
1

Chapter 5
The LC-3

Based on slides © McGraw-Hill
Additional material © 2004/2005 Lewis/Martin

5-2CSE 240

Instruction Set Architecture

ISA = Programmer-visible components & operations
• Memory organization

 Address space -- how may locations can be addressed?
 Addressibility -- how many bits per location?

• Register set
 How many? What size? How are they used?

• Instruction set
 Opcodes
 Data types
 Addressing modes

All information needed to write/gen machine language program

5-3CSE 240

LC-3 Overview: Memory and Registers
Memory

• Address space: 216 locations (16-bit addresses)
• Addressibility: 16 bits

Registers
• Temporary storage, accessed in a single machine cycle

Memory access generally takes longer
• Eight general-purpose registers: R0 - R7

Each 16 bits wide
How many bits to uniquely identify a register?

• Other registers
Not directly addressable, but used by (and affected by)

instructions
PC (program counter), condition codes, MAR, MDR, etc.

5-4CSE 240

LC-3 Overview: Instruction Set
Opcodes

• 16 opcodes
• Operate instructions: ADD, AND, NOT, (MUL)
• Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
• Control instructions: BR, JSR, JSRR, RET, RTI, TRAP
• Some opcodes set/clear condition codes, based on result

N = negative (<0), Z = zero (=0), P = positive (> 0)
Data Types

• 16-bit 2’s complement integer
Addressing Modes

• How is the location of an operand specified?
• Non-memory addresses: register, immediate (literal)
• Memory addresses: base+offset, PC-relative, indirect

2

5-5CSE 240

LC-3 Instruction
Summary
(inside back cover)

5-6CSE 240

Operate Instructions
Only three operations

• ADD, AND, NOT

Source and destination operands are registers
• Do not reference memory
• ADD and AND can use “immediate” mode,

(i.e., one operand is hard-wired into instruction)

Will show abstracted datapath with each instruction
• Illustrate when and where data moves to accomplish desired op.

5-7CSE 240

NOT (Register)

Note: DR and SR could
be the same register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 DR SR 1 1 1 1 1 1NOT

Register File

R7
R6
R5
R4
R3
R2
R1
R0

1010111100001111

0101000011110000

ALU

AB

1616

NOT

ADD R3 R5
1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1IR

16
Convention

source
destination 



5-8CSE 240

ADD (Register) this zero means “register mode”

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 DR SR1 0 0 0 SR2ADD

Register File

R7
R6
R5
R4
R3
R2
R1
R0

0000000000001001

0000000000001000

1111111111111111

ALU

AB

1616

ADD

 



ADD R3 R5 R0
0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0IR

16

3

5-9CSE 240

ADD (Immediate) this one means “immediate mode”

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 DR SR1 1 imm5ADD

Register File

R7
R6
R5
R4
R3
R2
R1
R0

0000000000001001

0000000000001000

ALU

AB

1616

ADD





ADD R3 R5 -1
0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1IR

SEXT

5

16

1111111111111111

1 0
16

16

5-10CSE 240

Using Operate Instructions: Subtraction
How do we subtract two numbers?

Goal
• R1 <- R2 - R3 (no such instruction!)

Idea (Use 2’s complement)
1. R1 <- NOT R3
2. R1 <- R1 + 1
3. R1 <- R2 + R1

If 2nd operand is known and small, easy
• R1 <- R2 + -3

5-11CSE 240

Using Operate Instructions: OR
How do we OR two numbers?

Goal
• R1 <- R2 OR R3 (no such instruction!)

Idea (Use DeMorgan’s Law)
• A OR B = NOT(NOT(A) AND NOT(B))
1. R4 <- NOT R2
2. R5 <- NOT R3
3. R1 <- R4 AND R5
4. R5 <- NOT R1

5-12CSE 240

Using Operate Instructions: Copying
How do we copy a number from register to register?

Goal
• R1 <- R2 (no such instruction!)

Idea (Use immediate)
• R1 <- R2 + 0

Could we use AND?

4

5-13CSE 240

Using Operate Instructions: Clearing
How do we set a register to 0?

Goal
• R1 <- 0 (no such instruction!)

Idea
• R1 <- R1 AND 0

Could we use ADD?

