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CIS 501 
Computer Architecture 

Unit 6: Virtual Memory 

Slides originally developed by Amir Roth with contributions by Milo Martin 
at University of Pennsylvania with sources that included University of 
Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood. 
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This Unit: Virtual Memory 

•  The operating system (OS) 
•  A super-application 
•  Hardware support for an OS 

•  Virtual memory 
•  Page tables and address translation 
•  TLBs and memory hierarchy issues 
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Readings 

•  Textbook (MA:FSPTCM) 
•  Section 2.3, 6.1.1 
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A Computer System: Hardware 
•  CPUs and memories  

•  Connected by memory bus 

•  I/O peripherals: storage, input, display, network, … 
•  With separate or built-in DMA  
•  Connected by system bus (which is connected to memory bus) 
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A Computer System: + App Software 

•  Application software: computer must do something 
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A Computer System: + OS 

•  Operating System (OS): virtualizes hardware for apps 
•  Abstraction: provides services (e.g., threads, files, etc.) 

+ Simplifies app programming model, raw hardware is nasty 
•  Isolation: gives each app illusion of private CPU, memory, I/O 

+ Simplifies app programming model 
+ Increases hardware resource utilization 
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Operating System (OS) and User Apps 
•  Sane system development requires a split 

•  Hardware itself facilitates/enforces this split 

•  Operating System (OS): a super-privileged process 
•  Manages hardware resource allocation/revocation for all processes 
•  Has direct access to resource allocation features 
•  Aware of many nasty hardware details 
•  Aware of other processes 
•  Talks directly to input/output devices (device driver software) 

•  User-level apps: ignorance is bliss 
•  Unaware of most nasty hardware details 
•  Unaware of other apps (and OS) 
•  Explicitly denied access to resource allocation features 
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System Calls 

•  Controlled transfers to/from OS 

•  System Call: a user-level app “function call” to OS 
•  Leave description of what you want done in registers 
•  SYSCALL instruction (also called TRAP or INT) 

•  Can’t allow user-level apps to invoke arbitrary OS code  
•  Restricted set of legal OS addresses to jump to (trap vector) 

•  Processor jumps to OS using trap vector 
•  Sets privileged mode 

•  OS performs operation 
•  OS does a “return from system call” 

•  Unsets privileged mode 
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Interrupts 

•  Exceptions: synchronous, generated by running app 
•  E.g., illegal insn, divide by zero, etc. 

•  Interrupts: asynchronous events generated externally 
•  E.g., timer, I/O request/reply, etc. 

•  “Interrupt” handling: same mechanism for both 
•  “Interrupts” are on-chip signals/bits 

•  Either internal (e.g., timer, exceptions) or from I/O devices 
•  Processor continuously monitors interrupt status, when one is high… 
•  Hardware jumps to some preset address in OS code (interrupt vector) 
•  Like an asynchronous, non-programmatic SYSCALL 

•  Timer: programmable on-chip interrupt 
•  Initialize with some number of micro-seconds 
•  Timer counts down and interrupts when reaches 0 
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Virtualizing Processors 
•  How do multiple apps (and OS) share the processors? 

•  Goal: applications think there are an infinite # of processors 

•  Solution: time-share the resource 
•  Trigger a context switch at a regular interval (~1ms) 

•  Pre-emptive: app doesn’t yield CPU, OS forcibly takes it 
+ Stops greedy apps from starving others 

•  Architected state: PC, registers 
•  Save and restore them on context switches 
•  Memory state? 

•  Non-architected state: caches, predictor tables, etc. 
•  Ignore or flush 

•  Operating responsible to handle context switching 
•  Hardware support is just a timer interrupt 
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Virtualizing Main Memory 

•  How do multiple apps (and the OS) share main memory? 
•  Goal: each application thinks it has infinite memory  

•  One app may want more memory than is in the system 
•  App’s insn/data footprint may be larger than main memory 
•  Requires main memory to act like a cache  

•  With disk as next level in memory hierarchy (slow) 
•  Write-back, write-allocate, large blocks or “pages” 

•  No notion of “program not fitting” in registers or caches (why?)  

