CIS 501
Introduction to Computer Architecture

Unit 8: Dynamic Scheduling I

CIS 501 (Martin/Roth): Dynamic Scheduling I 1

Readings

e H+P
* None (not happy with explanation of this topic)

CIS 501 (Martin/Roth): Dynamic Scheduling I 3

This Unit: Dynamic Scheduling I

Applicati ! .
PP '°gs ! | ¢ Dynamic scheduling
¢ Qut-of-order execution
Compiler Firmware
e Scoreboard
CPU 110 ¢ Dynamic scheduling with WAW/WAR
Memory e Tomasulo’s algorithm

Digital Circuits

Gates & Transistors

e Next unit
¢ Adding speculation and precise state
¢ Dynamic load scheduling

CIS 501 (Martin/Roth): Dynamic Scheduling I 2

The Problem With In-Order Pipelines

e Add register renaming to fix WAW/WAR

1 2 3 456 7 8 9 10111213141516
addf £0,f1,f2 |F D E+E+E+ W
mulf £2,£3,f2 F D d*d*E*E*E*E*XE*W
subf £0,fl,f4 F p* p* D E+E+E+ W

e What's happening in cycle 4?
e mulf stalls due to RAW hazard
¢ OK, this is a fundamental problem
¢ subf stalls due to pipeline hazard
¢ Why? subf can't proceed into D because addf is there
¢ That is the only reason, and it isnt a fundamental one

e Why can't subf go into D in cycle 4 and E+ in cycle 5?

CIS 501 (Martin/Roth): Dynamic Scheduling I 4

Dynamic Scheduling: The Big Picture

Register Renaming

add p2,p3,p4
sub p;;%ps
1 6
mul PAE5.P

div p4,4,p7

1$

B

P :| D S

Ready Table

P2 [P3 [P4 [P5 [P6 [P7

Yes|Yes add p2,p3,p4

Yes|Yes|Yes Yes| sub p2,p4,p5 and div p4,4,p7

Yes{Yes]Yelees Yes| mul p2,p5,p6

Yes]Yes]Yes] Yes|Yes|Yes

¢ Instructions fetch/decoded/renamed into Instruction Buffer
¢ Also called “instruction window” or “instruction scheduler”

¢ Instructions (conceptually) check ready bits every cycle

e Execute when ready
CIS 501 (Martin/Roth): Dynamic Scheduling I 5

Dynamic Scheduling - OoO Execution

e To eliminate WAW and WAR hazards

e Example
e Names: rl,r2,r3
e Locations: p1,p2,p3,p4,p5,p6,p7
¢ Original mapping: r1—p1l, r2—p2, r3—p3, p4—p7 are “free”

MapTable FreeList Raw insns Renamed insns
rl [r2 |r3

pl |p2 |p3 p4,p5,p6,p7 add r2,r3,zr1 add p2,p3‘p4
p4 |p2 |p3 p5,p6,p7 sub r2,r 3 sub p2,p 5
p4 |p2 |p5 p6,p7 mul r2,f3. r3¢ mul p ,P6
p4 |p2 |p6 p7 div rl,4,rl div p4,4,p7

e Renaming
+ Removes WAW and dependences

+ Leaves RAW intact!

CIS 501 (Martin/Roth): Dynamic Scheduling I 6

Static Instruction Scheduling

e Dynamic scheduling

e Totally in the hardware

¢ Also called “out-of-order execution” (Oo0)

Fetch many instructions into instruction window

¢ Use branch prediction to speculate past (multiple) branches

¢ Flush pipeline on branch misprediction

Rename to avoid false dependencies (WAW and WAR)
Execute instructions as soon as possible

¢ Register dependencies are known

¢ Handling memory dependencies more tricky (much more later)
Commit instructions in order

¢ Any strange happens before commit, just flush the pipeline
Current machines: 100+ instruction scheduling window

CIS 501 (Martin/Roth): Dynamic Scheduling I 7

¢ Issue: time at which insns execute

e Schedule: order in which insns execute
¢ Related to issue, but the distinction is important

e Scheduling: re-arranging insns to enable rapid issue
o Static: by compiler
¢ Requires knowledge of pipeline and program dependences
¢ Pipeline scheduling: the basics
e Requires large scheduling scope full of independent insns
¢ Loop unrolling, software pipelining: increase scope for loops
¢ Trace scheduling: increase scope for non-loops

Anything software can do ... hardware can do better

CIS 501 (Martin/Roth): Dynamic Scheduling I 8

Motivation Dynamic Scheduling

Before We Continue

¢ Dynamic scheduling (out-of-order execution)
¢ Execute insns in non-sequential (non-VonNeumann) order...
+ Reduce RAW stalls
+ Increase pipeline and functional unit (FU) utilization
« Original motivation was to increase FP unit utilization
+ Expose more opportunities for parallel issue (ILP)
¢ Not in-order — can be in parallel
o ...but make it appear like sequential execution
e Important
— But difficult
e Next unit

CIS 501 (Martin/Roth): Dynamic Scheduling I

Going Forward: What's Next

e If we can do this in software...
o ...why build complex (slow-clock, high-power) hardware?

+ Performance portability
¢ Don't want to recompile for new machines
+ More information available
¢ Memory addresses, branch directions, cache misses
+ More registers available (??)
e Compiler may not have enough to fix WAR/WAW hazards
+ Easier to speculate and recover from mis-speculation
e Flush instead of recover code
But compiler has a larger scope
¢ Compiler does as much as it can (not much)
¢ Hardware does the rest

CIS 501 (Martin/Roth): Dynamic Scheduling I 10

Dynamic Scheduling as Loop Unrolling

o We’'ll build this up in steps over the next few weeks
e “Scoreboarding” - first 000, no register renaming
¢ “Tomasulo’s algorithm” - adds register renaming
¢ Handling precise state and speculation
» P6-style execution (Intel Pentium Pro)
¢ R10k-style execution (MIPS R10Kk)
¢ Handling memory dependencies
¢ Conservative and speculative

e Let’s get started!