5-14CSE 240

Data Movement Instructions
Load: read data from memory to register

• LD: PC-relative mode
• LDR: base+offset mode
• LDI: indirect mode

Store: write data from register to memory
• ST: PC-relative mode
• STR: base+offset mode
• STI: indirect mode

Load effective address
• Compute address, save in register, do not access memory
• LEA: immediate mode

5-15CSE 240

PC-Relative Addressing Mode
Want to specify address directly in the instruction

• But an address is 16 bits, and so is an instruction!
• After subtracting 4 bits for opcode and 3 bits for register, we have 9 bits

available for address

Observation
• Needed data often near currently executing instruction

Solution
• Add 9 bits in instruction (sign extended) to PC (of next instructionnext instruction) to

form address

Example: LD: R1 <- M[PC+SEXT(IR[8:0])]

5-16CSE 240

LD (PC-Relative)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 DR PCoffset9LD

Register File

R7
R6
R5
R4
R3
R2
R1
R0

0000000000001001

ALU

AB
ADD






LD R3 -81
0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1IR

SEXT

9

16

1111111110101111

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC

16

MAR MEMORY MDR

Rd
16

16

5

5-17CSE 240

ST (PC-Relative)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 SR PCoffset9ST

Register File

R7
R6
R5
R4
R3
R2
R1
R0

0000000000001001

ALU

AB
ADD






ST R3 -81
0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1IR

SEXT

9

16

1111111110101111

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC

16

MAR MEMORY MDR

Wr
16

16

5-18CSE 240

Base + Offset Addressing Mode
Problem

• With PC-relative mode, can only address words “near” the instruction
• What about the rest of memory?

Solution
• Use a register to generate a full 16-bit address

Idea
• 4 bits for opcode, 3 for src/dest register, 3 bits for base register
• Remaining 6 bits are used as a signed offset
• Offset is sign-extended before adding to base register
• I.e., Instead of adding offset to PC, add it to base register

Example: LDR: R1 <- M[R2+SEXT(IR[5:0])]

5-19CSE 240

LDR (Base+Offset)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 DR BaseR offset6LDR

Register File

R7
R6
R5
R4
R3
R2
R1
R0

000000001000000

0000000000001001

ALU

AB
ADD






LDR R3 R5 -17
0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 1IR

SEXT

6

16

1111111111101111

MAR MEMORY MDR

Rd
16

16

16

5-20CSE 240

STR (Base+Offset)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 SR BaseR offset6STR

Register File

R7
R6
R5
R4
R3
R2
R1
R0

000000001000000

0000000000001001

ALU

AB
ADD






STR R3 R5 -17
0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1IR

SEXT

6

16

1111111111101111

MAR MEMORY MDR

Wr
16

16

16

6

5-21CSE 240

Indirect Addressing Mode
Another way to produce full 16-bit address

• Read address from memory location, then load/store to that address

Steps
• Address is generated from PC and PCoffset (just like PC-relative

addressing)
• Then content of that address is used as address for load/store

Example: LDI: R1 <- M[M[PC+SEXT(IR([8:0])]

Advantage
• Doesn't consume a register for base address
• Addresses are often stored in memory (i.e., useful)

Disadvantage
• Extra memory operation (and no offset)

5-22CSE 240

LDI (Indirect)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 DR PCoffset9LDI

Register File

R7
R6
R5
R4
R3
R2
R1
R0

0000000000001001

ALU

AB
ADD 





LDI R3 -17
1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1IR

SEXT

9

16

1111111101101111

MAR MEMORY MDR

Rd
16

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC

16

16





16

5-23CSE 240

STI (Indirect)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 SR PCoffset9STI

Register File

R7
R6
R5
R4
R3
R2
R1
R0

0000000000001001

ALU

AB
ADD 



 (Rd)

STI R3 -17
1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1IR

SEXT

9

16

1111111101101111

MAR MEMORY MDR

Rd/Wr
16

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC

16

16

 (Wr)



16

5-24CSE 240

Load Effective Address
Problem

• How can we compute address without also LD/ST-ing to it?

Solution
• Load Effective Address (LEA) instruction

Idea
• LEA computes address just like PC-relative LD/ST
• Store address in destination register (not data at that address)
• Does not access memory

• Example: LEA: R1 <- PC + SEXT(IR[8:0])]

7

5-25CSE 240

LEA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 DR PCoffset9LEA

Register File

R7
R6
R5
R4
R3
R2
R1
R0

0011111110001000

ALU

AB
ADD



LEA R3 -81
1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1IR

SEXT

9

16

1111111110101111

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC

16 16

5-26CSE 240

Example

1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1

0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0

0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0

0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1

0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0

1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1

Instruction

R3 ← M[M[x30F4]]
(R3 ← M[x3102])

(R3 ← 5)

M[R1+14] ← R2
(M[x3102] ← 5)

R2 ← R2 + 5 = 5

R2 ← 0

M[PC-5(x30F4)] ← R2

R2 ← R1 + 14 = x3102

R1 ← PC-3 (x30F4)

Comments

x30FC

x30FB

x30FA

x30F9

x30F8

x30F7

x30F6

Address

opcode

STR0111

LDI1010

LEA1110

AND0101

ST0011

ADD0001
Machine Language

5-27CSE 240

Aside: Machine Language Programming Is Hard!

