
CIS 501 (Martin): Virtual Memory 1

CIS 501
Computer Architecture

Unit 6: Virtual Memory

Slides originally developed by Amir Roth with contributions by Milo Martin
at University of Pennsylvania with sources that included University of
Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood.

CIS 501 (Martin): Virtual Memory 2

This Unit: Virtual Memory

•  The operating system (OS)
•  A super-application
•  Hardware support for an OS

•  Virtual memory
•  Page tables and address translation
•  TLBs and memory hierarchy issues

CPU Mem I/O

System software
App App App

CIS 501 (Martin): Virtual Memory 3

Readings

•  Textbook (MA:FSPTCM)
•  Section 2.3, 6.1.1

CIS 501 (Martin): Virtual Memory 4

A Computer System: Hardware
•  CPUs and memories

•  Connected by memory bus

•  I/O peripherals: storage, input, display, network, …
•  With separate or built-in DMA
•  Connected by system bus (which is connected to memory bus)

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) bus Memory bus

CPU/$

bridge

CPU/$

CIS 501 (Martin): Virtual Memory 5

A Computer System: + App Software

•  Application software: computer must do something

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) bus Memory bus

CPU/$

bridge

CPU/$

Application sofware

CIS 501 (Martin): Virtual Memory 6

A Computer System: + OS

•  Operating System (OS): virtualizes hardware for apps
•  Abstraction: provides services (e.g., threads, files, etc.)

+ Simplifies app programming model, raw hardware is nasty
•  Isolation: gives each app illusion of private CPU, memory, I/O

+ Simplifies app programming model
+ Increases hardware resource utilization

Memory

Disk
kbd

DMA DMA

display NIC

I/O ctrl

System (I/O) bus Memory bus

CPU/$

bridge

CPU/$

OS
Application Application Application Application

CIS 501 (Martin): Virtual Memory 7

Operating System (OS) and User Apps
•  Sane system development requires a split

•  Hardware itself facilitates/enforces this split

•  Operating System (OS): a super-privileged process
•  Manages hardware resource allocation/revocation for all processes
•  Has direct access to resource allocation features
•  Aware of many nasty hardware details
•  Aware of other processes
•  Talks directly to input/output devices (device driver software)

•  User-level apps: ignorance is bliss
•  Unaware of most nasty hardware details
•  Unaware of other apps (and OS)
•  Explicitly denied access to resource allocation features

CIS 501 (Martin): Virtual Memory 8

System Calls

•  Controlled transfers to/from OS

•  System Call: a user-level app “function call” to OS
•  Leave description of what you want done in registers
•  SYSCALL instruction (also called TRAP or INT)

•  Can’t allow user-level apps to invoke arbitrary OS code
•  Restricted set of legal OS addresses to jump to (trap vector)

•  Processor jumps to OS using trap vector
•  Sets privileged mode

•  OS performs operation
•  OS does a “return from system call”

•  Unsets privileged mode

CIS 501 (Martin): Virtual Memory 9

Interrupts

•  Exceptions: synchronous, generated by running app
•  E.g., illegal insn, divide by zero, etc.

•  Interrupts: asynchronous events generated externally
•  E.g., timer, I/O request/reply, etc.

•  “Interrupt” handling: same mechanism for both
•  “Interrupts” are on-chip signals/bits

•  Either internal (e.g., timer, exceptions) or from I/O devices
•  Processor continuously monitors interrupt status, when one is high…
•  Hardware jumps to some preset address in OS code (interrupt vector)
•  Like an asynchronous, non-programmatic SYSCALL

•  Timer: programmable on-chip interrupt
•  Initialize with some number of micro-seconds
•  Timer counts down and interrupts when reaches 0

CIS 501 (Martin): Virtual Memory 10

Virtualizing Processors
•  How do multiple apps (and OS) share the processors?

•  Goal: applications think there are an infinite # of processors

•  Solution: time-share the resource
•  Trigger a context switch at a regular interval (~1ms)

•  Pre-emptive: app doesn’t yield CPU, OS forcibly takes it
+ Stops greedy apps from starving others

•  Architected state: PC, registers
•  Save and restore them on context switches
•  Memory state?

•  Non-architected state: caches, predictor tables, etc.
•  Ignore or flush

•  Operating responsible to handle context switching
•  Hardware support is just a timer interrupt

CIS 501 (Martin): Virtual Memory 11

Virtualizing Main Memory

•  How do multiple apps (and the OS) share main memory?
•  Goal: each application thinks it has infinite memory

•  One app may want more memory than is in the system
•  App’s insn/data footprint may be larger than main memory
•  Requires main memory to act like a cache

•  With disk as next level in memory hierarchy (slow)
•  Write-back, write-allocate, large blocks or “pages”

•  No notion of “program not fitting” in registers or caches (why?)

