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CIS 501 
Computer Architecture 

Unit 1: Instruction Set Architecture 

Slides originally developed by Amir Roth with contributions by Milo Martin 
at University of Pennsylvania with sources that included University of 
Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood. 
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Instruction Set Architecture (ISA) 

•  What is an ISA? 
•  What is a good ISA? 
•  A bit on RISC vs. CISC 

Application 
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Digital Circuits 

Gates & Transistors 
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Readings 

•  Baer’s “MA:FSPTCM” 
•  Section 1.1.1 (that’s it!) 
•  Lots more in these lecture notes 

•  Paper 
•  The Evolution of RISC Technology at IBM by John Cocke 
•  (But we’ll discuss it later next week) 

What is an ISA? 
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What Is An ISA? 

•  ISA (instruction set architecture) 
•  A well-defined hardware/software interface 
•  The “contract” between software and hardware 

•  Functional definition of operations, modes, and storage 
locations supported by hardware 

•  Precise description of how to invoke, and access them 

•  Not in the “contract”: non-functional aspects 
•  How operations are implemented 
•  Which operations are fast and which are slow and when 
•  Which operations take more power and which take less 

•  Instruction ! Insn 
•  ‘Instruction’ is too long to write in slides 
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A Language Analogy for ISAs 

•  Communication 
•  Person-to-person ! software-to-hardware 

•  Similar structure 
•  Narrative ! program 
•  Sentence ! insn 
•  Verb ! operation (add, multiply, load, branch) 
•  Noun ! data item (immediate, register value, memory value) 
•  Adjective ! addressing mode 

•  Many different languages, many different ISAs 
•  Similar basic structure, details differ (sometimes greatly) 

•  Key differences between languages and ISAs 
•  Languages evolve organically, many ambiguities, inconsistencies 
•  ISAs are explicitly engineered and extended, unambiguous 
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The Sequential Model 
•  Basic structure of all modern ISAs 

•  Processor logically executes loop at left 

•  Program order: total order on dynamic insns 
•  Order and named storage define computation 

•  Convenient feature: program counter (PC) 
•  Insn itself at memory[PC] 
•  Next PC is PC++ unless insn says otherwise  

•  Atomic: insn X finishes before insn X+1 starts 
•  Can break this constraint physically (pipelining) 
•  But must maintain illusion to preserve programmer 

sanity 

Fetch PC 

Decode 

Read Inputs 

Execute 

Write Output 

Next PC 
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Where Does Data Live? 

•  Registers 
•  Named directly in instructions 
•  “short term memory” 
•  Faster than memory, quite handy 

•  Memory 
•  Fundamental storage space 
•  “longer term memory” 

•  Immediates 
•  Values spelled out as bits in instructions 
•  Input only 

Fetch 
Decode 

Read Inputs 
Execute 

Write Output 
Next Insn 
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Foreshadowing: ISAs & Performance  

•  Performance equation: 
•  (instructions/program) * (cycles/instruction) * (seconds/cycle) 

•  A good ISA balances three three aspects 

•  One example: 
•  Big complicated instructions:  

•  Reduce “insn/program” (good!) 
•  Increases “cycles/instruction” (bad!) 

•  Simpler instructions 
•  Reverse of above 

•  We’ll revisit this when we talk about “RISC” vs “CISC” 

x86 Assembly Instruction Example 1 
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int func(int x, int y)!
{!
  return (x+10) * y;!
}!

 .file "example.c"!
 .text!
 .globl func!
 .type func, @function!
func:!
   addl  $10, %edi!
   movl  %esi, %eax!
   imull %edi, %eax!
   ret!

x86 Assembly Instruction Example 2 
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int f(int x);!
int g(int x);!

int func(int x, int y)!
{!
  int val;!
  if (x > 10) {!
    val = f(y);!
  } else {!
    val = g(y);!
  }!
  return val * 100;!
}!

func:!
   subq  $8, %rsp!
   cmpl  $10, %edi!
   jg .L6!
   movl  %esi, %edi!
   call  g!
   movl  $100, %edx!
   imull %edx, %eax!
   addq  $8, %rsp!
   ret!
.L6:!
   movl  %esi, %edi!
   call  f!
   movl  $100, %edx!
   imull %edx, %eax!
   addq  $8, %rsp!
   ret!

x86 Assembly Instruction Example 3 
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struct list_t {!
  int value;!
  list_t* next;!
};!

int func(list_t* l)!
{!
  int counter = 0;!
  while (l != NULL) {!
    counter++;!
    l = l->next;!
  }!
  return counter;!
}!