(Altair 8800, 1975)

5-28CSE 240

Control Instructions
Alter the sequence of instructions

• Changing the Program Counter (PC)

Conditional Branch
• Branch taken if a specified condition is true

New PC computed relative to current PC
• Otherwise, branch not taken

PC is unchanged (I.e., points to next sequential instruction)

Unconditional Branch (or Jump)
• Always changes the PC
• Target address computed PC-relative or Base+Offset

TRAP
• Changes PC to start of OS “service routine”
• When routine is done, execution resumes after TRAP

8

5-29CSE 240

Condition Codes
LC-3 has three 1-bit condition code registers

N -- negative
Z -- zero
P -- positive (greater than zero)

Set/cleared by instructions that store value to register
• e.g., ADD, AND, NOT, LD, LDR, LDI, LEA, not ST

Exactly one will be set at all times
• Based on the last instruction that altered a register

5-30CSE 240

Branch Instruction
Branch specifies one or more condition codes
If the specified condition code set, the branch is taken

• PC is set to the address specified in the instruction

• Like PC-relative mode addressing, target address is specified as
offset from current PC (PC + SEXT(IR[8:0]))

• Note: Target must be “near” branch instruction

If branch not taken, next instruction (PC+1) is executed.

5-31CSE 240

BR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 N Z P PCoffset9BR

ALU

AB
ADD



BR N Z P -1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1IR

SEXT

9

16

1111111111111111

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1PC

16

1 0

16

0
N

1
Z

0
P

16Yes!

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0

16

Questions
• Problems w/ this

example?

• What if NZP all 0?

• What if NZP all 1?

5-32CSE 240

Example: Using Branch Instructions
Goal

• Compute sum of 12
integers

Input
• Numbers start at x3100

Output
• Register R3

Program
• Starts at x3000

R1 ← x3100
R3 ← 0
R2 ← 12

R2=0?

R4 ← M[R1]
R3 ← R3+R4
R1 ← R1+1
R2 ← R2-1

NO

YES

9

5-33CSE 240

Example: Summing Program

R2 ← 00 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0x3002

R1 ← R1+10 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1x3007
R2 ← R2-10 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1X3008

0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0

0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1

0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0

0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0

1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1

Instruction

BRnzp x3004

R3 ← R3+R4

R4 ← M[R1]

BRz x300A

R2 ← 12

R3 ← 0

R1 ← x3001+xFF (x3100)

Comments

x3009

x3006

x3005

x3004

x3003

x3001

x3000

Address

LDR0110

BR0000

LEA1110

AND0101

ADD0001

5-34CSE 240

Jump Instructions
Jump is an unconditional branch (i.e., always taken)

Destination
• PC set to value of base register encoded in instruction
• Allows any branch target to be specified
• Pros/Cons versus BR?

5-35CSE 240

JMP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 BaseR 0 0 0 0 0 0JMP

Register File

R7
R6
R5
R4
R3
R2
R1
R0

000001000011000

JMP R5
1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0IR

16

0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1PC

0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0

1 0
16

 16

5-36CSE 240

TRAP

Calls operating system “service routine”
• Identified by 8-bit trap vector
• Execution resumes after OS code executes (more later)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 trapvect8TRAP

halt the program (HALT)x25

output a character to the monitorx21

input a character from the keyboardx23

routinevector

10

5-37CSE 240

Addressing Mode Summary
Register

• R1 <- R1 + R2
• R1 <- NOT R2

Immediate
• R1 <- R1 + -2

Base+Offset
• R1 <- M[R2+4]
• M[R2+4] <- R1

PC-Relative
• R1 <- M[PC+6]
• M[PC+6] <- R1

Indirect
• R1 <- M[M[R2+4]]
• M[M[R2+4]] <- R1

5-38CSE 240

Another Example
Count the occurrences of a character in a file

• Program begins at location x3000
• Read character from keyboard
• Load each character from a “file”

File is a sequence of memory locations
Starting address of file is stored in the memory location

immediately after the program
• If file character equals input character, increment counter
• End of file is indicated by a special ASCII value: EOT (x04)
• At the end, print the number of characters and halt

(assume there will be fewer than 10 occurrences of the character)

A special character used to indicate the end of a sequence
is often called a sentinel

