
CIS 501 (Martin): Vectors 1

CIS 501
Computer Architecture

Unit 11: Vectors

Slides originally developed by Amir Roth with contributions by Milo Martin
at University of Pennsylvania with sources that included University of
Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood.

How to Compute This Fast?

•  Performing the same operations on many data items
•  Example: SAXPY

•  Instruction-level parallelism (ILP) - fine grained
•  Loop unrolling with static scheduling –or– dynamic scheduling
•  Wide-issue superscalar (non-)scaling limits benefits

•  Thread-level parallelism (TLP) - coarse grained
•  Multicore

•  Can we do some “medium grained” parallelism?

L1: ldf [X+r1]->f1 // I is in r1
 mulf f0,f1->f2 // A is in f0
 ldf [Y+r1]->f3
 addf f2,f3->f4
 stf f4->[Z+r1}
 addi r1,4->r1
 blti r1,4096,L1

for (I = 0; I < 1024; I++) {
 Z[I] = A*X[I] + Y[I];
}

2 CIS 501 (Martin): Vectors

Data-Level Parallelism
•  Data-level parallelism (DLP)

•  Single operation repeated on multiple data elements
•  SIMD (Single-Instruction, Multiple-Data)

•  Less general than ILP: parallel insns are all same operation
•  Exploit with vectors

•  Old idea: Cray-1 supercomputer from late 1970s
•  Eight 64-entry x 64-bit floating point “Vector registers”

•  4096 bits (0.5KB) in each register! 4KB for vector register file
•  Special vector instructions to perform vector operations

•  Load vector, store vector (wide memory operation)
•  Vector+Vector addition, subtraction, multiply, etc.
•  Vector+Constant addition, subtraction, multiply, etc.
•  In Cray-1, each instruction specifies 64 operations!

•  ALUs were expensive, did not perform 64 operations in parallel!

CIS 501 (Martin): Vectors 3

Today’s Vectors / SIMD

CIS 501 (Martin): Vectors 4

CIS 501 (Martin): Vectors 5

Example Vector ISA Extensions (SIMD)
•  Extend ISA with floating point (FP) vector storage …

•  Vector register: fixed-size array of 32- or 64- bit FP elements
•  Vector length: For example: 4, 8, 16, 64, …

•  … and example operations for vector length of 4
•  Load vector: ldf.v [X+r1]->v1

ldf [X+r1+0]->v10

ldf [X+r1+1]->v11

ldf [X+r1+2]->v12

ldf [X+r1+3]->v13

•  Add two vectors: addf.vv v1,v2->v3
addf v1i,v2i->v3i (where i is 0,1,2,3)

•  Add vector to scalar: addf.vs v1,f2,v3
addf v1i,f2->v3i (where i is 0,1,2,3)

•  Today’s vectors: short (128 bits), but fully parallel

CIS 501 (Martin): Vectors 6

Example Use of Vectors – 4-wide

•  Operations
•  Load vector: ldf.v [X+r1]->v1
•  Multiply vector to scalar: mulf.vs v1,f2->v3
•  Add two vectors: addf.vv v1,v2->v3
•  Store vector: stf.v v1->[X+r1]

•  Performance?
•  Best case: 4x speedup
•  But, vector instructions don’t always have single-cycle throughput

•  Execution width (implementation) vs vector width (ISA)

ldf [X+r1]->f1
mulf f0,f1->f2
ldf [Y+r1]->f3
addf f2,f3->f4
stf f4->[Z+r1]
addi r1,4->r1
blti r1,4096,L1

ldf.v [X+r1]->v1
mulf.vs v1,f0->v2
ldf.v [Y+r1]->v3
addf.vv v2,v3->v4
stf.v v4,[Z+r1]
addi r1,16->r1
blti r1,4096,L1

7x1024 instructions 7x256 instructions
(4x fewer instructions)

Vector Datapath & Implementatoin

•  Vector insn. are just like normal insn… only “wider”
•  Single instruction fetch (no extra N2 checks)
•  Wide register read & write (not multiple ports)
•  Wide execute: replicate floating point unit (same as superscalar)
•  Wide bypass (avoid N2 bypass problem)
•  Wide cache read & write (single cache tag check)

•  Execution width (implementation) vs vector width (ISA)
•  Example: Pentium 4 and “Core 1” executes vector ops at half width
•  “Core 2” executes them at full width

•  Because they are just instructions…
•  …superscalar execution of vector instructions
•  Multiple n-wide vector instructions per cycle

CIS 501 (Martin): Vectors 7 CIS 501 (Martin): Vectors 8

Intel’s SSE2/SSE3/SSE4…

•  Intel SSE2 (Streaming SIMD Extensions 2) - 2001
•  16 128bit floating point registers (xmm0–xmm15)
•  Each can be treated as 2x64b FP or 4x32b FP (“packed FP”)

•  Or 2x64b or 4x32b or 8x16b or 16x8b ints (“packed integer”)
•  Or 1x64b or 1x32b FP (just normal scalar floating point)