.func:!
   xorl  %eax, %eax      // counter = 0!
   testq %rdi, %rdi!
   je .L3                // jump equal!
.L6:!
   movq  8(%rdi), %rdi   // load “next”!
   addl  $1, %eax        // increment!
   testq %rdi, %rdi!
   jne   .L6!
.L3:!
   ret!



Array Sum Loop, x86 
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int array[100];!
int sum;!
void array_sum() {!
   for (int i=0; i<100;i++) 

{!
      sum += array[i];!
   }!
}!

Array Sum Loop, x86, Optimized 
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int array[100];!
int sum;!
void array_sum() {!
   for (int i=0; i<100;i++) 

{!
      sum += array[i];!
   }!
}!

Array Sum Loop: MIPS, Unoptimized 
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int array[100];!
int sum;!
void array_sum() {!
   for (int i=0; i<100;i++) 

{!
      sum += array[i];!
   }!
}!

Aspects of ISAs 
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Aspects of ISAs 

•  VonNeumann model 
•  Implicit structure of all modern ISAs 

•  Format 
•  Length and encoding  

•  Operand model 
•  Where (other than memory) are operands stored? 

•  Datatypes and operations  
•  Control 

•  Review only 
•  You should have seen assembly code previously 
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Length and Format 

•  Length 
•  Fixed length 

•  Most common is 32 bits 
+ Simple implementation (next PC often just PC+4) 
–  Code density: 32 bits to increment a register by 1 

•  Variable length 
+ Code density 

•  x86 can do increment in one 8-bit instruction 
–  Complex fetch (where does next instruction begin?) 

•  Compromise: two lengths 
•  E.g., MIPS16 or ARM’s Thumb 

•  Encoding 
•  A few simple encodings simplify decoder 

•  x86 decoder one nasty piece of logic  

Fetch[PC] 
Decode 

Read Inputs 
Execute 

Write Output 
Next PC 
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Examples Instruction Encodings 

•  MIPS 
•  Fixed length 
•  32-bits, 3 formats, simple encoding 
•  (MIPS16 has 16-bit versions of common insn for code density) 

•  x86 
•  Variable length encoding (1 to 16 bytes) 
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Datatypes 
•  Datatypes 

•  Software: attribute of data 
•  Hardware: attribute of operation, data is just 0/1’s 

•  All processors support 
•  Integer arithmetic/logic (8/16/32/64-bit) 
•  IEEE754 floating-point arithmetic (32/64-bit) 

•  More recently, most processors support 
•  “Packed-integer” insns, e.g., MMX 
•  “Packed-fp” insns, e.g., SSE/SSE2 
•  For multimedia, more about these later 

•  Other, infrequently supported, data types 
•  Decimal, other fixed-point arithmetic 
•  Binary-coded decimal (BCD) 

Fetch 
Decode 

Read Inputs 
Execute 

Write Output 
Next Insn 
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How Many Explicit Register Operands 
•  Operand model: how many explicit operands 

•  3: general-purpose 
add R1,R2,R3 means [R1] = [R2] + [R3]    (MIPS uses this) 

•  2: multiple explicit accumulators (output doubles as input) 
add R1,R2 means [R1] = [R1] + [R2]   (x86 uses this) 

•  1: one implicit accumulator 
add R1 means ACC = ACC + [R1] 

•  4+: useful only in special situations 

•  Why have fewer? 
•  Primarily code density (size of each instruction in program binary) 
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How Many Registers? 

•  Registers faster than memory, have as many as possible? 
•  No 

•  One reason registers are faster: there are fewer of them 
•  Small is fast (hardware truism) 

•  Another: they are directly addressed (no address calc) 
–  More registers, means more bits per register in instruction 
–  Thus, fewer registers per instruction or larger instructions 

•  Not everything can be put in registers 
•  Structures, arrays, anything pointed-to 
•  Although compilers are getting better at putting more things in 

–  More registers means more saving/restoring 
•  Across function calls, traps, and context switches 

•  Trend: more registers: 8 (x86)! 32 (MIPS) !128 (IA64) 
•  64-bit x86 has 16 64-bit integer and 16 128-bit FP registers  
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How Are Memory Locations Specified? 