CIS 501 (Martin/Roth): Dynamic Scheduling I

e Three steps of loop unrolling

e Step I: combine iterations
¢ Increase scheduling scope for more flexibility
o Step II: pipeline schedule
¢ Reduce impact of RAW hazards
e Step III: rename registers
* Remove WAR/WAW violations that result from scheduling

CIS 501 (Martin/Roth): Dynamic Scheduling I 12

Loop Example: SAX (SAXPY — PY) New Pipeline Terminology

e SAX (Single-precision A X)
e Only because there won't be room in the diagrams for SAXPY

for (i=0;i<N;i++)
Z[i]=A*X[i];

0: 1ldf X(rl),fl // loop
1: mulf £0,f1,£2 // A in £0))
2: stf £4,Z(rl) e In-order pipeline
3: addi r1,4,rl // i in rl e Often written as F,D,X,W (multi-cycle X includes M)
4: blt r1,r2,0 // N*4 in r2 ¢ Example pipeline: 1-cycle int (including mem), 3-cycle pipelined FP
o Consider two iterations, ignore branch
1df, mulf, stf, addi, 1df, mulf, stf
CIS 501 (Martin/Roth): Dynamic Scheduling I 13 CIS 501 (Martin/Roth): Dynamic Scheduling I 14

New Pipeline Diagram The Problem With In-Order Pipelines

Insn D X| W

1df X(rl) ,fl cl| c2| c3

mulf £0,f1l,£f2| c3 | c4+| c7

stf £2,Z(rl) c7 | c8 | c9

addi rl,4,rl c8 | ¢c9 | cl0

1df X(rl),fl | cl0| cll| cl2

mulf £0,f1,£f2| cl2|cl3+ cl6

stf £2,Z(rl) cl6| cl7| cl8

¢ Alternative pipeline diagram ¢ In-order pipeline
¢ Down: insns o Structural hazard: 1 insn register (latch) per stage
e Across: pipeline stages « 1 insn per stage per cycle (unless pipeline is replicated)
* In boxes: cycles e Younger insn can't “pass” older insn without “clobbering” it

Basically: stages <= cycles

Convenient for out-of-order Out-of-order pipeline

¢ Implement “passing” functionality by removing structural hazard

CIS 501 (Martin/Roth): Dynamic Scheduling I 15 CIS 501 (Martin/Roth): Dynamic Scheduling I 16

Instruction Buffer

A

e Trick: insn buffer (many names for this buffer)

e Basically: a bunch of latches for holding insns

¢ Implements iteration fusing ... here is your scheduling scope
e Split D into two pieces

o Accumulate decoded insns in buffer in-order

» Buffer sends insns down rest of pipeline out-of-order

CIS 501 (Martin/Roth): Dynamic Scheduling I 17

Dispatch and Issue with Floating-Point

CIS 501 (Martin/Roth): Dynamic Scheduling I 19

Dispatch and Issue

A

e Dispatch (D): first part of decode
¢ Allocate slot in insn buffer
— New kind of structural hazard (insn buffer is full)
¢ In order: stall back-propagates to younger insns
e Issue (S): second part of decode
¢ Send insns from insn buffer to execution units

+ Out-of-order: wait doesn’t back-propagate to younger insns
CIS 501 (Martin/Roth): Dynamic Scheduling I 18

Dynamic Scheduling Algorithms

e Three parts to loop unrolling
¢ Scheduling scope: insn buffer
¢ Pipeline scheduling and register renaming: scheduling algorithm

e Look at two register scheduling algorithms
* Register scheduler: scheduler based on register dependences
¢ Scoreboard
¢ No register renaming — limited scheduling flexibility
e Tomasulo
» Register renaming — more flexibility, better performance

¢ Big simplification in this unit: memory scheduling
¢ Pretend register algorithm magically knows memory dependences
¢ A little more realism next unit

CIS 501 (Martin/Roth): Dynamic Scheduling I 20

Scheduling Algorithm I: Scoreboard

e Scoreboard
¢ Centralized control scheme: insn status explicitly tracked
¢ Insn buffer: Functional Unit Status Table (FUST)

e First implementation: CDC 6600 [1964]
* 16 separate non-pipelined functional units (7 int, 4 FP, 5 mem)
¢ No bypassing

e Our example: “Simple Scoreboard”
e 5FU: 1ALU, 1 load, 1 store, 2 FP (3-cycle, pipelined)

CIS 501 (Martin/Roth): Dynamic Scheduling I 21

Simple Scoreboard Data Structures

Scoreboard Data Structures

il
s X BElL Reg Status ﬁ

A A A A

Fetched JRBNAYZR ST N |

insns
FU Status | i i

¢ Insn fields and status bits
e Tags
o Values

A
o
>
<
7

CIS 501 (Martin/Roth): Dynamic Scheduling I 23

e FU Status Table

¢ FU, busy, op, R, R1, R2: destination/source register names

o T: destination register tag (FU producing the value)

e T1,T2: source register tags (FU producing the values)
e Register Status Table

o T: tag (FU that will write this register)
e Tags interpreted as ready-bits

e Tag == 0 — Value is ready in register file

e Tag != 0 — Value is not ready, will be supplied by T
¢ Insn status table

e S,X bits for all active insns

CIS 501 (Martin/Roth): Dynamic Scheduling I 22

Scoreboard Pipeline

¢ New pipeline structure: F, D, S, X, W
o F (fetch)
e Same as it ever was
D (dispatch)
o Structural or WAW hazard ? stall : allocate scoreboard entry
S (issue)
e RAW hazard ? wait : read registers, go to execute
X (execute)
¢ Execute operation, notify scoreboard when done
W (writeback)
e WAR hazard ? wait : write register, free scoreboard entry
¢ W and RAW-dependent S in same cycle
¢ W and structural-dependent D in same cycle

CIS 501 (Martin/Roth): Dynamic Scheduling I 24

Scoreboard Dispatch (D)

s x LU Reg Status e

»
>

o Stall for WAW or structural (Scoreboard, FU) hazards
¢ Allocate scoreboard entry
o Copy Reg Status for input registers
¢ Set Reg Status for output register