•  Original SSE: only 8 registers, no packed integer support

•  Other vector extensions
•  AMD 3DNow!: 64b (2x32b)
•  PowerPC AltiVEC/VMX: 128b (2x64b or 4x32b)

•  Looking forward for x86
•  Intel’s “Sandy Bridge” will bring 256-bit vectors to x86
•  Intel’s “Knights Ferry” multicore will bring 512-bit vectors to x86

CIS 501 (Martin): Vectors 9

Other Vector Instructions

•  These target specific domains: e.g., image processing, crypto
•  Vector reduction (sum all elements of a vector)
•  Geometry processing: 4x4 translation/rotation matrices
•  Saturating (non-overflowing) subword add/sub: image processing
•  Byte asymmetric operations: blending and composition in graphics
•  Byte shuffle/permute: crypto
•  Population (bit) count: crypto
•  Max/min/argmax/argmin: video codec
•  Absolute differences: video codec
•  Multiply-accumulate: digital-signal processing
•  Special instructions for AES encryption

•  More advanced (but in Intel’s Larrabee/Knights Ferry)
•  Scatter/gather loads: indirect store (or load) from a vector of pointers
•  Vector mask: predication (conditional execution) of specific elements

Using Vectors in Your Code

CIS 501 (Martin): Vectors 10

Using Vectors in Your Code

•  Write in assembly
•  Ugh

•  Use “intrinsic” functions and data types
•  For example: _mm_mul_ps() and “__m128” datatype

•  Use vector data types
•  typedef double v2df __attribute__ ((vector_size (16)));

•  Use a library someone else wrote
•  Let them do the hard work
•  Matrix and linear algebra packages

•  Let the compiler do it (automatic vectorization, with feedback)
•  GCC’s “-ftree-vectorize” option, -ftree-vectorizer-verbose=n
•  Limited impact for C/C++ code (old, hard problem)

11 CIS 501 (Martin): Vectors

SAXPY Example: Best Case

•  Code
void saxpy(float* x, float* y, !
 float* z, float a, !
 int length) {!
 for (int i = 0; i < length; i++) {!
 z[i] = a*x[i] + y[i];!
 }!
}!

•  Scalar
.L3:!
 movss (%rdi,%rax), %xmm1!
 mulss %xmm0, %xmm1!
 addss (%rsi,%rax), %xmm1!
 movss %xmm1, (%rdx,%rax)!
 addq $4, %rax!
 cmpq %rcx, %rax!
 jne .L3!

•  Auto Vectorized
.L6:!
 movaps (%rdi,%rax), %xmm1!
 mulps %xmm2, %xmm1!
 addps (%rsi,%rax), %xmm1!
 movaps %xmm1, (%rdx,%rax)!
 addq $16, %rax!
 incl %r8d!
 cmpl %r8d, %r9d!
 ja .L6!

•  + Scalar loop to handle
last few iterations (if
length % 4 != 0)

•  “mulps”: multiply
 packed ‘single’

CIS 501 (Martin): Vectors 12

SAXPY Example: Actual

•  Code
void saxpy(float* x, float* y, !
 float* z, float a, !
 int length) {!
 for (int i = 0; i < length; i++) {!
 z[i] = a*x[i] + y[i];!
 }!
}!

•  Scalar
.L3:!
 movss (%rdi,%rax), %xmm1!
 mulss %xmm0, %xmm1!
 addss (%rsi,%rax), %xmm1!
 movss %xmm1, (%rdx,%rax)!
 addq $4, %rax!
 cmpq %rcx, %rax!
 jne .L3!

•  Auto Vectorized
.L8:!
 movaps %xmm3, %xmm1!
 movaps %xmm3, %xmm2!
 movlps (%rdi,%rax), %xmm1!
 movlps (%rsi,%rax), %xmm2!
 movhps 8(%rdi,%rax), %xmm1!
 movhps 8(%rsi,%rax), %xmm2!
 mulps %xmm4, %xmm1!
 incl %r8d!
 addps %xmm2, %xmm1!
 movaps %xmm1, (%rdx,%rax)!
 addq $16, %rax!
 cmpl %r9d, %r8d!
 jb .L8!

•  + Explicit alignment test
•  + Explicit aliasing test

CIS 501 (Martin): Vectors 13

Bridging “Best Case” and “Actual”
•  Align arrays
typedef float afloat __attribute__ ((__aligned__(16)));!
void saxpy(afloat* x, !
 afloat* y, !
 afloat* z, !
 float a, int length) {!
 for (int i = 0; i < length; i++) {!
 z[i] = a*x[i] + y[i];!
 }!
}!

•  Avoid aliasing check
typedef float afloat __attribute__ ((__aligned__(16)));!
void saxpy(afloat* __restrict__ x, !
 afloat* __restrict__ y, !
 afloat* __restrict__ z, float a, int length) !