•  Registers are specified directly 
•  Register names are short, can be encoded in instructions 
•  Some instructions implicitly read/write certain registers  

•  How are addresses specified? 
•  Addresses are long (64-bit) 
•  Addressing mode: how are insn bits converted to addresses? 
•  Think about: what high-level idiom addressing mode captures 
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Memory Addressing 
•  Addressing mode: way of specifying address 

•  Used in memory-memory or load/store instructions in register ISA 

•  Examples 
•  Absolute: R1=mem[immed]     (only useful in limited situations) 
•  Register:  R1=mem[R2] 
•  Displacement:  R1=mem[R2+immed]   (subsumes two above) 
•  Index-base:  R1=mem[R2+R3]  
•  Auto-increment: R1=mem[R2], R2= R2+1 
•  Auto-indexing: R1=mem[R2+immed], R2=R2+immed 
•  Scaled:  R1=mem[R2+R3*immed1+immed2] 
•  PC-relative: R1=mem[PC+imm] 
•  Memory-indirect: R1=mem[mem[R2]]  

•  What high-level program idioms are these used for? 
•  What implementation impact? What impact on insn count? 
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MIPS Addressing Modes 

•  MIPS implements only displacement 
•  Why? Experiment on VAX (ISA with every mode) found distribution 
•  Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%  
•  80% use small displacement or register indirect (displacement 0) 

•  I-type instructions: 16-bit displacement 
•  Is 16-bits enough?  
•  Yes? VAX experiment showed 1% accesses use displacement >16 

•  Other ISAs (SPARC, x86) have Reg+Reg mode 
•  Why?  What impact on both implementation and insn count? 
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Addressing Modes Examples 

•  MIPS 
•  Displacement: R1+offset (16-bit) 

•  Why? Experiment on VAX (ISA with every mode) found: 
•  80% use small displacement (or displacement of zero) 

•  Other ISAs (SPARC, x86) have Reg+Reg mode, too 
•  Why?  What impact on both implementation and insn count? 

•  x86 (MOV instructions) 
•  Absolute: zero + offset (8/16/32-bit) 
•  Register indirect: R1 
•  Displacement: R1+offset (8/16/32-bit) 
•  Indexed: R1+R2 
•  Scaled: R1 + (R2*Scale) + offset(8/16/32-bit)    Scale = 1, 2, 4, 8 

x86 Addressing Modes 
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How Much Memory? Address Size 
•  What does “64-bit” in a 64-bit ISA mean? 

•  Each program can address (i.e., use) 264 bytes 

•  64 is the virtual address (VA) size 
•  Alternative (wrong) definition: width of arithmetic operations 

•  Most critical, inescapable ISA design decision 
•  Too small? Will limit the lifetime of ISA 
•  May require nasty hacks to overcome (E.g., x86 segments) 

•  x86 evolution: 
•  4-bit (4004), 8-bit (8008), 16-bit (8086), 24-bit (80286),  
•  32-bit + protected memory (80386) 
•  64-bit (AMD’s Opteron & Intel’s Pentium4) 

•  All ISAs moving to 64 bits (if not already there) 
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Two More Addressing Issues 
•  Access alignment: address % size == 0? 

•  Aligned: load-word @XXXX00, load-half @XXXXX0 
•  Unaligned: load-word @XXXX10, load-half @XXXXX1 
•  Question: what to do with unaligned accesses (uncommon case)? 

•  Support in hardware? Makes all accesses slow 
•  Trap to software routine? Possibility 
•  Use regular instructions 

•  Load, shift, load, shift, and 
•  MIPS? ISA support: unaligned access using two instructions 

lwl @XXXX10; lwr @XXXX10 

•  Endian-ness: arrangement of bytes in a word 
•  Big-endian: sensible order (e.g., MIPS, PowerPC)  

•  A 4-byte integer: “00000000 00000000 00000010 00000011” is 515  
•  Little-endian: reverse order (e.g., x86) 

•  A 4-byte integer: “00000011 00000010 00000000 00000000 ” is 515 
•  Why little endian? To be different? To be annoying? Nobody knows 
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Operand Model: Register or Memory? 
•  “Load/store” architectures 

•  Memory access instructions (loads and stores) are distinct 
•  Separate addition, subtraction, divide, etc. operations 
•  Examples: MIPS, ARM, SPARC, PowerPC 