CIS 501 (Martin/Roth): Dynamic Scheduling I 25

Issue Policy and Issue Logic

e Issue
o If multiple insns ready, which one to choose? Issue policy
¢ Oldest first? Safe
¢ Longest latency first? May yield better performance
¢ Select logic: implements issue policy
e W—1 priority encoder
e W: window size (number of scoreboard entries)

CIS 501 (Martin/Roth): Dynamic Scheduling I 27

Scoreboard Issue (S)

Insn Reg Status

A 4

—1—1
FU Status

e Wait for RAW register hazards
¢ Read registers

CIS 501 (Martin/Roth): Dynamic Scheduling I 26
Scoreboard Execute (X)
egfile
Insn Reg Status E
Wl R1 R2 R op | T T1 T2
insns
e Execute insn

CIS 501 (Martin/Roth): Dynamic Scheduling I 28

Scoreboard Writeback (W)

Scoreboard Data Structures

Reg Status

egdfile

AA 4

A A A A

s X Insn
RSl R1 R2 R op
insns
1
FU Status

¢ Wait for WAR hazard

* Write value into regdfile, clear Reg Status entry

¢ Free scoreboard entry

CIS 501 (Martin/Roth): Dynamic Scheduling I

Scoreboard: Cycle 1

\ 4

29

Insn Status

Reg

Status

Insn

w

Reg

T

1df X(rl),fl

£0

mulf £0,f1,£2

£l

stf £2,Z(rl)

£2

addi rl,4,rl

rl

1df X(rl) , fl

mulf £0,f1,£f2

stf £2,Z(rl)

FU Status

FU |busy |op

R1

R2

T1

T2

ALU |no

LD no

ST no

FP1l |no

FP2 |no

CIS 501 (Martin/Roth): Dynamic Scheduling I

Scoreboard: Cycle 2

30

Insn Status

Reg

Status

Insn

X| W Reg

T

1df X(rl),fl

£0

mulf £0,f1,£2

£l

LD

stf £2,Z(rl)

£2

addi rl,4,rl

rl

1df X(rl),fl

mulf £0,fl,£f2

stf £2,Z(rl)

FU Status

FU |busy |op

R1

R2 |[T1 [T2

ALU |no

LD yes |1df

£l

rl |- -

allocate

ST no

FP1l |no

FP2 |no

CIS 501 (Martin/Roth): Dynamic Scheduling I

31

Insn Status

Reg

Status

Insn

w

Reg

T

1df X(rl),fl

cl

£0

mulf £0,f1,£2

c2

£l

LD

stf £2,Z(rl)

£2

FP1l

addi rl,4,rl

rl

1df X(rl),fl

mulf £0,f1l,£f2

stf £2,Z(rl)

FU Status

FU |busy |op

R1

R2

T1

T2

ALU |no

LD yes |1df

£l

rl

ST no

FPl |yes [mulf

£2

£0

fl

LD

allocate

FP2 |no

CIS 501 (Martin/Roth): Dynamic Scheduling I

32

Scoreboard: Cycle 3

Scoreboard: Cycle 4

Insn Status Reg Status
Insn D| S| X | W Reg|T

1df X(rl),f1l cl| c2| c3 f0

mulf £0,£f1,£f2| c2 f1 |LD
stf £2,%Z(rl) | c3 £2 |FP1
addi rl,4,rl rl

1df X(rl),f1l

mulf £0,fl,£f2

stf £2,Z(rl)

Functional unit status

FU |busylop |R |R1 |R2 |T1 T2

ALU |no

LD yes |1df [f1 |- rl |- -

ST yes |stf |- £f2 |rl |[FP1 - allocate
FPl |yes |mulf |f2 [f0 |[fl1 |- LD

FP2 |no

CIS 501 (Martin/Roth): Dynamic Scheduling I 33
Scoreboard: Cycle 5

Insn Status Reg Status
Insn D| S| X | W Reg|T

1df X(rl),f1l cl|c2| c3| c4 f0

mulf £0,£f1,f2| c2 | c4 | c5 f1 |ILD
stf £2,Z(rl) c3 £2 |FP1
addi rl,4,rl cd | c5 rl |ALU
1df X(rl),f1l c5

mulf £0,fl,£f2

stf £2,Z(rl)

FU Status

FU |busylop |R |R1 |R2 |T1 T2

ALU |yes |addi (rl (|rl |- - -

LD |yes |1df ([f1 |- rl |- ALU |allocate
ST yes |stf |- f2 |rl |FP1 =

FPl |yes |mulf |f2 [f0 |[fl1 |-

FP2 |no

CIS 501 (Martin/Roth): Dynamic Scheduling I

35

Insn Status Reg Status

Insn D| S| X | W Reg|T

1df X(rl),f1l cl|c2| c3| c4 f0

mulf £0,£f1,£f2| c2 | c4 f1 |LD £1 written — clear
stf £2,Z(rl) c3 £2 |FP1

addi rl,4,rl c4 rl |ALU

1df X(rl),f1l

mulf £0,fl1,£f2

stf £2,Z(rl)

FU Status

FU |busylop |R |R1 |R2 |T1 T2

ALU |yes |addi |rl |rl |- - - allocate

LD no free

ST yes |stf |- f2 |rl |FP1 =

FP1 |yes |mulf |f2 |f0 |[f1 |- LD £0 (LD) is ready — issue mulf
FP2 |no

CIS 501 (Martin/Roth): Dynamic Scheduling I 34
Scoreboard: Cycle 6

Insn Status Reg Status

Insn D| S| X | W Reg|T

1df X(rl),f1l cl|c2| c3|c4 f0

mulf £0,£f1,£f2| c2 | c4 |c5+ f1 |LD

stf £2,Z(rl) c3 £2 |FP1

addi rl,4,rl cd| c5| c6 rl |ALU

1df X(rl),f1l c5

mulf £0,f1,£2 D stall: WAW hazard w/ mulf (£2)
stf £2,Z(rl) How to tell? RegStatus[£2] non-empty
FU Status

