CIS 501
Introduction to Computer Architecture

Unit 10: Data-Level Parallelism

CIS 501 (Martin/Roth): DLP 1

Readings

e H+P
¢ Appendix E (skim)

CIS 501 (Martin/Roth): DLP 3

This Unit: Data/Thread Level Parallelism

Application |
0os |

o Data-level parallelism

¢ Vector processors

e Message-passing multiprocessors
CPU o) ¢ Thread-level parallelism
¢ Shared-memory multiprocessors

¢ Flynn Taxonomy

Compiler Firmware

Memory

Digital Circuits

Gates & Transistors

CIS 501 (Martin/Roth): DLP 2

Latency, Bandwidth, and Parallelism

e Latency
¢ Time to perform a single task
— Hard to make smaller
e Bandwidth
e Number of tasks that can be performed in a given amount of time
+ Easier to make larger: overlap tasks, execute tasks in parallel

e One form of parallelism: insn-level parallelism (ILP)
¢ Parallel execution of insns from a single sequential program
¢ Pipelining: overlap processing stages of different insns
e Superscalar: multiple insns in one stage at a time
e Have seen

CIS 501 (Martin/Roth): DLP 4

Exposing and Exploiting ILP

Fundamental Problem with ILP

e ILP is out there...
« Integer programs (e.g., gcc, gzip): ~10-20
¢ Floating-point programs (e.g., face-rec, weather-sim): ~50-250
+ It does make sense to build 4-way and 8-way superscalar

e ...but compiler/processor work hard to exploit it
« Independent insns separated by branches, stores, function calls
¢ Overcome with dynamic scheduling and speculation
— Modern processors extract ILP of 1-3

CIS 501 (Martin/Roth): DLP 5

Data-Level Parallelism (DLP)

¢ Clock rate and IPC are at odds with each other
¢ Pipelining
+ Fast clock
— Increased hazards lower IPC
¢ Wide issue
+ Higher IPC
— N2 bypassing slows down clock

e Can we get both fast clock and wide issue?

¢ Yes, but with a parallelism model less general than ILP
e Data-level parallelism (DLP)

¢ Single operation repeated on multiple data elements

e Less general than ILP: parallel insns are same operation

CIS 501 (Martin/Roth): DLP

Exploiting DLP With Vectors

for (I = 0; I < 100; I++)
Z[I] = A*X[I] + Y[I];

0: 1ldf X(rl),f1l // I is in rl
mulf £0,fl,£f2 // A is in £0
1df Y(rl),£3
addf £2,£3,f4
stf £4,Z(rl)
addi rl1,4,rl
blti r1,400,0

¢ One example of DLP: inner loop-level parallelism
o Iterations can be performed in parallel

CIS 501 (Martin/Roth): DLP

regfile

V-regfile

¢ One way to exploit DLP: vectors
o Extend processor with vector “data type”
o Vector: array of MVL 32-bit FP numbers
¢ Maximum vector length (MVL): typically 8-64
o Vector register file: 8-16 vector registers (v0-v15)

CIS 501 (Martin/Roth): DLP

Vector ISA Extensions

¢ Vector operations

Versions of scalar operations: op.v
Each performs an implicit loop over MVL elements

for (I=0;I<MVL;I++) opl[I]:;

Vectorizing SAXPY

1df X (rl), £l
mulf £0,fl,£2
1df Y(rl),£3
addf f£2,£3,f4
stf £4,7(rl)

1df X (rl), £l
mulf £0,fl,£2
1df Y(rl),£3
addf f£2,£3,f4
stf f£4,7(rl)

1df X (rl),f1
mulf £0,fl,£2
1df Y(rl),£3
addf £2,£3,f4
stf f£4,7(rl)

1df X (rl), £l
mulf £0,fl,£2
1df Y (rl),£3
addf f£2,£3,f4
stf f£4,7(rl)

addi rl1,4,rl

addi rl,4,rl

addi rl,4,rl

addi rl1,4,rl

blti r1,400,0

blti r1,400,0

blti r1,400,0

blti r1,b400,0

Examples
e 1df.v X(rl),vl: load vector
for (I=0;I<MVL;I++) 1df X+I(rl),vl[I];

e stf.v vl,X(rl): store vector

for (I=0;I<MVL;I++) stf v1[I],X+I(rl);
addf.vv vl,v2,v3: add two vectors

for (I=0;I<MVL;I++) addf v1[I],v2[I],v3[I];
e addf.vs vl,£2,v3: add vector to scalar
for (I=0;I<MVL;I++) addf v1[I],£2,v3[I];