•  Alternative: mixed operand model (x86, VAX) 
•  Operand can be from register or memory 
•  x86 example:  addl 100, 4(%eax)  

•  1. Loads from memory location [4 + %eax] 
•  2. Adds “100” to that value 
•  3. Stores to memory location [4 + %eax] 
•  Would requires three instructions in MIPS, for example.   
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MIPS and x86 Operand Models 
•  MIPS 

•  Integer: 32 32-bit general-purpose registers (load/store) 
•  Floating point: same (can also be used as 16 64-bit registers) 
•  16-bit displacement addressing 

•  x86 
•  Integer: 8 accumulator registers (reg-reg, reg-mem, mem-reg) 

•  Can be used as 8/16/32 bits 
•  Displacement, absolute, reg indirect, indexed and scaled addressing 

•  All with 8/16/32 bit constants (why not?) 
•  Note: integer push, pop for managing software stack 
•  Note: also reg-mem and mem-mem string functions in hardware 

•  x86 “64-bit mode” extends number of registers 
•  Integer: 16 64-bit registers 
•  Floating point: 16 128-bit registers 
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Control Transfers 

•  Default next-PC is PC + sizeof(current insn) 

•  Branches and jumps can change that 
•  Otherwise dynamic program == static program  
•  Not useful 

•  Computing targets: where to jump to 
•  For all branches and jumps 
•  Absolute / PC-relative / indirect 

•  Testing conditions: whether to jump at all 
•  For (conditional) branches only 
•  Compare-branch / condition-codes / condition registers 

Fetch 
Decode 

Read Inputs 
Execute 

Write Output 
Next Insn 
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Control Transfers I: Computing Targets 

•  The issues 
•  How far (statically) do you need to jump? 

•  Not far within procedure, further from one procedure to another 
•  Do you need to jump to a different place each time? 

•  PC-relative 
•  Position-independent within procedure 
•  Used for branches and jumps within a procedure 

•  Absolute 
•  Position independent outside procedure 
•  Used for procedure calls 

•  Indirect (target found in register) 
•  Needed for jumping to dynamic targets 
•  Used for returns, dynamic procedure calls, switch statements 
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Control Transfers II: Testing Conditions 
•  Compare and branch insns 

branch-less-than R1,10,target 
+  Simple 
–  Two ALUs: one for condition, one for target address 
–  Extra latency 

•  Implicit condition codes (x86) 
subtract R2,R1,10   // sets “negative” CC 
branch-neg target 

+  Condition codes set “for free” 
–  Implicit dependence is tricky 

•  Conditions in regs, separate branch (MIPS) 
set-less-than R2,R1,10 
branch-not-equal-zero R2,target 

–  Additional insns 
+  one ALU per insn, explicit dependence 
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MIPS and x86 Control Transfers 
•  MIPS 

•  16-bit offset PC-relative conditional branches 
•  Uses register for condition 

•  Compare two regs: beq, bne  
•  Compare reg to 0: bgtz, bgez, bltz, blez 
•  Why?  

•  More than 80% of branches are (in)equalities or comparisons to 0 
•  Don’t need adder for these cases (fast, simple) 
•  OK to take two insns to do remaining branches 

•  It’s the uncommon case 
•  Explicit “set condition into registers”: slt, sltu, slti, sltiu, etc. 

•  x86 
•  8-bit offset PC-relative branches 

•  Uses condition codes 
•  Explicit compare instructions (and others) to set condition codes 
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MIPS Control Instructions 

•  PC-relative conditional branches: bne, beq, blez, etc.  
•  16-bit relative offset, <0.1% branches need more 

•  Absolute jumps unconditional jumps: j 
•  26-bit offset 

•  Indirect jumps: jr 



ISAs Also Include Support For… 

•  Function calling conventions 
•  Which registers are saved across calls, how parameters are passed 

•  Operating systems & memory protection 
•  Privileged mode 
•  System call (TRAP) 
•  Exceptions & interrupts 
•  Interacting with I/O devices 

•  Multiprocessor support 
•  “Atomic” operations for synchronization 

•  Data-level parallelism 
•  Pack many values into a wide register 

•  Intel’s SSE2: four 32-bit float-point values into 128-bit register 
•  Define parallel operations (four “adds” in one cycle) 
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ISA Design Goals  
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What Makes a Good ISA? 

•  Programmability 
•  Easy to express programs efficiently? 