•  Solution:  
•  Part #1: treat memory as a “cache” 

•  Store the overflowed blocks in “swap” space on disk 
•  Part #2: add a level of indirection (address translation) 
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Virtual Memory (VM) 
•  Programs use virtual addresses (VA) 

•  0…2N–1 
•  VA size also referred to as machine size 
•  E.g., 32-bit (embedded) or 64-bit (server) 

•  Memory uses physical addresses (PA) 
•  0…2M–1 (typically M<N, especially if N=64) 
•  2M is most physical memory machine supports 

•  VA!PA at page granularity (VP!PP) 
•  By “system” 
•  Mapping need not preserve contiguity 
•  VP need not be mapped to any PP 
•  Unmapped VPs live on disk (swap) 
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Virtual Memory (VM) 

•  Virtual Memory (VM): 
•  Level of indirection 
•  Application generated addresses are virtual addresses (VAs) 

•  Each process thinks it has its own 2N bytes of address space 
•  Memory accessed using physical addresses (PAs) 
•  VAs translated to PAs at some coarse granularity (page) 
•  OS controls VA to PA mapping for itself and all other processes 
•  Logically: translation performed before every insn fetch, load, store 
•  Physically: hardware acceleration removes translation overhead 

… 
OS 

… 
App1 

… 
App2 

VAs 

PAs (physical memory) 

OS controlled VA!PA mappings 

CIS 501 (Martin): Virtual Memory 14 

Disk 

Virtual Memory (VM) 
•  Programs use virtual addresses (VA) 

•  VA size (N) aka machine size (e.g., Core 2 Duo: 48-bit) 

•  Memory uses physical addresses (PA) 
•  PA size (M) typically M<N, especially if N=64 
•  2M is most physical memory machine supports 

•  VA!PA at page granularity (VP!PP) 
•  Mapping need not preserve contiguity 
•  VP need not be mapped to any PP 
•  Unmapped VPs live on disk (swap) or nowhere (if not yet touched) 
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VM is an Old Idea: Older than Caches 
•  Original motivation: single-program compatibility 

•  IBM System 370: a family of computers with one software suite 
+  Same program could run on machines with different memory sizes 
–  Prior, programmers explicitly accounted for memory size 

•  But also: full-associativity + software replacement 
•  Memory tmiss is high: extremely important to reduce %miss 

Parameter I$/D$ L2 Main Memory 

thit 2ns 10ns 30ns 

tmiss 10ns 30ns 10ms (10M ns) 

Capacity 8–64KB 128KB–2MB 64MB–64GB 

Block size 16–32B 32–256B 4+KB 

Assoc./Repl. 1–4, LRU 4–16, LRU Full, “working set” 
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Uses of Virtual Memory 
•  More recently: isolation and multi-programming 

•  Each app thinks it has 2N B of memory, its stack starts 0xFFFFFFFF,… 
•  Apps prevented from reading/writing each other’s memory 

•  Can’t even address the other program’s memory! 

•  Protection 
•  Each page with a read/write/execute permission set by OS 
•  Enforced by hardware 

•  Inter-process communication. 
•  Map same physical pages into multiple virtual address spaces 
•  Or share files via the UNIX mmap() call 
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Address Translation 

•  VA!PA mapping called address translation 
•  Split VA into virtual page number (VPN) & page offset (POFS) 
•  Translate VPN into physical page number (PPN) 
•  POFS is not translated 
•  VA!PA = [VPN, POFS] ! [PPN, POFS] 

•  Example above 
•  64KB pages ! 16-bit POFS 
•  32-bit machine ! 32-bit VA ! 16-bit VPN  
•  Maximum 256MB memory ! 28-bit PA ! 12-bit PPN 

POFS[15:0] virtual address[31:0] VPN[31:16] 

POFS[15:0] physical address[25:0] PPN[27:16] 
translate don’t touch 
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Address Translation Mechanics I 
•  How are addresses translated? 