• Useful when you don’t know ahead of time how many times
to execute a loop

5-39CSE 240

Flow Chart

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Input: M[x3012] (address of “file”)
Output: Print count to display

5-40CSE 240

Program R2 ← 0 (Count)
R3 ← M[x3012] (Ptr)
Input to R0 (TRAP x23)
R1 ← M[R3]
R4 ← R1 – 4 (EOT)
BRz x????
R1 ← NOT R1
R1 ← R1 + 1
R1 ← R1 + R0
BRnp x????
R2 ← R2 + 1
R3 ← R3 + 1
R1 ← M[R3]
BRnzp x????
R0 ← M[x3013]
R0 ← R0 + R2
Print R0 (TRAP x21)
HALT (TRAP x25)

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

11

5-41CSE 240

Program (1 of 2)

Input to R0 (TRAP x23)1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1x3002

R1 ← R1 + 10 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1x3007
R1 ← R1 + R00 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0X3008

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0

0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0

0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0

Instruction

BRnp x300B

R1 ← NOT R1

BRz x300E

R4 ← R1 – 4 (EOT)

R1 ← M[R3]

R3 ← M[x3012] (ptr)

R2 ← 0 (counter)

Comments

x3009

x3006

x3005

x3004

x3003

x3001

x3000

Address

LD0010

BR0000

TRAP1111

AND0101

ADD0001

5-42CSE 240

Program (2 of 2)

R1 ← M[R3]0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0x300C

HALT (TRAP x25)1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1x3011

Starting Address of FileX3012
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0

0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 1

0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1

Instruction

ASCII x30 (‘0’)

Print R0 (TRAP x21)

R0 ← R0 + R2

R0 ← M[x3013]

BRnzp x3004

R3 ← R3 + 1

R2 ← R2 + 1

Comments

x3013

x3010

x300F

x300E

x300D

x300B

x300A

Address

LD0010

BR0000

TRAP1111

AND0101

ADD0001

5-43CSE 240

LC-3
Data Path
Revisited

Filled arrow
= info to be processed.

Unfilled arrow
= control signal.

5-44CSE 240

Data Path Components
Global bus

• Set of wires that carry 16-bit signals to many components
• Inputs to bus are “tri-state devices”

Place signal on bus when enabled
Only one (16-bit) signal should be enabled at a time
Control unit decides which signal “drives” the bus

• Any number of components can read bus
Register only captures bus data if write-enabled by the

control unit

Memory and I/O
• Control and data registers for memory and I/O devices
• Memory: MAR, MDR (also control signal for read/write)
• Input (keyboard): KBSR, KBDR
• Output (text display): DSR, DDR

12

5-45CSE 240

Data Path Components (cont.)
ALU

• Input: register file or sign-extended bits from IR (immediate field)
• Output: bus; used by…

Condition code logic
Register file
Memory and I/O registers

Register File
• Two read addresses, one write address (3 bits each)
• Input: 16 bits from bus

Result of ALU operation or memory (or I/O) read
• Outputs: two 16-bit

Used by ALU, PC, memory address
Data for store instructions passes through ALU

5-46CSE 240

Data Path Components (cont.)
PC and PCMUX

• Three inputs to PC, controlled by PCMUX
1. Current PC plus 1 (normal operation)
2. Adder output (BR, JMP, …)
3. Bus (TRAP)

MAR and MARMUX
• Some inputs to MAR, controlled by MARMUX

1. Zero-extended IR[7:0] (used for TRAP; more later)
2. Adder output (LD, ST, …)

5-47CSE 240

Data Path Components (cont.)
Condition Code Logic

• Looks at value on bus and generates N, Z, P signals
• Registers set only when control unit enables them

Only certain instructions set the codes
(anything that places a value into a register:
ADD, AND, NOT, LD, LDI, LDR, LEA, not ST)

Control Unit
• Decodes instruction (in IR)
• On each machine cycle, changes control signals for next phase

of instruction processing
Who drives the bus?
Which registers are write enabled?
Which operation should ALU perform?
…

5-48CSE 240

Summary
Many instructions

• ISA: Programming-visible components and operations
• Behavior determined by opcodes and operands

Operate, Data, Control
• Control unit “tells” rest of system what to do (based on opcode)
• Some operations must be synthesized from given operations

(e.g., subtraction, logical or, etc.)

Concepts
• Addressing modes
• Condition codes and branching/jumping

Bit-level programming bites!

13

5-49CSE 240

Next Time
Lecture

• Programming as problem solving

Reading
• Chapter 6

Quiz
• Online!

Upcoming
• Homework due Monday 10 October