•  Solution:
•  Part #1: treat memory as a “cache”

•  Store the overflowed blocks in “swap” space on disk
•  Part #2: add a level of indirection (address translation)

CIS 501 (Martin): Virtual Memory 12

Virtual Memory (VM)
•  Programs use virtual addresses (VA)

•  0…2N–1
•  VA size also referred to as machine size
•  E.g., 32-bit (embedded) or 64-bit (server)

•  Memory uses physical addresses (PA)
•  0…2M–1 (typically M<N, especially if N=64)
•  2M is most physical memory machine supports

•  VA!PA at page granularity (VP!PP)
•  By “system”
•  Mapping need not preserve contiguity
•  VP need not be mapped to any PP
•  Unmapped VPs live on disk (swap)

…

…

 Disk

Program

Main Memory

code heap stack

CIS 501 (Martin): Virtual Memory 13

Virtual Memory (VM)

•  Virtual Memory (VM):
•  Level of indirection
•  Application generated addresses are virtual addresses (VAs)

•  Each process thinks it has its own 2N bytes of address space
•  Memory accessed using physical addresses (PAs)
•  VAs translated to PAs at some coarse granularity (page)
•  OS controls VA to PA mapping for itself and all other processes
•  Logically: translation performed before every insn fetch, load, store
•  Physically: hardware acceleration removes translation overhead

…
OS

…
App1

…
App2

VAs

PAs (physical memory)

OS controlled VA!PA mappings

CIS 501 (Martin): Virtual Memory 14

Disk

Virtual Memory (VM)
•  Programs use virtual addresses (VA)

•  VA size (N) aka machine size (e.g., Core 2 Duo: 48-bit)

•  Memory uses physical addresses (PA)
•  PA size (M) typically M<N, especially if N=64
•  2M is most physical memory machine supports

•  VA!PA at page granularity (VP!PP)
•  Mapping need not preserve contiguity
•  VP need not be mapped to any PP
•  Unmapped VPs live on disk (swap) or nowhere (if not yet touched)

…
OS

…
App1

…
App2

CIS 501 (Martin): Virtual Memory 15

VM is an Old Idea: Older than Caches
•  Original motivation: single-program compatibility

•  IBM System 370: a family of computers with one software suite
+  Same program could run on machines with different memory sizes
–  Prior, programmers explicitly accounted for memory size

•  But also: full-associativity + software replacement
•  Memory tmiss is high: extremely important to reduce %miss

Parameter I$/D$ L2 Main Memory

thit 2ns 10ns 30ns

tmiss 10ns 30ns 10ms (10M ns)

Capacity 8–64KB 128KB–2MB 64MB–64GB

Block size 16–32B 32–256B 4+KB

Assoc./Repl. 1–4, LRU 4–16, LRU Full, “working set”

CIS 501 (Martin): Virtual Memory 16

Uses of Virtual Memory
•  More recently: isolation and multi-programming

•  Each app thinks it has 2N B of memory, its stack starts 0xFFFFFFFF,…
•  Apps prevented from reading/writing each other’s memory

•  Can’t even address the other program’s memory!

•  Protection
•  Each page with a read/write/execute permission set by OS
•  Enforced by hardware

•  Inter-process communication.
•  Map same physical pages into multiple virtual address spaces
•  Or share files via the UNIX mmap() call

…
OS

…
App1

…
App2

CIS 501 (Martin): Virtual Memory 17

Address Translation

•  VA!PA mapping called address translation
•  Split VA into virtual page number (VPN) & page offset (POFS)
•  Translate VPN into physical page number (PPN)
•  POFS is not translated
•  VA!PA = [VPN, POFS] ! [PPN, POFS]

•  Example above
•  64KB pages ! 16-bit POFS
•  32-bit machine ! 32-bit VA ! 16-bit VPN
•  Maximum 256MB memory ! 28-bit PA ! 12-bit PPN

POFS[15:0] virtual address[31:0] VPN[31:16]

POFS[15:0] physical address[25:0] PPN[27:16]
translate don’t touch

CIS 501 (Martin): Virtual Memory 18

Address Translation Mechanics I
•  How are addresses translated?