•  Implementability 
•  Easy to design high-performance implementations? 
•  More recently 

•  Easy to design low-power implementations? 
•  Easy to design high-reliability implementations? 
•  Easy to design low-cost implementations? 

•  Compatibility 
•  Easy to maintain programmability (implementability) as languages 

and programs (technology) evolves? 
•  x86 (IA32) generations: 8086, 286, 386, 486, Pentium, PentiumII, 

PentiumIII, Pentium4, Core2… 
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Programmability 

•  Easy to express programs efficiently? 
•  For whom? 

•  Before 1985: human 
•  Compilers were terrible, most code was hand-assembled 
•  Want high-level coarse-grain instructions 

•  As similar to high-level language as possible 

•  After 1985: compiler 
•  Optimizing compilers generate much better code that you or I 
•  Want low-level fine-grain instructions 

•  Compiler can’t tell if two high-level idioms match exactly or not  
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Human Programmability 

•  What makes an ISA easy for a human to program in? 
•  Proximity to a high-level language (HLL) 

•  Closing the “semantic gap” 
•  Semantically heavy (CISC-like) insns that capture complete idioms 

•  “Access array element”, “loop”, “procedure call” 
•  Example: SPARC save/restore 
•  Bad example: x86 rep movsb (copy string) 
•  Ridiculous example: VAX insque (insert-into-queue) 

•  “Semantic clash”: what if you have many high-level languages? 

•  Stranger than fiction 
•  People once thought computers would execute language directly 
•  Fortunately, never materialized (but keeps coming back around) 
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Today’s Semantic Gap 

•  Today’s ISAs are actually targeted to one language… 
•  …Just so happens that this language is very low level  

•  The C programming language 

•  Will ISAs be different when Java/C# become dominant? 
•  Object-oriented?  Probably not 
•  Support for garbage collection?  Maybe 
•  Why? 

•  Smart compilers transform high-level languages to simple 
instructions 

•  Any benefit of tailored ISA is likely small 
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Compiler Programmability 

•  What makes an ISA easy for a compiler to program in? 
•  Low level primitives from which solutions can be synthesized 

•  Wulf says: “primitives not solutions” 
•  Computers good at breaking complex structures to simple ones 

•  Requires traversal 
•  Not so good at combining simple structures into complex ones 

•  Requires search, pattern matching 
•  Easier to synthesize complex insns than to compare them 

•  Rules of thumb 
•  Regularity: “principle of least astonishment” 
•  Orthogonality & composability 
•  One-vs.-all 
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Compiler Optimizations 

•  Compilers do two things 

•  Code generation 
•  Translate HLL to machine insns naively, one statement at a time 
•  Canonical, there are compiler-generating programs 

•  Optimization 
•  Transform insns to preserve meaning but improve performance 
•  Active research area, but some standard optimizations 

•  Register allocation, common sub-expression elimination, 
loop-invariant code motion, loop unrolling, function inlining,  
code scheduling (to increase insn-level parallelism), etc. 
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Compiler Optimizations 
•  Primarily reduce dynamic insn count  

•  Eliminate redundant computation, keep more things in registers 
+ Registers are faster, fewer loads/stores 
–  An ISA can make this difficult by having too few registers 

•  But also… 
•  Reduce branches and jumps 
•  Reduce cache misses 
•  Reduce dependences between nearby insns (for parallelism) 

–  An ISA can make this difficult by having implicit dependences 

•  How effective are these? 
+  Can give 4X performance over unoptimized code 
–  Collective wisdom of 40 years (“Proebsting’s Law”): 4% per year 
•  Funny but … shouldn’t leave 4X performance on the table 
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Implementability 

•  Every ISA can be implemented 
•  Not every ISA can be implemented efficiently 

•  Classic high-performance implementation techniques 
•  Pipelining, parallel execution, out-of-order execution (more later) 

•  Certain ISA features make these difficult 
–  Variable instruction lengths/formats: complicate decoding 
–  Implicit state: complicates dynamic scheduling 
–  Variable latencies: complicates scheduling 
–  Difficult to interrupt instructions: complicate many things 

•  Example: memory copy instruction 
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Compatibility 

•  In many domains, ISA must remain compatible 
•  IBM’s 360/370 (the first “ISA family”) 
•  Another example: Intel’s x86 and Microsoft Windows 