CIS 501 (Martin/Roth): DLP 9

Scalar SAXPY Performance

v/

moi s &t ., | ¢ Pack loop body into vector insns
¢ Horizontal packing changes execution order

1df.v Y (rl),v3
stf.v vd,Z(rl) e Aggregate loop control

addf.vv v2,v3,v4
EGEE 21,1, il e Add increment immediates

blti r1,400,0

1df X(rl) ,f1l
mulf £0,f£f1,£2
1df Y(rl) ,£3
addf f2,£f3,f4
stf £4,z(rl)
addi rl1,4,rl
slti rl1,400,r2
bne Loop

e Scalar version
e 5-cycle mul£, 2-cycle add£, 1 cycle others

e 100 iters * 11 cycles/iter = 1100 cycles

CIS 501 (Martin/Roth): DLP 10

Vector SAXPY Performance

1df.v X(rl) ,vl
mulf.vs vl,£f0,v2
1df.v Y (rl) ,v3
addf.vv v2,v3,v4
stf.v v4,Z(rl)

e Vector version
¢ 4 element vectors
e 25 iters * 11 insns/iteration * = 275 cycles

addi rl,16,rl
slti r1,400,r2
bne r2,Loop

+ Factor of 4 speedup

1 2 3 4 5|6 7 8 9 101112131415 16/17 18 19
1df X(rl),fl FDXMW
mulf £0,£f1,£2 F D d* EX|E* E* E*X EX W
1df Y(rl),f3 Fp*D|{X MW
addf f£2,£3,f4 F|D d* d* d* E+ E+ W
stf £4,2(rl) Fp*p*p*D X MW
addi rl,4,rl FDXMW
blt rl,r2,0 FDXMW
1df X(rl),fl FDXMW

CIS 501 (Martin/Roth): DLP

11

1 2 3 4 5|6 7 8 9 101112131415 16|17 18 19
1df.v X(rl),vl FDXMW
mulf.vv vl,£0,v2 F D d* BX|E* BE* BE* E* W
1df.v Y(rl),v3 Fp*D|XMW
addf.vv v2,v3,v4d F|D d* d* d*E+E+ W
stf.v £4,Z(rl) F p*p*p*D X MW
addi ri1,4,rl FDXMW
blt rl,r2,0 FDXMW
1df X(rl),fl FDXMW

CIS 501 (Martin/Roth): DLP

12

Not So Fast

e A processor with 32-element vectors

e 1 Kb (32 * 32) to cache? 32 FP multipliers?
¢ No: vector load/store/arithmetic units are pipelined

o Processors have L (1 or 2) of each type of functional unit

e L is called number of vector lanes

¢ Micro-code streams vectors through units M data elements at once
¢ Pipelined vector insn timing

* Tiector = Tscaler + (MVL/ L) =1

e Example: 64-element vectors, 10-cycle multiply, 2 lanes

e Tourw=10+(64/2)-1=41

+ Not bad for a loop with 64 10-cycle multiplies

CIS 501 (Martin/Roth): DLP 13

Not So Slow

Pipelined Vector SAXPY Performance

1df.v X(rl) ,vl
mulf.vs vl1l,6£0,v2
1df.v Y (rl) ,v3
addf.vv v2,v3,v4
stf.v v4,Z(rl)
addi rl,16,rl
slti r1,400,r2

e For a given vector operation
e All MVL results complete after T, ., + (MVL/L) -1
e First M results (e.g., v1[0] and v1[1]) ready after T,

¢ Start dependent vector operation as soon as those are ready

e Chaining: pipelined vector forwarding
® lvectort = lscalar1 + (MVL/ L) -1
® lectorz = lscalar2 + (MVL/ L) -1
b vectorl + TvectorZ T Tscalarl + Tscalarz + (MVL/ L) -1

CIS 501 (Martin/Roth): DLP 15

bne r2,Loop

e Vector version
¢ 4-element vectors, 1 lane

e 4-cycle 1df.

v/stf.v

e 8-cycle mulf.sv, 5-cycle addf.vv
e 25 iters * 20 cycles/iter = 500 cycles
o Factor of 2.2 speedup