FU |busylop |R |R1 |R2 |T1 T2

ALU |yes |addi (rl |rl |- - -

LD yes |1df [f1 |- rl |- ALU

ST yes |stf |- f2 |rl |FP1 =

FPl |yes |mulf |f2 [f0 |[fl1 |- -

FP2 |no

CIS 501 (Martin/Roth): Dynamic Scheduling I

36

Scoreboard: Cycle 7 Scoreboard: Cycle 8

Insn Status Reg Status Insn Status Reg Status

Insn D| S| X|W Reg|T Insn D| S| X|W Reg|T

1df X(rl),f1l cl|c2| c3| c4 £0 1df X(rl),f1l cl|c2| c3| c4 f0

mulf £0,fl1,£f2| c2 | c4 |c5+ £f1 |LD mulf £0,fl,f2| c2 | c4 |c5+4| c8 £1 |LD

stf £2,Z(rl) c3 £2 |FP1 stf £2,Z(rl) c3| c8 £f2 |FP1 FP2 | first mulf done (FP1)
addi rl,4,rl cd| c5] c6| w| rl |ALU addi rl,4,rl cd| c5| c6| w| rl |ALU

1df X(rl) ,fl | c5 'W wait: WAR hazard w/ stf (r1) 1df X(rl) ,fl | c5 "W wait

mulf £0,£f1l,£2 How to tell? Untagged rl in FuStatus mulf £0,fl,£f2| c8

stf £2,%(rl) Requires CAM stf £2,27(rl)

FU Status FU Status

FU |busyjop |R |R1 |R2 |T1 T2 FU |busyjop |R |R1 |R2 |T1 T2

ALU |yes |addi (rl |rl |- - < ALU |yes |addi (rl |rl |- - -

LD yes |1df [f1 |- rl |- ALU | LD yes |1df [f1 |- rl |- ALU

ST |yes [stf |- [f2 [r14FP1 |- ¥ ST |yes |stf |- [£2 |rl |FP1 |- £1 (FP1) is ready — issue stf
FPl |yes |mulf f2 [f0 |fl1 |- - FP1 |no free

FP2 |no FP2 |yes [mulf |f2 (f0 |f1 |- LD allocate

CIS 501 (Martin/Roth): Dynamic Scheduling I 37 CIS 501 (Martin/Roth): Dynamic Scheduling I 38

Scoreboard: Cycle 9 Scoreboard: Cycle 10

Insn Status Reg Status Insn Status Reg Status

Insn D| S| X|W Reg|T Insn D| S| X|W Reg|T

1df X(rl),f1l cl|c2| c3| c4 £0 1df X(rl),f1l cl|c2|c3| c4 f0

mulf £0,£f1,£f2| c2 | c4 |c5+| c8 f1 |LD mulf £0,£f1,£f2| c2 | c4 |c5+| c8 f1 |LD

stf £2,Z(rl) c3| c8| c9 £2 |FP2 stf £2,Z(rl) c3| c8| c9|cl0 £f2 |FP2

addi rl,4,r1 | c4| c5| c6| c9 rl |ALU rl written — clear addi rl,4,r1l | c4| c5| c6| c9 rl

1df X(rl),f1l c5| c9 1df X(rl),f1l c5| c9cl0

mulf £0,fl1,£f2| c8 mulf £0,fl1,£f2| c8

stf £2,Z(rl) D stall: structural hazard FuStatus[ST] stf £2,Z(rl) |cl0 W & structural-dependent D in same cycle
FU Status FU Status

FU |busyjop |R |R1 |R2 |T1 T2 FU |busylop |R |R1 |R2 |T1 T2

ALU |no free ALU |no

LD |yes |1df |fl1 |- rl |- ALU |rl (ALU) is ready — issue 1df LD |yes |1df |fl1 |- rl |- -

ST yes |stf |- £f2 |rl |- = ST yes |stf |- £f2 |rl |[FP2 - free, then allocate
FP1l |no FP1l |no

FP2 |yes |mulf [f2 |f0 (f1 |- LD FP2 |yes |mulf [f2 |f0 (fl1 |- LD

CIS 501 (Martin/Roth): Dynamic Scheduling I 39 CIS 501 (Martin/Roth): Dynamic Scheduling I 40

In-Order vs. Scoreboard

In-Order vs. Scoreboard II: Cache Miss

In-Order Scoreboard

Insn D| X|W|DJ|S| X | W

1df X(rl),f1l cl| c2| c3|cl|c2| c3| c4

mulf £0,£f1,£f2| c3 | cd4+| c7 c2 c4 | c5+| c8

stf £2,Z(rl) c7 | c8 | c9| c3 | c8 | c9 | cl0

addi rl,4,rl c8 c9 | clO| c4 c5 c6 | c9

1df X(rl) ,f1 | cl0|cll|cl2| c5 | c9 | cl0| cll

mulf £0,fl,f2| cl2|cl3+ cl6| c8 | cll|cl2+ cl5

stf £2,Z(rl) cl6| cl7| cl8| cl0| cl5| cl6| cl17

¢ Big speedup?
— Only 1 cycle advantage for scoreboard
e Why? addi WAR hazard
e Scoreboard issued addi earlier (c8 — ¢5)
¢ But WAR hazard delayed W until c9
¢ Delayed issue of second iteration

CIS 501 (Martin/Roth): Dynamic Scheduling I

Scoreboard Redux

41

In-Order Scoreboard

Insn D| X[W|IDJ|S|X|W
1df X(rl),f1l cl |c2+| c¢7 | cl | c2 | c3+| c8
mulf £0,£f1,£f2| c7 | c8+| cll| c2 | c8 | c9+| cl2
stf £2,Z(rl) cll| cl2| cl3| c3 | cl2| cl3| cl4
addi rl,4,rl cl2| cl3| cld| c4 c5 c6 | cl3
1df X(rl) ,fl1 | cld4| cl5|cl6| c5 | cl3| cl4d| cl5
mulf £0,fl,f2| cl6|cl7+ c20| c6 | c15|cl6+ cl9
stf £2,Z(rl) c20| c21| c22| c7 | cl9| c20| c21

e Assume
¢ 5 cycle cache miss on first 1d£
e Ignore FUST structural hazards
— Little relative advantage
e addi WAR hazard (c7 — ¢13) stalls second iteration