•  x86 one of the worst designed ISAs EVER, but survives 

•  Backward compatibility 
•  New processors supporting old programs 

•  Can’t drop features (cumbersome) 
•  Or, update software/OS to emulate dropped features (slow)  

•  Forward (upward) compatibility 
•  Old processors supporting new programs 

•  Include a “CPU ID” so the software can test of features 
•  Add ISA hints by overloading no-ops (example: x86’s PAUSE) 
•  New firmware/software on old processors to emulate new insn 
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The Compatibility Trap 

•  Easy compatibility requires forethought 
•  Temptation: use some ISA extension for 5% performance gain 
•  Frequent outcome: gain diminishes, disappears, or turns to loss 

– Must continue to support gadget for eternity 

•  Example: “register windows” (SPARC) 
•  Adds difficulty to out-of-order implementations of SPARC 

•  Compatibility trap door 
•  How to rid yourself of some ISA mistake in the past? 
•  Make old instruction an “illegal” instruction on new machine 
•  Operating system handles exception, emulates instruction, returns 

•  Slow unless extremely uncommon for all programs 



The RISC vs. CISC Debate 
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RISC and CISC 
•  RISC: reduced-instruction set computer 

•  Coined by Patterson in early 80’s 
•  Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM 801 

(Cocke) 
•  Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC 

•  CISC: complex-instruction set computer 
•  Term didn’t exist before “RISC” 
•  x86, VAX, Motorola 68000, etc. 

•  Philosophical war (one of several) started in mid 1980’s 
•  RISC “won” the technology battles 
•  CISC won the high-end commercial war (1990s to today) 

•  Compatibility a stronger force than anyone (but Intel) thought 
•  RISC won the embedded computing war 
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RISC vs CISC Performance Argument 

•  Performance equation: 
•  (instructions/program) * (cycles/instruction) * (seconds/cycle) 

•  CISC (Complex Instruction Set Computing) 
•  Reduce “instructions/program” with “complex” instructions 

•  But tends to increase CPI or clock period 
•  Easy for assembly-level programmers, good code density 

•  RISC (Reduced Instruction Set Computing) 
•  Improve “cycles/instruction” with many single-cycle instructions 
•  Increases “instruction/program”, but hopefully not as much 

•  Help from smart compiler 
•  Perhaps improve clock cycle time (seconds/cycle)  

•  via aggressive implementation allowed by simpler instructions  
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The Setup 

•  Pre 1980 
•  Bad compilers (so assembly written by hand) 
•  Complex, high-level ISAs (easier to write assembly) 
•  Slow multi-chip micro-programmed implementations 

•  Vicious feedback loop 

•  Around 1982 
•  Moore’s Law makes fast single-chip microprocessor possible… 

•  …but only for small, simple ISAs 
•  Performance advantage of this “integration” was compelling 
•  Compilers had to get involved in a big way 

•  RISC manifesto: create ISAs that… 
•  Simplify single-chip implementation 
•  Facilitate optimizing compilation 
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The RISC Tenets 
•  Single-cycle execution 

•  CISC: many multicycle operations 
•  Hardwired control 

•  CISC: microcoded multi-cycle operations 

•  Load/store architecture 
•  CISC: register-memory and memory-memory 

•  Few memory addressing modes 
•  CISC: many modes 

•  Fixed-length instruction format 
•  CISC: many formats and lengths 

•  Reliance on compiler optimizations 
•  CISC: hand assemble to get good performance 

•  Many registers (compilers are better at using them) 
•  CISC: few registers 

CIS 501 (Martin): Instruction Set Architectures 54 

CISCs and RISCs 

•  The CISCs: x86, VAX (Virtual Address eXtension to PDP-11) 
•  Variable length instructions: 1-321 bytes!!! 
•  14 registers + PC + stack-pointer + condition codes 
•  Data sizes: 8, 16, 32, 64, 128 bit, decimal, string 
•  Memory-memory instructions for all data sizes 
•  Special insns: crc, insque, polyf, and a cast of hundreds 
•  x86: “Difficult to explain and impossible to love” 

•  The RISCs: MIPS, PA-RISC, SPARC, PowerPC, Alpha, ARM 
•  32-bit instructions 
•  32 integer registers, 32 floating point registers, load-store 
•  64-bit virtual address space 
•  Few addressing modes (Alpha has one, SPARC/PowerPC have more) 
•  Why so many basically similar ISAs?  Everyone wanted their own  
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The Debate 
•  RISC argument 

•  CISC is fundamentally handicapped 
•  For a given technology, RISC implementation will be better (faster) 

•  Current technology enables single-chip RISC 
•  When it enables single-chip CISC, RISC will be pipelined 
•  When it enables pipelined CISC, RISC will have caches 
•  When it enables CISC with caches, RISC will have next thing... 