9 10111213 141516171819

1df.v X(rl) ,vl
mulf.sv vl,6£f0,v2
1df.v Y (rl) ,v3
addf.vv v2,v3,v4
stf.v £4,Z(rl)
addi rl,4,rl
blt rl,r2,0

E*XE*XE* E* E* EX E* W

XMMMMW

D d* d* d* d* d* d*E+E+E+E+
F D p* p*

1df.v X(rl), £l

CIS 501 (Martin/Roth): DLP

14

Chained Vector SAXPY Performance

1df.v X(rl) ,vl
mulf.vs vl1l,6£0,v2
1df.v Y (rl) ,v3
addf.vv v2,v3,v4
stf.v v4,Z(rl)
addi rl,16,rl
slti r1,400,r2
bne r2,Loop

o Vector version

e 1lane

4-cycle 1df.
8-cycle mulf. sv, 5-cycle addf.vv
25 iters * 11 cycles/iter = 275 cycles

v/stf.v

+ Factor of 4 speedup again

1 23456 7 8[910111213141516171819
1ldf.v X(rl),vl FDXMMMMW
mulf.vv vl,£0,v2 F D dPEPE* EX EX|EX EX EX* E* W
1df.v Y(rl),v3 Fp*D Xs*M M W
addf.vv v2,v3,v4d F--D-p*-d* E\-I-A|:$E+E+ W
stf.v £4,2Z(rl) F p* p*|p* D X MMMW
addi r1l,4,rl FDXMW
blt rl,r2,0 FDXMW
1df.v X(rl),fl FDXMMMMW

CIS 501 (Martin/Roth): DLP

Vector Performance

Amdahl’s Law

e Where does it come from?
+ Fewer loop control insns: addi, blt, etc.
» Vector insns contain implicit loop control
+ RAW stalls taken only once, on “first iteration”
» Vector pipelines hide stalls of “subsequent iterations”

e How does it change with vector length?
+ Theoretically increases, think of T, ../MVL
* Thector = Tscalar + (MVL/ L) =1
e MVL=1— (Tvector/MVL) = Tscalar
e MVL = 1000 — (T,eto/MVL) = 1
— But vector regdfile becomes larger and slower

CIS 501 (Martin/Roth): DLP 17

Variable Length Vectors

e Amdahl’s law: the law of diminishing returns
e speedupy = 1/ [Yoyector / SPEEAUP ector + (1=%0yector)]
¢ Speedup due to vectorization limited by non-vector portion
¢ In general: optimization speedup limited by unoptimized portion

Example: %, = 90%
* speedup,,; = 10 — speedup,,, = 1/[0.9/10 + 0.1] = 5.3
* speedup,,; = 100 — speedupy, = 1/[0.9/100 + 0.1] = 9.1
* Speedup,,; = ©0—> speedup,, = 1/[0.9/c0+ 0.1] = 10

CRAY-1 rocked because it had fastest vector unit ...
... and the fastest scalar unit

CIS 501 (Martin/Roth): DLP 18

Vector Predicates

e Vector Length Register (VLR): 0 < VLR < MVL
o Implicit in all vector operations
for (I=0; IKVLR; I++) { vop.. }
¢ Used to handle vectors of different sizes
¢ General scheme for cutting up loops is strip mining
¢ Similar to loop blocking (cuts arrays into cache-sized chunks)

for (I=0; I<KN; I++)
Z[I] = A*X[I]+Y[I];

VIR = N $ MVL;
for (J=0; J<N; J+=VLR, VLR=MVL)
for (I=J; I<KJ+VLR; I++)

Z[I] = A*X[I]+Y[I];

CIS 501 (Martin/Roth): DLP 19

e Vector Mask Register (VMR): 1 bit per vector element
o Implicit predicate in all vector operations
for (I=0; I<VLR; I++) if (VMR[I]) { vop.. }
e Used to vectorize loops with conditionals in them
seq.v, slt.v, slti.v, etc.: sets vector predicates
cvmr: clear vector mask register (set to ones)

for (I=0; I<32; I++)

if (X[I] '= 0) Z[I] A/X[I];