CIS 501 (Martin/Roth): Dynamic Scheduling I 42

Register Renaming

e The good
+ Cheap hardware
e InsnStatus + FuStatus + RegStatus ~ 1 FP unit in area
+ Pretty good performance
¢ 1.7X for FORTRAN (scientific array) programs

e The less good
— No bypassing
e Is this a fundamental problem?
Limited scheduling scope
o Structural/WAW hazards delay dispatch
— Slow issue of truly-dependent (RAW) insns
+ WAR hazards delay writeback
Fix with hardware register renaming

CIS 501 (Martin/Roth): Dynamic Scheduling I

43

¢ Register renaming (in hardware)
¢ Change register names to eliminate WAR/WAW hazards
¢ One of most the beautiful things in computer architecture
¢ Key: think of registers (x1,£0...) as names, not storage locations
+ Can have more locations than names
+ Can have multiple active versions of same name

e How does it work?
* Map-table: maps names to most recent locations
¢ SRAM indexed by name
¢ On a write: allocate new location, note in map-table
¢ On a read: find location of most recent write via map-table lookup
¢ Small detail: must de-allocate locations at some point

CIS 501 (Martin/Roth): Dynamic Scheduling I 44

Register Renaming Example

Scheduling Algorithm II: Tomasulo

e Parameters
e Names: rl,r2,r3
e Locations: p1,p2,p3,p4,p5,p6,p7
¢ Original mapping: r1—pl, r2—p2, r3—p3, p4—p7 are “free”

MapTable FreeList Raw insns Renamed insns
rl [r2 |r3
pl |p2 |p3 p4,p5,p6,p7 add r2,r3,r1 add p2,p3‘p4
p4 |p2 |p3 p5,p6,p7 sub r2,r ‘}‘3 sub p2,p 5
p4 |p2 |p5 p6,p7 mul r2,+3 .r3¢ mul p ,P6
p4 |[p2 |p6 p7 div rl,4,rl div p4,4,p7
e Renaming
+ Removes WAW and dependences
+ Leaves RAW intact!
CIS 501 (Martin/Roth): Dynamic Scheduling I 45

Tomasulo Data Structures

e Tomasulo’s algorithm
¢ Reservation stations (RS): instruction buffer
e Common data bus (CDB): broadcasts results to RS
¢ Register renaming: removes WAR/WAW hazards

¢ First implementation: IBM 360/91 [1967]
¢ Dynamic scheduling for FP units only
e Bypassing

e Our example: “Simple Tomasulo”
¢ Dynamic scheduling for everything, including load/store
¢ No bypassing (for comparison with Scoreboard)
e 5RS: 1ALU, 1load, 1 store, 2 FP (3-cycle, pipelined)

CIS 501 (Martin/Roth): Dynamic Scheduling I

Simple Tomasulo Data Structures

46

e Reservation Stations (RS#)
* FU, busy, op, R: destination register name
o T: destination register tag (RS# of this RS)
e T1,T2: source register tags (RS# of RS that will produce value)
e V1,V2: source register values
¢ That's new
e Map Table
e T: tag (RS#) that will write this register
e Common Data Bus (CDB)
e Broadcasts <RS#, value> of completed insns
e Tags interpreted as ready-bits++
e T==0 — Value is ready somewhere
e T!=0 — Value is not ready, wait until CDB broadcasts T

CIS 501 (Martin/Roth): Dynamic Scheduling I 47

fil
worsogly| gl

A A A A

Fetched
insns

CDB.T

»
»

Reservation Statjons | i) ? i E

¢ Insn fields and status bits
e Tags
o Values

CIS 501 (Martin/Roth): Dynamic Scheduling I

CDB.V

48

Simple Tomasulo Pipeline

Tomasulo Dispatch (D)

¢ New pipeline structure: F, D, S, X, W
¢ D (dispatch)
o Structural hazard ? stall : allocate RS entry
e S (issue)
¢ RAW hazard ? wait (monitor CDB) : go to execute
o W (writeback)
o Write register, free RS entry
¢ W and RAW-dependent S in same cycle
¢ W and structural-dependent D in same cycle

CIS 501 (Martin/Roth): Dynamic Scheduling I

Tomasulo Issue (S)

Map Table

T

Fetched
insns

Reservation Stations | i ?

e Stall for structural (RS) hazards

o Allocate RS entry

o Input register ready ? read value into RS : read tag into RS
o Set register status (i.e., rename) for ouput register

CDB.V

fil
|l

A A A A

CDB.T

Fetched
insns

»
»

Reservation Stations | i ?

e Wait for RAW hazards
¢ Read register values from RS

CIS 501 (Martin/Roth): Dynamic Scheduling I

49 CIS 501 (Martin/Roth): Dynamic Scheduling I 50
Tomasulo Execute (X)
fil
wregy |l
= - >
om m om
a [a) [m)
< Fetched © <
insns
Reservation Stations i ﬁ
51 CIS 501 (Martin/Roth): Dynamic Scheduling I 52

Tomasulo Writeback (W)

Difference Between Scoreboard...

fil
e

vy Vv

— >
om
5 3
Fetched ©
insns

»
»

Reservation Statjons

\ 4

e Wait for structural (CDB) hazards
e Qutput Reg Status tag still matches? clear, write result to register
o CDB broadcast to RS: tag match ? clear tag, copy value
¢ Free RS entry

CIS 501 (Martin/Roth): Dynamic Scheduling I 53

...And Tomasulo

il
s x LU Reg Status ﬁ

Yv.v

AWl R1 R2 R op | T

insns
FU Status I i i

A 4

CIS 501 (Martin/Roth): Dynamic Scheduling I 54

Value/Copy-Based Register Renaming

fil
worsogly| g

Yv.v

CDB.T
CDB.V

Fetched
insns

»
»

Reservation Statjons I i ?