•  CISC rebuttal  
•  CISC flaws not fundamental, can be fixed with more transistors 
•  Moore’s Law will narrow the RISC/CISC gap (true) 

•  Good pipeline: RISC = 100K transistors, CISC = 300K 
•  By 1995: 2M+ transistors had evened playing field 

•  Software costs dominate, compatibility is paramount 
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Current Winner (Volume): RISC 

•  ARM (Acorn RISC Machine ! Advanced RISC Machine) 
•  First ARM chip in mid-1980s (from Acorn Computer Ltd). 
•  1.2 billion units sold in 2004 (>50% of all 32/64-bit CPUs) 
•  Low-power and embedded devices (iPod, for example) 

•  Significance of embedded? ISA compatibility less powerful force 

•  32-bit RISC ISA 
•  16 registers, PC is one of them 
•  Many addressing modes, e.g., auto increment 
•  Condition codes, each instruction can be conditional 

•  Multiple implementations 
•  X-scale (design was DEC’s, bought by Intel, sold to Marvel) 
•  Others: Freescale (was Motorola), Texas Instruments, 

STMicroelectronics, Samsung, Sharp, Philips, etc. 
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Current Winner (Revenue): CISC 
•  x86 was first 16-bit microprocessor by ~2 years 

•  IBM put it into its PCs because there was no competing choice 
•  Rest is historical inertia and “financial feedback” 

•  x86 is most difficult ISA to implement and do it fast but… 
•  Because Intel sells the most non-embedded processors… 
•  It has the most money…  
•  Which it uses to hire more and better engineers… 
•  Which it uses to maintain competitive performance … 
•  And given competitive performance, compatibility wins… 
•  So Intel sells the most non-embedded processors… 

•  AMD as a competitor keeps pressure on x86 performance 

•  Moore’s law has helped Intel in a big way 
•  Most engineering problems can be solved with more transistors 
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Intel’s Compatibility Trick: RISC Inside 
•  1993: Intel wanted out-of-order execution in Pentium Pro 

•  Hard to do with a coarse grain ISA like x86 

•  Solution? Translate x86 to RISC µops in hardware 
push $eax  
becomes (we think, uops are proprietary) 
store $eax, -4($esp)  
addi $esp,$esp,-4 

+  Processor maintains x86 ISA externally for compatibility 
+  But executes RISC µISA internally for implementability 
•  Given translator, x86 almost as easy to implement as RISC 

•  Intel implemented out-of-order before any RISC company 
•  Also, OoO also benefits x86 more (because ISA limits compiler) 

•  Idea co-opted by other x86 companies: AMD and Transmeta 
•  Different µops for different designs 

•  Not part of the ISA specification, not publically disclosed 

Potential Micro-op Scheme (1 of 2) 

•  Most instructions are a single micro-op 
•  Add, xor, compare, branch, etc. 
•  Loads   example:    mov -4(%rax), %ebx 
•  Stores   example:   mov %ebx, -4(%rax) 

•  Each memory operation adds a micro-op 
•  “addl -4(%rax), %ebx” is two micro-ops (load, add) 
•  “addl %ebx, -4(%rax)” is three micro-ops (load, add, store) 

•  What about address generation? 
•  Simple address generation is generally part of single micro-op 

•  Sometime store addresses are calculated separately 
•  More complicated (scaled addressing) might be separate micro-op 
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Potential Micro-op Scheme (2 of 2) 

•  Function call (CALL) – 4 uops 
•  Get program counter, store program counter to stack,  

adjust stack pointer, unconditional jump to function start  

•  Return from function (RET) – 3 uops  
•  Adjust stack pointer, load return address from stack, 

jump to return address 

•  Other operations 
•  String manipulations instructions 

•  For example STOS is around six micro-ops, etc. 