1df X(rl),vl

sne.v vl,£f0 // 0.0 is in f£0
divf.sv vl,6£fl,v2 // A is in f1
stf.v v2,Z(rl)

cvmr

CIS 501 (Martin/Roth): DLP 20

ILP vs. DLP

e Recall: fundamental conflict of ILP
« High clock frequency or high IPC, not both
¢ High clock frequency — deep pipeline — more hazards — low IPC
e High IPC — superscalar — complex issue/bypass — slow clock
e DLP (vectors) sidesteps this conflict
+ Key: operations within a vector insn are parallel — no data hazards
+ Key: loop control is implicit — no control hazards
¢ High clock frequency — deep pipeline + no hazards — high IPC
¢ High IPC — natural wide issue + no bypass — fast clock

CIS 501 (Martin/Roth): DLP 21

Short, Single-Cycle Vector Instructions

¢ Pipelining technique used in scientific vector architectures
¢ Many elements per vector: 8 to 64
¢ Large basic data type: 32- or 64- bit FP
e Complex operations: addf.vv, mulf.vs

e More recently, multimedia vector architectures
e Few elements per vector: 4 or 8 (64-bit or 128-bit vectors)
¢ Short, simple basic data type: 8- or 16-bit integers
¢ Entire vector can be “packed” into one 32- or 64-bit integer
¢ Simple operations: and, or, add
¢ Operations implemented in parallel in single ALU
¢ Do 4 16-bit adds in 64-bit ALU by disabling some carries
¢ This form of data-level parallelism called subword parallelism

CIS 501 (Martin/Roth): DLP 23

History of Vectors

e Vector-register architectures: "RISC" vectors
e Most modern vector supercomputers (Cray-1, Convex)
¢ Like we have talked about so far
¢ Optimized for short-medium sized (8—64 element) vectors
¢ Memory-memory vector architectures: "CISC" vectors
¢ Early vector supercomputers (TI ASC, CDC STAR100)
¢ Optimized for (arbitrarily) long vectors
o All vectors reside in memory
— Require a lot of memory bandwidth
— Long startup latency

CIS 501 (Martin/Roth): DLP 22

Modern Vectors

¢ Both floating-point and integer vectors common today
o But both of the parallel (not pipelined) variety

e Integer vectors
¢ Image processing: a pixel is 4 bytes (RGBA)
¢ Also: speech recognition, geometry, audio, tele-communications
¢ Floating-point vectors
o Useful for geometry processing: 4x4 translation/rotation matrices
¢ Also: scientific/engineering programs, digital signal processing
e Examples
¢ Intel MMX: 64-bit integer (2x32b, 4x16b, 8x8b)
o Intel SSE: 64-bit FP (2x32b)
o Intel SSE2: 128-bit FP (2x64b, 4x32b)
e Motorola AltiVEC: 128-bit integer/FP (2x64b, 4x32b, 8x16b, 16x8b)

CIS 501 (Martin/Roth): DLP 24

Automatic Vectorization

¢ Automatic vectorization

Compiler conversion of sequential code to vector code
Very difficult
Vectorization implicitly reorders operations
Invariably, loads and stores are some of those operations
How to tell whether load/store reordering is legal?
¢ Possible in languages without references: e.g., FORTRAN
— Hard (impossible?) in languages with references: e.g., C, Java

Compilers don't generate MMX and SSE code
Libraries of routines that exploit MMX and SSE are hand assembled

CIS 501 (Martin/Roth): DLP 25

Not Everything Easy To Vectorize

Vector Energy

for (I = 0; I < N; I++)

for (J = 0; J < N; J++)
for (K = 0; K < N; K++)
C[I][J] += A[I][K] * B[K][J];

e Matrix multiply difficult to vectorize

Vectorization works on inner loops

¢ The iterations in this inner loop are not independent

¢ Need to transform it

for (I = 0; I < N; I++)

for (J = 0; J < N; J+=MVL)
for (K = 0; K < N; K++)
for (JJ = 0; JI<KMVL; JJ++)
C[I][J+JJ] += A[I][K] * B[K][J+JJ];

CIS 501 (Martin/Roth): DLP 27

e Vectors are more power efficient than superscalar
¢ For a given loop, vector code...
+ Fetches, decodes, issues fewer insns (obvious)
+ Actually executes fewer operations too (loop control)
¢ Also remember: clock frequency is not power efficient
+ Vectors can trade frequency (pipelining) for parallelism (lanes)

e In general: hardware more power efficient than software
¢ Custom circuits more efficient than insns on general circuits
e Think of vectors as custom hardware for array-based loops

