
CIS 501 (Martin/Roth): Multithreading 1

CIS 501
Introduction To Computer Architecture

Unit 12: Multithreading

CIS 501 (Martin/Roth): Multithreading 2

This Unit: Multithreading (MT)

• Why multithreading (MT)?

• Utilization vs. performance

• Three implementations

• Coarse-grained MT

• Fine-grained MT

• Simultaneous MT (SMT)

• MT for reliability

• Redundant multithreading

• Multithreading for performance

• Speculative multithreading

Application

OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

CIS 501 (Martin/Roth): Multithreading 3

Readings

• H+P

• Chapter 6.9

CIS 501 (Martin/Roth): Multithreading 4

Performance And Utilization

• Performance (IPC) important

• Utilization (actual IPC / peak IPC) important too

• Even moderate superscalars (e.g., 4-way) not fully utilized
• Average sustained IPC: 1.5–2 ! <50% utilization

• Mis-predicted branches

• Cache misses, especially L2

• Data dependences

• Multi-threading (MT)

• Improve utilization by multi-plexing multiple threads on single CPU

• One thread cannot fully utilize CPU? Maybe 2, 4 (or 100) can



CIS 501 (Martin/Roth): Multithreading 5

Latency vs Throughput

• MT trades (single-thread) latency for throughput
– Sharing processor degrades latency of individual threads

+ But improves aggregate latency of both threads

+ Improves utilization

• Example
• Thread A: individual latency=10s, latency with thread B=15s

• Thread B: individual latency=20s, latency with thread A=25s

• Sequential latency (first A then B or vice versa): 30s

• Parallel latency (A and B simultaneously): 25s

– MT slows each thread by 5s

+ But improves total latency by 5s

• Different workloads have different parallelism
• SpecFP has lots of ILP (can use an 8-wide machine)

• Server workloads have TLP (can use multiple threads)

CIS 501 (Martin/Roth): Multithreading 6

MT Implementations: Similarities

• How do multiple threads share a single processor?
• Different sharing mechanisms for different kinds of structures

• Depend on what kind of state structure stores

• No state: ALUs
• Dynamically shared

• Persistent hard state (aka “context”): PC, registers
• Replicated

• Persistent soft state: caches, bpred
• Dynamically partitioned (like on a multi-programmed uni-processor)

• TLBs need thread ids, caches/bpred tables don’t

• Exception: ordered “soft” state (BHR, RAS) is replicated

• Transient state: pipeline latches, ROB, RS
• Partitioned … somehow

CIS 501 (Martin/Roth): Multithreading 7

MT Implementations: Differences

• Main question: thread scheduling policy

• When to switch from one thread to another?

• Related question: pipeline partitioning

• How exactly do threads share the pipeline itself?

• Choice depends on

• What kind of latencies (specifically, length) you want to tolerate

• How much single thread performance you are willing to sacrifice

• Three designs

• Coarse-grain multithreading (CGMT)

• Fine-grain multithreading (FGMT)

• Simultaneous multithreading (SMT)

CIS 501 (Martin/Roth): Multithreading 8

The Standard Multithreading Picture

• Time evolution of issue slots

• Color = thread

CGMT FGMT SMT



CIS 501 (Martin/Roth): Multithreading 9

Coarse-Grain Multithreading (CGMT)

• Coarse-Grain Multi-Threading (CGMT)

+ Sacrifices very little single thread performance (of one thread)

– Tolerates only long latencies (e.g., L2 misses)

• Thread scheduling policy

• Designate a “preferred” thread (e.g., thread A)

• Switch to thread B on thread A L2 miss

• Switch back to A when A L2 miss returns

• Pipeline partitioning

• None, flush on switch

– Can’t tolerate latencies shorter than twice pipeline depth

• Need short in-order pipeline for good performance

• Example: IBM Northstar/Pulsar

CIS 501 (Martin/Roth): Multithreading 10

CGMT

• CGMT
• Does this picture look familiar?

regfile

D$
I$

B
P

regfile

regfile

thread scheduler

L2 miss?

I$

B
P

D$

CIS 501 (Martin/Roth): Multithreading 11

Fine-Grain Multithreading (FGMT)

• Fine-Grain Multithreading (FGMT)
– Sacrifices significant single thread performance

+ Tolerates all latencies (e.g., L2 misses, mispredicted branches, etc.)

• Thread scheduling policy

• Switch threads every cycle (round-robin), L2 miss or no

• Pipeline partitioning

• Dynamic, no flushing

• Length of pipeline doesn’t matter

– Need a lot of threads

• Extreme example: Denelcor HEP

• So many threads (100+), it didn’t even need caches

• Failed commercially

• Not popular today

• Many threads ! many register files

CIS 501 (Martin/Roth): Multithreading 12

Fine-Grain Multithreading

• FGMT

• (Many) more threads

• Multiple threads in pipeline at once

regfile

regfile

regfile

regfile

thread scheduler

D$
I$

B
P



CIS 501 (Martin/Roth): Multithreading 13

Simultaneous Multithreading (SMT)

• Can we multithread an out-of-order machine?

