between hyperblocks

– Non-compatibility
• Code assumes horizontal and vertical grid layout

• Overcome with transparent dynamic translation? Like TransMeta

– Utilization
• Overcome by multiple concurrent executing hyperblocks

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 74

Static Scheduling Summary

• Goal: increase scope to find more independent insns

• Loop unrolling

+ Simple

– Expands code size, can’t handle recurrences or non-loops

• Trace scheduling

• Superblocks and hyperblocks

+ Works for non-loops

– More complex, requires ISA support for speculation and predication

– Requires nasty repair code

CIS 501 (Martin/Roth): Multiple Issue and Static Scheduling 75

Multiple Issue Summary

• Problem spots
• Wide fetch + branch prediction ! trace cache?

• N2 dependence cross-check

• N2 bypass ! clustering?

• Implementations

• Statically scheduled superscalar

• VLIW/EPIC

• Research: Grid Processor

• What’s next:

• Finding more ILP by relaxing the in-order execution requirement