CIS 501 (Martin/Roth): DLP 26

Exploiting DLP With Parallel Processing

for (I = 0; I < 100; I++)
for (J =0; J < 100; J++)
for (K = 0; K < 100; K++)
CI[I]1[J] += A[I][K] * B[K][J];

e Matrix multiplication can also be parallelized

e Outer loop parallelism
e Outer loop iterations are parallel
e Run entire I or J loop iterations in parallel
¢ Each iteration runs on a different processor
e Each processor runs all K inner loop iterations sequentially

¢ Which is better? Do both!

CIS 501 (Martin/Roth): DLP 28

Parallelizing Matrix Multiply

Parallelizing Matrix Multiply

my id() my id()

>
()Pt Au
1]

A

for (J = 0; J < N; J++)
for (K = 0; K < N; K++)
Clmy_id()]1[J] += A[my_ id()]1[K] * B[K][J];

¢ How to parallelize matrix multiply over N processors?
¢ Or N machines in a cluster
e One possibility: give each processor an 1 iteration
¢ Each processor runs copy of loop above
e my_id() function gives each processor ID from 0 to N
 Parallel processing library (e.g., MPI) provides this function
¢ Have to also divide matrices between N processors

¢ Each processor gets row my_id () of A, C, columnmy_id()of B
CIS 501 (Martin/Roth): DLP 29

Parallelizing Matrix Multiply

for (J =0; J < 100; J++) {
if (J == my_id()) {
memcpy (tmp B, my B, 100);
for (id = 0; id < 100; id++)
if (id !'= my_id())
send(id, &my B, 100);
}
else recv(J, &tmp B, 100);
for (K = 0; K < 100; K++)
my_C[J] += my A[K] * tmp B[K];
}

 Data communication
¢ Processors send their portions of B (my_B) to other processors
e Library provides send (), recv () functions for this

CIS 501 (Martin/Roth): DLP 30

Parallel Matrix Multiply Performance

if (my_id() == 0) {
memcpy (tmp_A, &A[I][0], 100);
memcpy (tmp_B, &B[0][J], 100);
for (id = 1; id < 100; id++)

{ send(id, &A[id][0], 100); send(id, &B[0][id], 100);

}
else { recv(0, &my A, 100); recv(0, &my B, 100); }

if (my_id() == 0)
for (id = 1; id < 100; id++)
recv(id, &C[id][0], 100);
else send (0, &my C, 100);

+ Data initialization/collection
e Processor 0 must initialize others with portions of A, B matrices
e Processor 0 must collect ¢ matrix portions from other processors

CIS 501 (Martin/Roth): DLP 31

e Gross assumptions
¢ 10 cycles per FP instruction, all other instructions free
¢ 50 cycles + 1 cycle for every 4 B to send/receive a message

¢ Sequential version: no communication
¢ Computation: 2M FP-insn * 10 cycle/FP insn = 20M cycles

o Parallel version: calculate for processor 0 (takes longest)
e Computation: 20K FP-insn * 10 cycle/FP-insn = 200K cycles

Initialization: ~200 send * 150 cycle/send = 30K cycles

Communication: ~200 send * 150 cycle/send = 30K cycles

Collection: ~100 send * 150 cycle/send = 15K cycles

Total: 275K cycles

73X speedup (not quite 100X)

— 32% communication overhead

+

CIS 501 (Martin/Roth): DLP 32

Parallel Performance

Automatic Parallelization?

P (peak speedup) 10 100

1000

Computation 200,000*10=2M 20,000*10=200K

2000*10=20K

Initialization 20*(50+1000)=21K| 200*(50+100)=30K| 2000*(50+10)=120K
Communication 20*(50+1000)=21K| 200*(50+100)=30K| 2000*(50+10)=120K
Collection 10*(50+1000)=11K| 100*(50+100)=15K| 1000*(50+10)=60K
Total 2.05M 275K 320K
Actual speedup 9.7 73 63
Actual/Peak 97% 73% 6.3%

¢ How does it scale with number of processors P?
— 97% efficiency for 10 processors, 73% for 100, 6.3% for 1000
— 1000 processors actually slower than 100
¢ Must initialize/collect data from too many processors