• Don’t want to give up performance benefits

• Don’t want to give up natural tolerance of D$ (L1) miss latency

• Simultaneous multithreading (SMT)

+ Tolerates all latencies (e.g., L2 misses, mispredicted branches)

± Sacrifices some single thread performance

• Thread scheduling policy

• Round-robin (just like FGMT)

• Pipeline partitioning

• Dynamic, hmmm…

• Example: Pentium4 (hyper-threading): 5-way issue, 2 threads

• Another example: Alpha 21464: 8-way issue, 4 threads (canceled)

CIS 501 (Martin/Roth): Multithreading 14

Simultaneous Multithreading (SMT)

• SMT

• Replicate map table, share physical register file

regfile

D$
I$

B
P

map table

map tables

I$

B
P

D$

thread scheduler

regfile

CIS 501 (Martin/Roth): Multithreading 15

Issues for SMT

• Cache interference
• General concern for all MT variants

• Can the working sets of multiple threads fit in the caches?

• Shared memory SPMD threads help here

+ Same insns ! share I$

+ Shared data ! less D$ contention

• MT is good for “server” workloads

• To keep miss rates low, SMT might need a larger L2 (which is OK)

• Out-of-order tolerates L1 misses

• Large map table and physical register file
• #mt-entries = (#threads * #arch-regs)

• #phys-regs = (#threads * #arch-regs) + #in-flight insns

CIS 501 (Martin/Roth): Multithreading 16

SMT Resource Partitioning

• How are ROB/MOB, RS partitioned in SMT?

• Depends on what you want to achieve

• Static partitioning

• Divide ROB/MOB, RS into T static equal-sized partitions

+ Ensures that low-IPC threads don’t starve high-IPC ones

• Low-IPC threads stall and occupy ROB/MOB, RS slots

– Low utilization

• Dynamic partitioning

• Divide ROB/MOB, RS into dynamically resizing partitions

• Let threads fight for amongst themselves

+ High utilization

– Possible starvation

• ICOUNT: fetch policy prefers thread with fewest in-flight insns



CIS 501 (Martin/Roth): Multithreading 17

Power Implications of MT

• Is MT (of any kind) power efficient?

• Static power? Yes

• Dissipated regardless of utilization

• Dynamic power? Less clear, but probably yes

• Highly utilization dependent

• Major factor is additional cache activity

• Some debate here

• Overall?  Yes

• Static power relatively increasing

CIS 501 (Martin/Roth): Multithreading 18

MT for Reliability

• Can multithreading help with reliability?

• Design bugs/manufacturing defects? No

• Gradual defects, e.g., thermal wear? No

• Transient errors? Yes

• Staggered redundant multithreading (SRT)

• Run two copies of program at a slight stagger

• Compare results, difference? Flush both copies and restart

– Significant performance overhead

• Have already seen better ways of doing this (DIVA)

CIS 501 (Martin/Roth): Multithreading 19

SMT vs. CMP

• If you wanted to run multiple threads would you build a…

• Chip multiprocessor (CMP): multiple separate pipelines?

• A multithreaded processor (SMT): a single larger pipeline?

• Both will get you throughput on multiple threads

• CMP will be simpler, possibly faster clock

• SMT will get you better performance (IPC) on a single thread

• SMT is basically an ILP engine that converts TLP to ILP

• CMP is mainly a TLP engine

• Again, do both

• Sun’s Niagara (UltraSPARC T1)

• 8 processors, each with 4-threads (coarse-grained threading)

• 1Ghz clock, in-order, short pipeline (6 stages or so)

• Designed for power-efficient “throughput computing”

CIS 501 (Martin/Roth): Multithreading 20

Research: Speculative Multithreading

• Speculative multithreading

• Use multiple threads/processors for ILP

• Speculatively parallelize sequential loops

• CMP processing elements (called PE) arranged in logical ring

• Compiler or hardware assigns iterations to consecutive PEs

• Hardware tracks logical order to detect mis-parallelization

• Techniques for doing this on non-loop code too

• Effectively chains ROBs of different processors into one big ROB

• Global commit “head” travels from one PE to the next

• Mis-parallelization flushes entire PEs

• Also known as split-window or “Multiscalar”

• Not commercially available yet, but maybe not far off



CIS 501 (Martin/Roth): Multithreading 21

Multithreading Summary

• Latency vs. throughput

• Partitioning different processor resources

• Three multithreading variants

• Coarse-grain: no single-thread degradation, but long latencies only

• Fine-grain: other end of the trade-off

• Simultaneous: fine-grain with out-of-order

• Multithreading vs. chip multiprocessing

CIS 501 (Martin/Roth): Multithreading 22

CIS501 Summary

• Remember this from lecture 1?

• Intel Pentium4

• At a high level

• You know how this works now!

CIS 501 (Martin/Roth): Multithreading 23

CIS501 Summary: Pentium 4

• Pentium 4 specifications: what do each of these mean?
• Technology

• 55M transistors, 0.90 µm CMOS, 101 mm2, 3.4 GHz, 1.2 V

• Performance

• 1705 SPECint, 2200 SPECfp

• ISA

• X86+MMX/SSE/SSE2/SSE3 (X86 translated to RISC uops inside)

• Memory hierarchy

• 64KB 2-way insn trace cache, 16KB D$, 512KB–2MB L2

• MESI-protocol coherence controller, processor consistency

• Pipeline

• 22-stages, dynamic scheduling/load speculation, MIPS
renaming

• 1K-entry BTB, 8Kb hybrid direction predictor, 16-entry RAS

• 2-way hyper-threading