•  Even with both, still has the “last few iterations” code
CIS 501 (Martin): Vectors 14

Reduction Example

•  Code
 float diff = 0.0;!
 for (int i = 0; i < N; i++) {!
 diff += (a[i] - b[i]);!
 }!
 return diff;!

•  Scalar
.L4:!
 movss (%rdi,%rax), %xmm1!
 subss (%rsi,%rax), %xmm1!
 addq $4, %rax!
 addss %xmm1, %xmm0!
 cmpq %rdx, %rax!
 jne .L4!

•  Auto Vectorized
.L7:!
 movaps (%rdi,%rax), %xmm0!
 incl %ecx!
 subps (%rsi,%rax), %xmm0!
 addq $16, %rax!
 addps %xmm0, %xmm1!
 cmpl %ecx, %r8d!
 ja .L7!

 haddps %xmm1, %xmm1!
 haddps %xmm1, %xmm1!
 movaps %xmm1, %xmm0!
 je .L3!

•  “haddps”: Packed Single-
FP Horizontal Add

CIS 501 (Martin): Vectors 15

SSE2 on Pentium 4
CIS 501 (Martin): Vectors 16

Tomorrow’s “CPU” Vectors

CIS 501 (Martin): Vectors 17

Beyond Today’s Vectors

•  Today’s vectors are limited
•  Wide compute
•  Wide load/store of consecutive addresses
•  Allows for “SOA” (structures of arrays) style parallelism

•  Looking forward (and backward)...
•  Vector masks

•  Conditional execution on a per-element basis
•  Allows vectorization of conditionals

•  Scatter/gather
•  a[i] = b[y[i]] b[y[i]] = a[i]
•  Helps with sparse matrices, “AOS” (array of structures) parallelism

•  Together, enables a different style vectorization
•  Translate arbitrary (parallel) loop bodies into vectorized code (later)

CIS 501 (Martin): Vectors 18

Vector Masks (Predication)
•  Recall “cmov” prediction to avoid branches
•  Vector Masks: 1 bit per vector element

•  Implicit predicate in all vector operations
for (I=0; I<N; I++) if (maskI) { vop… }

•  Usually stored in a “scalar” register (up to 64-bits)
•  Used to vectorize loops with conditionals in them

cmp_eq.v, cmp_lt.v, etc.: sets vector predicates

for (I=0; I<32; I++)
 if (X[I] != 0.0) Z[I] = A/X[I];

ldf.v [X+r1] -> v1
cmp_ne.v v1,f0 -> r2 // 0.0 is in f0
divf.sv {r2} v1,f1 -> v2 // A is in f1
stf.v {r2} v2 -> [Z+r1]

CIS 501 (Martin): Vectors 19

Scatter Stores & Gather Loads

•  How to vectorize:
for(int i = 1, i<N, i++) {

int bucket = val[i] / scalefactor;
count[bucket] = count[bucket] + 1;

•  Easy to vectorize the divide, but what about the load/store?

•  Solution: hardware support for vector “scatter stores”
•  stf.v v2->[r1+v1]

•  Each address calculated from r1+v1i
stf v20->[r1+v10], stf v21->[r1+v11],
stf v22->[r1+v12], stf v23->[r1+v13]

•  Vector “gather loads” defined analogously
•  ldf.v [r1+v1]->v2

•  Scatter/gathers slower than regular vector load/store ops
•  Still provides a throughput advantage over non-vector version

CIS 501 (Martin): Vectors 20

Today’s GPU’s “SIMT” Model

CIS 501 (Martin): Vectors 21

Graphics Processing Units (GPU)

Tesla S870!

•  Killer app for parallelism: graphics (3D games)

CIS 501 (Martin): Vectors 22

GPUs and SIMD/Vector Data Parallelism

•  Graphics processing units (GPUs)
•  How do they have such high peak FLOPS?
•  Exploit massive data parallelism

•  “SIMT” execution model
•  Single instruction multiple threads
•  Similar to both “vectors” and “SIMD”
•  A key difference: better support for conditional control flow

•  Program it with CUDA or OpenCL
•  Extensions to C
•  Perform a “shader task” (a snippet of scalar computation) over

many elements
•  Internally, GPU uses scatter/gather and vector mask operations

CIS 501 (Martin): Vectors 23

Data Parallelism Recap
•  Data Level Parallelism

•  “medium-grained” parallelism between ILP and TLP
•  Still one flow of execution (unlike TLP)
•  Compiler/programmer explicitly expresses it (unlike ILP)

•  Hardware support: new “wide” instructions (SIMD)
•  Wide registers, perform multiple operations in parallel

•  Trends
•  Wider: 64-bit (MMX, 1996), 128-bit (SSE2, 2000),

256-bit (AVX, 2012), 512-bit (Larrabee/Knights Corner)
•  More advanced and specialized instructions

•  GPUs
•  Embrace data parallelism via “SIMT” execution model
•  Becoming more programmable all the time

•  Today’s chips exploit parallelism at all levels: ILP, DLP, TLP

CIS 501 (Martin): Vectors 24