¢ Each transfer is too small, can’t amortize constant overhead

e Amdahl’s law again
e Speedup due to parallelization limited by non-parallel portion
CIS 501 (Martin/Roth): DLP 33

Message Passing

¢ Parallel matrix multiply we saw uses message passing
¢ Each copy of the program has a private virtual address space
¢ Explicit communication through messages
¢ Messages to other processors look like I/O
+ Simple hardware
¢ Any network configuration will will do
¢ No need to synchronize memories
— Complex software
¢ Must orchestrate communication
¢ Only programs with regular (static) communication patterns

e Message passing systems called multi-computers

CIS 501 (Martin/Roth): DLP 35

e Same as automatic vectorization: hard
¢ Same reason: difficult to analyze memory access patterns
¢ Maybe even harder
¢ Outer loop analysis harder than inner loop analysis

CIS 501 (Martin/Roth): DLP 34

Shared Memory

“shared” float A[100][100], B[100][100], C[100][100];
for (J = 0; J < 100; J++)
for (K = 0; K < 100; K++)
Clmy_id()]1[J] += A[my_id()][K] * B[K][J];

¢ Alternative: shared memory
¢ All copies of program share (part of) an address space
¢ Implicit (automatic) communication via loads and stores
+ Simple software
* No need for messages, communication happens naturally
— Maybe too naturally
e Supports irregular, dynamic communication patterns
— Complex hardware
¢ Create a uniform view of memory
¢ More complex on with caches

CIS 501 (Martin/Roth): DLP 36

Issues for Shared Memory

e Shared memory not without issues
¢ Cache coherence
¢ Synchronization
¢ Something called “memory consistency model”
¢ Not unrelated to each other
* Not issues for message passing systems
¢ Topic of next unit

CIS 501 (Martin/Roth): DLP 37

Summary: Flynn Taxonomy

Thread Level Parallelism (TLP)

¢ Flynn taxonomy: taxonomy of parallelism
¢ Two dimensions
¢ Number of instruction streams: single vs. multiple
¢ Number of data streams: single vs. multiple

e SISD: single-instruction single-data
¢ Pipelining and ILP on a uniprocessor
e SIMD: single-instruction multiple-data
e DLP on a vector processor
e MIMD: multiple-instruction multiple-data
e DLP, TLP on a parallel processor
e SPMD: single-program multiple data

CIS 501 (Martin/Roth): DLP 39

struct acct_t { int bal; };

shared struct acct_t accts[MAX ACCT];
int id,amt;

if (accts[id] .bal >= amt)

{

addi rl, &accts,r3
1d 0(x3) ,r4

blt r4,r2,6

sub r4,r2,r4

st r4,0(x3)

call dispense_cash

accts[id] .bal -= amt;
dispense_ cash() ;

s WNhHFEOo

}

e But can also exploit thread-level parallelism (TLP)
¢ Collection of asynchronous tasks: not started and stopped together
e Data shared loosely, dynamically
¢ Dynamically allocate tasks to processors
e Example: database server (each query is a thread)
e accts is shared, can't register allocate even if it were scalar
e id and amt are private variables, register allocated to r1, r2

¢ Confusion: outer-loop DLP sometimes also called TLP

CIS 501 (Martin/Roth): DLP 38

SISD vs. SIMD vs. SPMD

e SISD ruled the 1990s
o ILP techniques found in all processors

e SIMD has its niche
¢ Multimedia, tele-communications, engineering

e SPMD is starting to dominate commercially
+ Handles more forms of parallelism
¢ Inner-loop DLP, outer-loop DLP, and TLP
+ More economical: just glue together cheap uniprocessors
+ Better scalability: start small, add uniprocessors

CIS 501 (Martin/Roth): DLP 40

Summary

¢ Data-level parallelism (DLP)
+ Easier form of parallelism than ILP
— Hard to exploit automatically

e Vectors (SIMD)
e Extend processor with new data type: vector
+ Very effective
— Only handles inner-loop parallelism
e Parallel Processing (MIMD)
¢ Multiple uniprocessors glued together
* Glue? explicit messages or shared memory
+ The way of the future: inner-loop and outer-loop DLP and TLP
+ The way of the future: inner-loop and outer-loop DLP and TLP

CIS 501 (Martin/Roth): DLP

41