¢ What in Tomasulo implements register renaming?
* Value copies in RS (V1, V2)
¢ Insn stores correct input values in its own RS entry
+ Future insns can overwrite master copy in regdfile, doesn’t matter

CIS 501 (Martin/Roth): Dynamic Scheduling I 55

e Tomasulo-style register renaming
¢ Called “value-based” or “copy-based”
+ Names: architectural registers
Storage locations: register file and reservation stations
 Values can and do exist in both
¢ Register file holds master (i.e., most recent) values
+ RS copies eliminate WAR hazards
Storage locations referred to internally by RS# tags
¢ Register table translates names to tags
e Tag == 0 value is in register file
e Tag != 0 value is not ready and is being computed by RS#
CDB broadcasts values with tags attached
¢ So insns know what value they are looking at

CIS 501 (Martin/Roth): Dynamic Scheduling I 56

Value-Based Renaming Example

Tomasulo Data Structures

1df X(rl), £l (allocated RS#2)

e MT[r1] == 0 — RS[2].V2 = RF[r1]

e MT[£1] = RS#2
mulf £0,f1l,f2 (allocate RS#4)

e MT[£0] == 0 — RS[4].V1 = RF[£0]
e MT[£1] == RS#2 — RS[4].T2 = RS#2

o MT[£2] = RS#4
addf £7,£8,f0

e Can write RF[£0] before mulf executes, why?

1df X(rl),fl

e Can write RF[£1] before mulf executes, why? [;1

¢ Can write RF[£1] before first 1d£, why?

Map Table

Reg|T

£0

f1 |RS#2

f2 |RS#4

Insn Status Map Table CDB \
Insn D| S| X|W Reg|T T
1df X(rl),fl £0

mulf £0,fl,£2 £1

stf £2,2Z(rl) £2

addi rl,4,rl rl

1df X(rl),fl

mulf £0,fl1,£f2

stf £2,Z(rl)

Reservation Stations

T |[FU |busylop |R |T1 T2

1 |ALU |no

2 |LD no

3 |[ST no

4 |FP1 [no

5 |FP2 |[no

CIS 501 (Martin/Roth): Dynamic Scheduling I

Tomasulo: Cycle 2

58

Reservation Stations
T |[FU |busylop |R |T1 T2 mﬂ
2 |1LD yes (1df |f1 |- - - [rl]
4 |FP1 |yes |mulf[f2 |- RS#2 [[£0]

CIS 501 (Martin/Roth): Dynamic Scheduling I 57

Tomasulo: Cycle 1

Insn Status Map Table CDB

Insn D| S| X| W Reg|T T

1df X(rl),f1 | c1 £0

mulf £0,f1,f2 £1 |RS#2

stf £2,%(rl) £2

addi rl,4,rl rl

1df X(rl),fl

mulf £0,fl,£f2

stf £2,Z(rl)

Reservation Stations

—

T |[FU |busylop |R |T1 T2

1 |ALU |no

2 |LD yes |[1df |f1 |- - - [rl]
3 |ST no

4 |FP1 |no

5 |FP2 |no

CIS 501 (Martin/Roth): Dynamic Scheduling I

allocate

59

Insn Status Map Table CDB \
Insn D| S| X|W Reg|T T
1df X(rl) ,fl1 | cl| c2 £0

mulf £0,fl,£2| c2 £f1 |RS#2

stf £2,2Z(rl) £2 |[Rs#4

addi rl,4,rl rl

1df X(rl),fl

mulf £0,f1l,£f2

stf £2,Z(rl)

Reservation Stations

T |[FU |busylop |R |T1 T2 mﬂ

1 |ALU |no

2 |LD yes (1df |f1 |- - - [r1l]

3 |[ST no

4 |FPl |yes [mulf |f2 |- RS#2 |[£0] |- allocate
5 |FP2 |[no

CIS 501 (Martin/Roth): Dynamic Scheduling I

60

Tomasulo: Cycle 3

Tomasulo: Cycle 4

Insn Status Map Table CDB
Insn D| S| X| W Reg|T T
1df X(rl),f1l cl| c2| c3 f0

mulf £0,£f1,£f2| c2 f1 |RS#2

stf £2,Z(rl) c3 £2 |RS#4

addi rl,4,rl rl

1df X(rl),fl

mulf £0,fl,£f2

stf £2,Z(rl)

Reservation Stations |

T |[FU |busylop [R [Tl T2

1 |ALU |no

2 |LD yes (1df |[f1 |- - - [rl]

3 |ST |yes [stf |- RS#4 |- = [r1] |allocate
4 |FPl |yes |mulf |[f2 |- RS#2 |[£0] |-

5 |FP2 |no

CIS 501 (Martin/Roth): Dynamic Scheduling I 61
Tomasulo: Cycle 5

Insn Status Map Table CDB
Insn D| S| X| W Reg|T T
1df X(rl),f1l cl|c2| c3|c4 f0

mulf £0,£f1,f2| c2 | c4 | c5 f1 |RS#2

stf £2,Z(rl) c3 £2 |RS#4

addi rl,4,rl cd | c5 rl |RS#1

1df X(rl),fl | c5

mulf £0,fl,£f2

stf £2,Z(rl)

Reservation Stations |

T |[FU |busylop [R [Tl T2

1 |ALU |yes |addi [rl |- - [r1l] |-

2 |[LD |yes [1df [f1 |- RS#1 |- - allocate
3 |ST |yes |[stf |- RS#4 |- - [rl]

4 |FPl |yes [mulf |f2 |- - [£0] |[£f1]