•  In software (for now) but with hardware acceleration (a little later) 

•  Each process allocated a page table (PT) 
•  Software data structure constructed by OS 
•  Maps VPs to PPs or to disk (swap) addresses 

•  VP entries empty if page never referenced 
•  Translation is table lookup 

struct { 
   int ppn; 
   int is_valid, is_dirty, is_swapped; 
} PTE; 
struct PTE page_table[NUM_VIRTUAL_PAGES]; 

int translate(int vpn) { 
  if (page_table[vpn].is_valid) 
     return page_table[vpn].ppn;  
} 

PT 

vp
n 

Disk(swap) 
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Page Table Size 
•  How big is a page table on the following machine? 

•  32-bit machine 
•  4B page table entries (PTEs) 
•  4KB pages 

•  32-bit machine ! 32-bit VA ! 4GB virtual memory 
•  4GB virtual memory / 4KB page size ! 1M VPs 
•  1M VPs * 4B PTE ! 4MB 

•  How big would the page table be with 64KB pages? 
•  How big would it be for a 64-bit machine? 

•  Page tables can get big 
•  There are ways of making them smaller 
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Multi-Level Page Table (PT) 
•  One way: multi-level page tables 

•  Tree of page tables (“trie”) 
•  Lowest-level tables hold PTEs 
•  Upper-level tables hold pointers to lower-level tables 
•  Different parts of VPN used to index different levels 

•  Example: two-level page table for machine on last slide 
•  Compute number of pages needed for lowest-level (PTEs) 

•  4KB pages / 4B PTEs ! 1K PTEs/page 
•  1M PTEs / (1K PTEs/page) ! 1K pages 

•  Compute number of pages needed for upper-level (pointers) 
•  1K lowest-level pages ! 1K pointers 
•  1K pointers * 32-bit VA ! 4KB ! 1 upper level page 
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Multi-Level Page Table (PT) 

•  20-bit VPN 
•  Upper 10 bits index 1st-level table 
•  Lower 10 bits index 2nd-level table 

1st-level 
“pointers” 

2nd-level 
PTEs 

VPN[9:0] VPN[19:10] 

struct { 
   int ppn;  
   int is_valid, is_dirty, is_swapped; 
} PTE; 
struct { struct PTE ptes[1024]; } L2PT; 
struct L2PT *page_table[1024]; 

int translate(int vpn) { 
  index1 = (vpn >> 10);    // upper 10 bits 
  index2 = (vpn & 0x3ff);  // lower 10 bits   
  struct L2PT *l2pt = page_table[index1]; 
  if (l2pt != NULL &&  
      l2pt->ptes[index2].is_valid) 
    return l2pt->ptes[index2].ppn;  
} 

pt “root” 
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Multi-Level Page Table (PT) 

•  Have we saved any space? 
•  Isn’t total size of 2nd level tables same as single-level 

table (i.e., 4MB)? 
•  Yes, but… 

•  Large virtual address regions unused 
•  Corresponding 2nd-level tables need not exist 
•  Corresponding 1st-level pointers are null 

•  Example: 2MB code, 64KB stack, 16MB heap 
•  Each 2nd-level table maps 4MB of virtual addresses 
•  1 for code, 1 for stack, 4 for heap, (+1 1st-level) 
•  7 total pages = 28KB (much less than 4MB) 
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Page-Level Protection 

•  Page-level protection 
•  Piggy-back page-table mechanism 
•  Map VPN to PPN + Read/Write/Execute permission bits 
•  Attempt to execute data, to write read-only data? 

•  Exception ! OS terminates program 
•  Useful (for OS itself actually) 

struct { 
   int ppn;  
   int is_valid, is_dirty, is_swapped, permissions; 
} PTE; 
struct PTE page_table[NUM_VIRTUAL_PAGES]; 

int translate(int vpn, int action) { 
   if (page_table[vpn].is_valid &&  
       !(page_table [vpn].permissions & action)) kill;    
   … 
} 
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Address Translation Mechanics II 
•  Conceptually 

•  Translate VA to PA before every cache access 
•  Walk the page table before every load/store/insn-fetch 
–  Would be terribly inefficient (even in hardware) 

•  In reality 
•  Translation Lookaside Buffer (TLB): cache translations  
•  Only walk page table on TLB miss 

•  Hardware truisms 
•  Functionality problem? Add indirection (e.g., VM) 
•  Performance problem? Add cache (e.g., TLB) 
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Translation Lookaside Buffer 

•  Translation lookaside buffer (TLB) 
•  Small cache: 16–64 entries 
•  Associative (4+ way or fully associative)  
+  Exploits temporal locality in page table 
•  What if an entry isn’t found in the TLB? 