•  In software (for now) but with hardware acceleration (a little later)

•  Each process allocated a page table (PT)
•  Software data structure constructed by OS
•  Maps VPs to PPs or to disk (swap) addresses

•  VP entries empty if page never referenced
•  Translation is table lookup

struct {
 int ppn;
 int is_valid, is_dirty, is_swapped;
} PTE;
struct PTE page_table[NUM_VIRTUAL_PAGES];

int translate(int vpn) {
 if (page_table[vpn].is_valid)
 return page_table[vpn].ppn;
}

PT

vp
n

Disk(swap)

CIS 501 (Martin): Virtual Memory 19

Page Table Size
•  How big is a page table on the following machine?

•  32-bit machine
•  4B page table entries (PTEs)
•  4KB pages

•  32-bit machine ! 32-bit VA ! 4GB virtual memory
•  4GB virtual memory / 4KB page size ! 1M VPs
•  1M VPs * 4B PTE ! 4MB

•  How big would the page table be with 64KB pages?
•  How big would it be for a 64-bit machine?

•  Page tables can get big
•  There are ways of making them smaller

CIS 501 (Martin): Virtual Memory 20

Multi-Level Page Table (PT)
•  One way: multi-level page tables

•  Tree of page tables (“trie”)
•  Lowest-level tables hold PTEs
•  Upper-level tables hold pointers to lower-level tables
•  Different parts of VPN used to index different levels

•  Example: two-level page table for machine on last slide
•  Compute number of pages needed for lowest-level (PTEs)

•  4KB pages / 4B PTEs ! 1K PTEs/page
•  1M PTEs / (1K PTEs/page) ! 1K pages

•  Compute number of pages needed for upper-level (pointers)
•  1K lowest-level pages ! 1K pointers
•  1K pointers * 32-bit VA ! 4KB ! 1 upper level page

CIS 501 (Martin): Virtual Memory 21

Multi-Level Page Table (PT)

•  20-bit VPN
•  Upper 10 bits index 1st-level table
•  Lower 10 bits index 2nd-level table

1st-level
“pointers”

2nd-level
PTEs

VPN[9:0] VPN[19:10]

struct {
 int ppn;
 int is_valid, is_dirty, is_swapped;
} PTE;
struct { struct PTE ptes[1024]; } L2PT;
struct L2PT *page_table[1024];

int translate(int vpn) {
 index1 = (vpn >> 10); // upper 10 bits
 index2 = (vpn & 0x3ff); // lower 10 bits
 struct L2PT *l2pt = page_table[index1];
 if (l2pt != NULL &&
 l2pt->ptes[index2].is_valid)
 return l2pt->ptes[index2].ppn;
}

pt “root”

CIS 501 (Martin): Virtual Memory 22

Multi-Level Page Table (PT)

•  Have we saved any space?
•  Isn’t total size of 2nd level tables same as single-level

table (i.e., 4MB)?
•  Yes, but…

•  Large virtual address regions unused
•  Corresponding 2nd-level tables need not exist
•  Corresponding 1st-level pointers are null

•  Example: 2MB code, 64KB stack, 16MB heap
•  Each 2nd-level table maps 4MB of virtual addresses
•  1 for code, 1 for stack, 4 for heap, (+1 1st-level)
•  7 total pages = 28KB (much less than 4MB)

CIS 501 (Martin): Virtual Memory 23

Page-Level Protection

•  Page-level protection
•  Piggy-back page-table mechanism
•  Map VPN to PPN + Read/Write/Execute permission bits
•  Attempt to execute data, to write read-only data?

•  Exception ! OS terminates program
•  Useful (for OS itself actually)

struct {
 int ppn;
 int is_valid, is_dirty, is_swapped, permissions;
} PTE;
struct PTE page_table[NUM_VIRTUAL_PAGES];

int translate(int vpn, int action) {
 if (page_table[vpn].is_valid &&
 !(page_table [vpn].permissions & action)) kill;
 …
}

CIS 501 (Martin): Virtual Memory 24

Address Translation Mechanics II
•  Conceptually

•  Translate VA to PA before every cache access
•  Walk the page table before every load/store/insn-fetch
–  Would be terribly inefficient (even in hardware)

•  In reality
•  Translation Lookaside Buffer (TLB): cache translations
•  Only walk page table on TLB miss

•  Hardware truisms
•  Functionality problem? Add indirection (e.g., VM)
•  Performance problem? Add cache (e.g., TLB)

CIS 501 (Martin): Virtual Memory 25

Translation Lookaside Buffer

•  Translation lookaside buffer (TLB)
•  Small cache: 16–64 entries
•  Associative (4+ way or fully associative)
+  Exploits temporal locality in page table
•  What if an entry isn’t found in the TLB?