•  Again, this is just a basic idea (and what we will use in our 
assignments), the exact micro-ops are specific to each chip 
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More About Micro-ops 

•  Two forms of hardware translation 
•  Hard-coded logic: fast, but complex 
•  Table: slow, but “off to the side”, doesn’t complicate rest of machine 

•  x86: average ~1.6 µops / x86 insn 
•  Logic for common insns that translate into 1–4 µops 
•  Table for rare insns that translate into 5+ µops 

•  x86-64: average ~1.1 µops / x86 insn 
•  More registers (can pass parameters too), fewer pushes/pops 
•  Core2: logic for 1–2 µops, table for 3+ µops?  

•  More recent: “macro-op fusion” and “micro-op fusion” 
•  Intel’s recent processors fuse certain instruction pairs 
•  Macro-op fusion: fuses “compare” and “branch” instructions 
•  Micro-op fusion: fuses load/add pairs, fuses store “address” & “data” 
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Ultimate Compatibility Trick 

•  Support old ISA by… 
•  …having a simple processor for that ISA somewhere in the system 
•  How first Itanium supported x86 code 

•  x86 processor (comparable to Pentium) on chip 
•  How PlayStation2 supported PlayStation games 

•  Used PlayStation processor for I/O chip & emulation 
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Translation and Virtual ISAs 

•  New compatibility interface: ISA + translation software 
•  Binary-translation: transform static image, run native 
•  Emulation: unmodified image, interpret each dynamic insn 

•  Typically optimized with just-in-time (JIT) compilation 
•  Examples: FX!32 (x86 on Alpha), Rosetta (PowerPC on x86) 
•  Performance overheads reasonable (many recent advances) 

•  Virtual ISAs: designed for translation, not direct execution 
•  Target for high-level compiler (one per language) 
•  Source for low-level translator (one per ISA) 
•  Goals: Portability (abstract hardware nastiness), flexibility over time 
•  Examples: Java Bytecodes, C# CLR (Common Language Runtime) 

NVIDIA’s “PTX” 
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Transmeta’s Take: Code Morphing 

•  Code morphing: x86 translation in software 
•  Crusoe was an x86 emulator, no actual x86 hardware anywhere 
•  Only “code morphing” translation software written in native ISA 
•  Native ISA is invisible to applications and even OS 
•  Different Crusoe versions have (slightly) different ISAs: can’t tell 

•  How was it done? 
•  Code morphing software resides in boot read-only memory (ROM) 
•  On startup, hijacks 16MB of main memory 
•  Translator loaded into 512KB, rest is translation cache 
•  Software starts running in interpreter mode 
•  Interpreter profiles to find “hot” regions: procedures, loops 
•  Hot region compiled to native, optimized, cached 
•  Gradually, more and more of application starts running native 
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Post-RISC: VLIW and EPIC 

•  ISAs explicitly targeted for multiple-issue (superscalar) cores 
•  VLIW: Very Long Insn Word 
•  Later rebranded as “EPIC”: Explicitly Parallel Insn Computing 

•  Intel/HP IA64 (Itanium): 2000 
•  EPIC: 128-bit 3-operation bundles 
•  128 64-bit registers 
+  Some neat features: Full predication, explicit cache control 

•  Predication: every instruction is conditional (to avoid branches) 
–  But lots of difficult to use baggage as well: software speculation 

•  Every new ISA feature suggested in last two decades 
–  Relies on younger (less mature) compiler technology 
–  Not doing well commercially 
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Redux: Are ISAs Important? 

•  Does “quality” of ISA actually matter? 
•  Not for performance (mostly) 

•  Mostly comes as a design complexity issue 
•  Insn/program: everything is compiled, compilers are good   
•  Cycles/insn and seconds/cycle: µISA, many other tricks 

•  What about power efficiency?  Maybe 
•  ARMs are most power efficient today… 

•  …but Intel is moving x86 that way (e.g, Intel’s Atom) 
•  Open question: can x86 be as power efficient as ARM?  

•  Does “nastiness” of ISA matter? 
•  Mostly no, only compiler writers and hardware designers see it 

•  Even compatibility is not what it used to be 
•  Software emulation 
•  Open question: will “ARM compatibility” be the next x86? 
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Summary 

•  What is an ISA? 
•  A functional contract 

•  All ISAs similar in high-level ways 
•  But many design choices in details 
•  Two “philosophies”: CISC/RISC 

•  Difference is blurring 

•  Good ISA enables high-performance 
•  At least doesn’t get in the way 

•  Compatibility is a powerful force 
•  Tricks: binary translation, µISAs  