•  Invoke TLB miss handler 
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Serial TLB & Cache Access 
•  “Physical” caches 

•  Indexed and tagged by physical addresses 
+  Natural, “lazy” sharing of caches between apps/OS 

•  VM ensures isolation (via physical addresses) 
•  No need to do anything on context switches 
•  Multi-threading works too 

+  Cached inter-process communication works 
•  Single copy indexed by physical address 

–  Slow: adds at least one cycle to thit 

•  Note: TLBs are by definition “virtual” 
•  Indexed and tagged by virtual addresses 
•  Flush across context switches 
•  Or extend with process identifier tags (x86) 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

TLB 
VA 

PA 
TLB 

CIS 501 (Martin): Virtual Memory 27 

Parallel TLB & Cache Access 

•  Two ways to look at VA 
•  Cache: tag+index+offset 
•  TLB: VPN+page offset 

•  Parallel cache/TLB… 
•  If address translation 

doesn’t change index 
•  That is, VPN/index 

must not overlap 

[4:0]                 virtual tag [31:12] 

data 

index [11:5] 

address 

== 

TLB hit/miss 

== 

== 
== 

VPN [31:16] page offset [15:0] 

cache 

TLB 

cache hit/miss 

tags data 
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Parallel TLB & Cache Access 

•  What about parallel access?  
•  Only if…  

(cache size) / (associativity) ! page size  
•  Index bits same in virt. and physical addresses! 

•  Access TLB in parallel with cache  
•  Cache access needs tag only at very end 
+  Fast: no additional thit cycles 

+  No context-switching/aliasing problems  
•  Dominant organization used today 

•  Example: Core 2, 4KB pages,  
32KB, 8-way SA L1 data cache 
•  Implication: associativity allows bigger caches 
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TLB Organization 

•  Like caches: TLBs also have ABCs 
•  Capacity 
•  Associativity (At least 4-way associative, fully-associative common) 
•  What does it mean for a TLB to have a block size of two? 

•  Two consecutive VPs share a single tag 
•  Like caches: there can be L2 TLBs 

•  Example: AMD Opteron 
•  32-entry fully-assoc. TLBs, 512-entry 4-way L2 TLB (insn & data) 
•  4KB pages, 48-bit virtual addresses, four-level page table 

•  Rule of thumb: TLB should “cover” L2 contents 
•  In other words: (#PTEs in TLB) * page size ! L2 size 
•  Why? Consider relative miss latency in each… 
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TLB Misses 

•  TLB miss: translation not in TLB, but in page table 
•  Two ways to “fill” it, both relatively fast 

•  Software-managed TLB: e.g., Alpha, MIPS 
•  Short (~10 insn) OS routine walks page table, updates TLB 
+  Keeps page table format flexible 
–  Latency: one or two memory accesses + OS call (pipeline flush) 

•  Hardware-managed TLB: e.g., x86, recent SPARC, ARM 
•  Page table root in hardware register, hardware “walks” table 
+  Latency: saves cost of OS call (avoids pipeline flush) 
–  Page table format is hard-coded 

•  Trend is towards hardware TLB miss handler 
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Page Faults 

•  Page fault: PTE not in TLB or page table  
•  ! page not in memory 
•  Or no valid mapping ! segmentation fault 
•  Starts out as a TLB miss, detected by OS/hardware handler 

•  OS software routine: 
•  Choose a physical page to replace 

•  “Working set”: refined LRU, tracks active page usage 
•  If dirty, write to disk 
•  Read missing page from disk 

•  Takes so long (~10ms), OS schedules another task 
•  Requires yet another data structure: frame map 

•  Maps physical pages to <process, virtual page> pairs  
•  Treat like a normal TLB miss from here 

Summary 

•  OS virtualizes memory and I/O devices 

•  Virtual memory 
•  “infinite” memory, isolation, protection, inter-process communication 
•  Page tables 
•  Translation buffers 

•  Parallel vs serial access, interaction with caching 
•  Page faults 
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