•  Invoke TLB miss handler

VPN PPN
VPN PPN
VPN PPN

“tag” “data”

CPU

D$

L2

Main
Memory

I$

TLB
VA

PA
TLB

CIS 501 (Martin): Virtual Memory 26

Serial TLB & Cache Access
•  “Physical” caches

•  Indexed and tagged by physical addresses
+  Natural, “lazy” sharing of caches between apps/OS

•  VM ensures isolation (via physical addresses)
•  No need to do anything on context switches
•  Multi-threading works too

+  Cached inter-process communication works
•  Single copy indexed by physical address

–  Slow: adds at least one cycle to thit

•  Note: TLBs are by definition “virtual”
•  Indexed and tagged by virtual addresses
•  Flush across context switches
•  Or extend with process identifier tags (x86)

CPU

D$

L2

Main
Memory

I$

TLB
VA

PA
TLB

CIS 501 (Martin): Virtual Memory 27

Parallel TLB & Cache Access

•  Two ways to look at VA
•  Cache: tag+index+offset
•  TLB: VPN+page offset

•  Parallel cache/TLB…
•  If address translation

doesn’t change index
•  That is, VPN/index

must not overlap

[4:0] virtual tag [31:12]

data

index [11:5]

address

==

TLB hit/miss

==

==
==

VPN [31:16] page offset [15:0]

cache

TLB

cache hit/miss

tags data

CIS 501 (Martin): Virtual Memory 28

Parallel TLB & Cache Access

•  What about parallel access?
•  Only if…

(cache size) / (associativity) ! page size
•  Index bits same in virt. and physical addresses!

•  Access TLB in parallel with cache
•  Cache access needs tag only at very end
+  Fast: no additional thit cycles

+  No context-switching/aliasing problems
•  Dominant organization used today

•  Example: Core 2, 4KB pages,
32KB, 8-way SA L1 data cache
•  Implication: associativity allows bigger caches

CPU

D$

L2

Main
Memory

I$ TLB
VA
PA TLB

[4:0] tag [31:12] index [11:5]
VPN [31:16] page offset [15:0]

?

page offset [15:0] PPN[27:16]

CIS 501 (Martin): Virtual Memory 29

TLB Organization

•  Like caches: TLBs also have ABCs
•  Capacity
•  Associativity (At least 4-way associative, fully-associative common)
•  What does it mean for a TLB to have a block size of two?

•  Two consecutive VPs share a single tag
•  Like caches: there can be L2 TLBs

•  Example: AMD Opteron
•  32-entry fully-assoc. TLBs, 512-entry 4-way L2 TLB (insn & data)
•  4KB pages, 48-bit virtual addresses, four-level page table

•  Rule of thumb: TLB should “cover” L2 contents
•  In other words: (#PTEs in TLB) * page size ! L2 size
•  Why? Consider relative miss latency in each…

CIS 501 (Martin): Virtual Memory 30

TLB Misses

•  TLB miss: translation not in TLB, but in page table
•  Two ways to “fill” it, both relatively fast

•  Software-managed TLB: e.g., Alpha, MIPS
•  Short (~10 insn) OS routine walks page table, updates TLB
+  Keeps page table format flexible
–  Latency: one or two memory accesses + OS call (pipeline flush)

•  Hardware-managed TLB: e.g., x86, recent SPARC, ARM
•  Page table root in hardware register, hardware “walks” table
+  Latency: saves cost of OS call (avoids pipeline flush)
–  Page table format is hard-coded

•  Trend is towards hardware TLB miss handler

CIS 501 (Martin): Virtual Memory 31

Page Faults

•  Page fault: PTE not in TLB or page table
•  ! page not in memory
•  Or no valid mapping ! segmentation fault
•  Starts out as a TLB miss, detected by OS/hardware handler

•  OS software routine:
•  Choose a physical page to replace

•  “Working set”: refined LRU, tracks active page usage
•  If dirty, write to disk
•  Read missing page from disk

•  Takes so long (~10ms), OS schedules another task
•  Requires yet another data structure: frame map

•  Maps physical pages to <process, virtual page> pairs
•  Treat like a normal TLB miss from here

Summary

•  OS virtualizes memory and I/O devices

•  Virtual memory
•  “infinite” memory, isolation, protection, inter-process communication
•  Page tables
•  Translation buffers

•  Parallel vs serial access, interaction with caching
•  Page faults

CIS 501 (Martin): Virtual Memory 32