5 |FP2 |no

CIS 501 (Martin/Roth): Dynamic Scheduling I

63

Insn Status Map Table CDB
Insn D| S| X|W Reg|T T
1df X(rl),f1l cl|c2| c3| c4 f0 RS#2 |[£f1]
mulf £0,f1,£f2| c2 | c4 f1 |RS#2 €
stf £2,Z(rl) c3 £2 |RS#4
addi rl,4,rl c4 rl |RS#1
1df X(rl),fl
mulf £0,fl1,£f2
stf £2,2(rl) 1df finished (W)
— clear £1 RegStatus
- - CDB broadcast
Reservation Stations
T |[FU |busylop [R [Tl T2
1 |ALU |yes |addi [rl (- - [rl] |- allocate
2 |LD no free
3 |ST |yes |[stf |- RS#4 |- - [rd]
4 |FPl |yes |mulf |[f2 |- RS#2 |[£0] |CDB.V|RS#2 ready —
5 |FP2 |no grab CDB value
CIS 501 (Martin/Roth): Dynamic Scheduling I 62
Tomasulo: Cycle 6
Insn Status Map Table CDB
Insn D| S| X|W Reg|T T
1df X(rl) ,fl cl|c2| c3| c4 f0
mulf £0,£f1,£f2| c2 | c4 |c5+ f1l |RS#2
stf £2,Z(rl) c3 £2 |RS#4RS#5 <«
addi rl,4,rl cd| c5| c6 rl |RS#1
1df X(rl),f1l c5
mulf £0,f1,£2| c6 no D stall on WAW: scoreboard would
stf £2,2Z(rl) overwrite £2 RegStatus
anyone who needs old £2 tag has it
Reservation Stations
T |[FU |busylop [R |[T1 T2 mﬂ
1 |ALU |yes |addi [rl |- - [£1]--|-
2 |LD yes |1df [f1 |- RS#1 |- -
3 |ST |yes |[stf |- RS#4 |- - [rl]
4 |FPl |yes [mulf |f2 |- - [£0] |[£f1]
5 |FP2 |yes [mulf |f2 |- RS#2 [[£0] |- allocate

CIS 501 (Martin/Roth): Dynamic Scheduling I

64

Tomasulo: Cycle 7

Insn Status Map Table CDB

Insn D| S| X| W Reg|T T

1df X(rl),fl cl|c2|c3|c4 £0 RS#1 |[rl]
mulf £0,£f1,f2| c2 | c4 |c5+ f1 |RS#2

stf £2,Z(rl) c3 £2 |RS#5

addi rl,4,rl cd| c5| c6| c7 rl [RS#1

1df X(rl) ,f1l | c5| c7

mulf £0,fl1,£f2| c6

stf £2,Z(rl)

no W wait on WAR: scoreboard would

anyone who needs old r1 has RS copy

D stall on store RS: structural

addi finished (W)

Reservation Stations

clear r1 RegStatus

—

T [FU |busylop [R |T1 [T2 CDB broadcast
1 |ALU |no

2 |LD |yes |1df ([f1 |- RS#1 |- CDB.V|RS#1 ready —

3 |ST |yes |[stf |- RS#4 |- - [rl] |grab CDB value

4 |FPl |yes [mulf |f2 |- - [£0] |[£f1]

5 |FP2 |yes |mulf |f2 |- RS#2 |[£0] |-

CIS 501 (Martin/Roth): Dynamic Scheduling I

Tomasulo: Cycle 9

65

Insn Status Map Table CDB

Insn D| S| X| W Reg|T T

1df X(rl),fl cl|c2|c3| c4 £0 RS#2 |[£f1]
mulf £0,£f1,£f2| c2 | c4 |c5+| c8 f1 |RS#2

stf £2,Z(rl) c3| c8| c9 £2 |RS#5

addi rl,4,rl cd| c5| c6| c? rl

1df X(rl) ,fl | c5| c7 | c8| co9| o

mulf £f0,fl1,f2| c6 | c9

stf £2,Z(rl)

nd mulf finished (W)
clear £1 RegStatus
CDB broadcast

Reservation Stations

—

T |[FU |busylop [R [Tl T2

1 |ALU |no

2 |LD no

3 |ST |yes |[stf |- - - [£2] |[rl]
4 |FP1 |no

5 |FP2 |yes |mulf |f2 |- RS#2

[£0] |CDB.V|RS#2 ready —

CIS 501 (Martin/Roth): Dynamic Scheduling I

grab CDB value
67

Tomasulo: Cycle 8

Insn Status Map Table CDB

Insn D| S| X| W Reg|T T

1df X(rl),fl cl|c2|c3| c4 £0 RS#4 |[£2]
mulf £0,£f1,£f2| c2 | c4 |c5+| c8 f1l |RS#2

stf £2,Z(rl) c3| c8 £2 |RS#5

addi rl,4,rl cd| c5| c6| c? rl

1df X(rl) ,f1 | c5| c7 | c8

mulf £0,fl1,£f2| c6

stf £2,Z(rl)

mulf finished (W)
don’t clear £2 RegStatus
already overwritten by 2nd mulf (RS#5)
CDB broadcast

Reservation Stations

—

T |[FU |busylop [R [Tl T2

1 |ALU |no

2 |LD yes (1df |f1 |- - - [r1l]

3 |ST yes |stf |- RS#4 |- CDB.V|[rl] |RS#4 ready —
4 |FP1 |no grab CDB value
5 |FP2 |yes |mulf |f2 |- RS#2 |[£0] |-

CIS 501 (Martin/Roth): Dynamic Scheduling I

Tomasulo: Cycle 10

66

Insn Status Map Table CDB
Insn D| S| X|W Reg|T T
1df X(rl),f1l cl|c2| c3| c4 f0

mulf £0,f1,£f2| c2 | c4 |c5+| c8 f1

stf £2,Z(rl) c3| c8| c9|cl0 £2 |RS#5

addi rl,4,rl cd| c5| c6| c? rl

1df X(rl) ,fl c5| c7| c8| c9

mulf £0,fl1,f2| c6| c9 |cl0

stf £2,Z(rl) |cl0

stf finished (W)
no output register - no CDB broadcast

Reservation Stations

—

- [r1l] |free — allocate

T |[FU |busylop [R |[T1 T2

1 |ALU |no

2 |LD no

3 |ST |yes [stf |- RS#5 |-

4 |FP1 |no

5 |FP2 |yes |mulf |f2 |- = [£0] |[£f1]

CIS 501 (Martin/Roth): Dynamic Scheduling I

68

Scoreboard vs. Tomasulo

Scoreboard Tomasulo

Insn D| S| X | W|DJ|S| X | W
1df X(rl),fl cl | c2| c3| cd|cl| c2| c3 | c4
mulf £f0,fl1,f2| c2 | c4 | c5+| c8 | c2 | c4 | c5+| c8
stf £2,Z(rl) c3 | c8| c9|clO] ¢c3 | c8 | c¢9 | cl0
addi rl,4,rl cd | c5| c6| 9| c4| c5| c6 | c7
1df X(rl),f1l c5 | c9 | cl0|cll| c5| c7 | c8 | c9
mulf £0,fl1,f2| €8 | cll|cl2+ cl5| c6 | c9 |cl0+ cl13
stf £2,Z(rl) cl0| cl5| cl6| cl7| cl0| cl3| cl4| c15

Hazard Scoreboard Tomasulo
Insn buffer stall in D stallin D
FU waitin S wait in S
RAW wait in S wait in S
WAR wait in W none
WAW stall in D none
CIS 501 (Martin/Roth): Dynamic Scheduling I 69

Can We Add Superscalar?

Scoreboard vs. Tomasulo II: Cache Miss

¢ Dynamic scheduling and multiple issue are orthogonal
e E.g., Pentium4: dynamically scheduled 5-way superscalar
¢ Two dimensions
¢ N: superscalar width (number of parallel operations)
e W: window size (number of reservation stations)

e What do we need for an N-by-W Tomasulo?
¢ RS: N tag/value w-ports (D), N value r-ports (S), 2N tag CAMs (W)
¢ Select logic: W—N priority encoder (S)
e MT: 2N r-ports (D), N w-ports (D)
e RF: 2N r-ports (D), N w-ports (W)
e CDB: N (W)
¢ Which are the expensive pieces?

CIS 501 (Martin/Roth): Dynamic Scheduling I 71

Scoreboard Tomasulo

Insn DI S| X|W|D|S| X | W
1df X(rl),f1l cl| c2 |c3+| c8 | cl1 | c2 | c3+| c8
mulf £0,£f1,£f2| c2 c8 | c9+| cl2| c2 c8 | c9+ | cl2
stf £2,Z(rl) c3 | cl2|cl3|cl4| c3 | cl2| cl3|cl4
addi rl,4,rl cd c5 c6 | cl3| c4 c5 cé6 c7
1df X(rl),f1l c8 | cl3| cld4| cl5| c5 | c¢7 | c8 | 9
mulf £f0,fl,£f2| cl2| c15|cl6+ cl9| c6 | c9 |cl0+ cl13
stf £2,Z(rl) cl3| cl9| c20| c21l| c¢7 | cl3| cld| cl15

e Assume
¢ 5 cycle cache miss on first 1d£
e Ignore FUST and RS structural hazards
+ Advantage Tomasulo
¢ No addi WAR hazard (c7) means iterations run in parallel

CIS 501 (Martin/Roth): Dynamic Scheduling I 70

Superscalar Select Logic

e Superscalar select logic: W—N priority encoder
— Somewhat complicated (N2 logW)
¢ Can simplify using different RS designs
¢ Split design
¢ Divide RS into N banks: 1 per FU?
¢ Implement N separate W/N—1 encoders
+ Simpler: N * logW/N
— Less scheduling flexibility
e FIFO design [Palacharla+]
e Can issue only head of each RS bank
+ Simpler: no select logic at all
— Less scheduling flexibility (but surprisingly not that bad)

CIS 501 (Martin/Roth): Dynamic Scheduling I 72

Can We Add Bypassing?

fil
ool g

A A A A

\A A 4

CDB.T
CDB.V

Fetched
insns

»
»

Reservation Statjons iﬁ ﬁ—‘

e Yes, but it's more complicated than you might think
¢ In fact: requires a completely new pipeline

CIS 501 (Martin/Roth): Dynamic Scheduling I 73

Dynamic Scheduling Summary

Why Out-of-Order Bypassing Is Hard

¢ Dynamic scheduling: out-of-order execution
» Higher pipeline/FU utilization, improved performance
o Easier and more effective in hardware than software
+ More storage locations than architectural registers
+ Dynamic handling of cache misses
e Instruction buffer: multiple F/D latches
¢ Implements large scheduling scope + “passing” functionality
¢ Split decode into in-order dispatch and out-of-order issue
e Stall vs. wait
¢ Dynamic scheduling algorithms
e Scoreboard: no register renaming, limited out-of-order
o Tomasulo: copy-based register renaming, full out-of-order

CIS 501 (Martin/Roth): Dynamic Scheduling I 75

No Bypassing Bypassing

Insn D S X| W] D S X | W
1df X(rl),fl cl| c2| c3| cd4|cl| c2| c3| c4
mulf £0,fl1,f2| c2 | c4 | c5+| c8 | c2 | c3 | cd4+| c7
stf £2,Z(rl) c3| c8| c9 |cl0| c3 | c6 | c7 | c8
addi rl,4,rl c4 c5 c6 c’7 c4 c5 c6 | c7
1df X(rl),f1l c5 | c7| c8| c9 | c5| c7| c7| c9
mulf £0,f1,£f2| c6 | c9 |cl0+ cl13| c6 | c9 | c8+| c13
stf £2,Z(rl) cl0| cl3| cld4| cl5|cl0| cl3| cll| cl5

e Bypassing: 1df X in c3 — mulf Xin c4 — mulf Sinc3
e But how can mulf Sin c3 if 1d£ W in c4? Must change pipeline
e Modern scheduler
¢ Split CDB tag and value, move tag broadcast to S
e 1df tag broadcast now in cycle 2 — mulf S in cycle 3
¢ How do multi-cycle operations work? How do cache misses work?

CIS 501 (Martin/Roth): Dynamic Scheduling I 74

