
1

Based on slides © McGraw-Hill
Additional material © 2004/2005 Lewis/Martin

Chapter 8
Input/Output

8-2CSE 240

Input/Output: Connecting to the Outside World
 So far, we’ve learned how to…

• Compute with values in registers
• Move data between memory and registers

 But how do we interact with computers?
• Game console (Playstation, Xbox)
• DVD player
• MP3 player (iPod)
• Cell phone
• Automated Teller Machine (ATM)
• Car’s airbag controller
• Web server

8-3CSE 240

Examples of Input/Output (I/O) Devices
 User output

• Display, printer, speakers
 User input

• Keyboard, mouse, trackball, game controller, scanner,
microphone, touch screens, camera (still and video)

 Storage
• Disk drives, CD & DVD drives, flash-based storage, tape drive

 Communication
• Network (wired, wireless, optical, infrared), modem

 Sensor inputs
• Temperature, vibration, motion, acceleration, GPS
• Barcode scanner, magnetic strip reader, RFID reader

 Control outputs
• Motors, actuators

8-4CSE 240

I/O Controller
 Control/Status Registers

• CPU tells device what to do -- write to control register
• CPU checks whether task is done -- read status register

 Data Registers
• CPU transfers data to/from device

 Device electronics
• Performs actual operation

Pixels to screen, bits to/from disk, characters from keyboard

I/O Controller
Control/Status

Data ElectronicsCPU device

2

8-5CSE 240

Programming Interface
 How are device registers identified?

• Memory-mapped vs. special instructions

 How is timing of transfer managed?
• Asynchronous vs. synchronous

 Who controls transfer?
• CPU (polling) vs. device (interrupts)

8-6CSE 240

Memory-Mapped vs. I/O Instructions
 Instructions

• Designate opcode(s) for I/O
• Register and operation encoded in instruction

 Memory-mapped
• Assign a memory address

to each device register
• Use data movement

instructions (LD/ST)
for control and data transfer

• Hardware intercepts these address
• No actual memory access performed

8-7CSE 240

Transfer Timing
 I/O devices are often much slower than the processor

 Synchronous
• Data supplied at a fixed, predictable rate
• CPU reads/writes every X cycles
• Infrequently used because of speed difference

Again, I/O is much slower than the processor

 Asynchronous
• Data rate less predictable
• CPU must synchronize with device, so that it doesn’t miss data

or write too quickly
• Handles the speed mismatch

8-8CSE 240

Transfer Control
 Who determines when the next data transfer occurs?

 Polling
• CPU keeps checking status register until

new data arrives OR device ready for next data
• “Are we there yet? Are we there yet? Are we there yet?”

 Interrupts
• Device sends a special signal to CPU when

new data arrives OR device ready for next data
• CPU can be performing other tasks instead of polling device
• “Wake me when we get there.”

3

8-9CSE 240

LC-3
 Memory-mapped I/O (Table A.3)

 Asynchronous devices
• Synchronized through status registers

 Polling and Interrupts
• We’ll talk first about polling, a bit on interrupts later

Timer interval in msecs.Timer Interval Register (TIR)xFE0A

Nonzero when timer goes off; cleared when
read.Timer Status Register (TSR)xFE08

Bit [15] is one when device ready to display
another char on screen.Display Status Register (DSR)xFE04

Character written to bits [7:0] will be displayed
on screen.Display Data Register (DDR)xFE06

Bits [7:0] contain the last character typed on
keyboard.Keyboard Data Reg (KBDR)xFE02

Bit [15] is one when keyboard has received a
new character.Keyboard Status Reg (KBSR)xFE00

FunctionI/O RegisterLocation

8-10CSE 240

Input from Keyboard
 When a character is typed:

• Its ASCII code is placed in bits [7:0] of KBDR
(bits [15:8] are always zero)

• The “ready bit” (KBSR[15]) is set to one
• Keyboard is disabled -- any typed characters will be ignored

 When KBDR is read:
• KBSR[15] is set to zero
• Keyboard is enabled

KBSR

KBDR
15 8 7 0

1514 0

keyboard data

ready bit

8-11CSE 240

Basic Input Routine

new
char?

read
character

YES

NO

Polling

POLL LDI R0, KBSRPtr
 BRzp POLL
 LDI R0, KBDRPtr

 ...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02

8-12CSE 240

Output to Monitor
 When Monitor is ready to display another character:

• The “ready bit” (DSR[15]) is set to one

 When data is written to Display Data Register:
• DSR[15] is set to zero
• Character in DDR[7:0] is displayed
• Any other character data written to DDR is ignored

(while DSR[15] is zero)

DSR

DDR
15 8 7 0

1514 0

output data

ready bit

4

8-13CSE 240

Basic Output Routine

screen
ready?

write
character

YES

NO

Polling

POLL LDI R1, DSRPtr
BRzp POLL
STI R0, DDRPtr

...

DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

8-14CSE 240

Keyboard Echo Routine
 Usually, input character is also printed to screen

• User gets feedback on character typed and knows its ok to type
the next character

new
char?

read
character

YES

NO

screen
ready?

write
character

YES

NO

POLL1 LDI R0, KBSRPtr
BRzp POLL1
LDI R0, KBDRPtr

POLL2 LDI R1, DSRPtr
BRzp POLL2
STI R0, DDRPtr

...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02
DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

8-15CSE 240

Pixel-Based Display
 A display consists of many dots (pixels)

• Color of each pixel represented by a 16-bit value
5 bits for each of Red/Green/Blue
32 thousand distinct colors

 Memory-mapped pixels
• One memory location per pixel
• 128x124 pixels
• Memory region xC000 to xFDFF

xC000 to xC07F is first row of display
xC080 to xC0FF is second row of display

• Set the corresponding location to change its color

 B
1514 0

 G R

 Display
 xC000
 xC080

5910 4

8-16CSE 240

Timer Device
 A periodic timer “tick”

• Allows a program to detect when a interval of time has passed
• Our implementation (for the LC-3) uses a simple fix-interval timer

 Using TSR (Timer Status Register):
• “Tick” bit is set every n milliseconds
• Read the value of the bit from memory location (xFE08)
• Bit reset to zero after every read
• Change interval via Timer Interval Register (TIR, xFE0A)

 Why did we add the display and timer? For Breakout

TSR

1514 0

tick bit

5

8-17CSE 240

Internal Hard Drives
 A large magnetic disk

• Spinning at 10,000 RPM
• A magnetic head reads from the surface of the disk

 Larger capacity than memory
• Contain 10s to 100s of gigabytes of data
• In contrast: main memory is commonly around 1 gigabyte

 Interface is block-level
• Request a particular “block” to read from the disk
• All of that block is written into memory
• Or read from memory, writen to disk

8-18CSE 240

Disk Interface
 The LC-3 simulator doesn’t support disks, but if it did…

• Read or write “block” of 256 16-bit words (512 bytes)
• Access any of 216 = 65536 blocks
• Resulting maximum disk size: 32 megabytes (32 million bytes)

 Interface
• DiskStatusRegister: ready bit (just like keyboard and display)
• DiskControlRegister: tell disk what to do
• DiskBlockRegister: number of disk block to read or write
• DiskMemoryRegister: address of starting memory location

 Read operation:
• Wait for disk to be “ready”
• Set BlockRegister (source), MemoryRegister (destination)
• Set Control to “Read” - the doorbell
• Wait for disk to finish read (check status bit)

8-19CSE 240

Disk Interface
 Write operation:

• Wait for disk to be “ready”
• Set BlockRegister (destination), MemoryRegister (source)
• Set Control to “Write” - the doorbell
• Wait for disk to finish write (check status bit)

 Direct Memory Access (DMA)
• This type of “device writes to or reads from memory” interface
• Allows large amounts of data to move without intervention from

the processor (for example, an entire disk block)
• Status register changes upon completion
• Network interfaces also use DMA
• Used by all high-speed, high-performance devices

8-20CSE 240

Interrupt-Driven I/O
 External device can. . .
(1) Force currently executing program to stop
(2) Have the processor satisfy the device’s needs
(3) Resume the stopped program as if nothing happened

 Why?
• Polling consumes a lot of cycles, especially for rare events –

these cycles can be used for more computation
• Again, I/O devices are slow
• Example: Process previous input while collecting current input

(See Example 8.1 in text)

6

8-21CSE 240

Interrupt-Driven I/O
 To implement an interrupt mechanism, we need

• Way for I/O device to signal CPU that event has occurred
• Way for CPU to test whether interrupt signal is set

and whether its priority is higher than the current program

 Generating Signal
• Software sets "interrupt enable" bit in device register
• When ready bit is set and IE bit is set, interrupt is signaled

KBSR
1514 0

ready bit
13

interrupt enable bit

interrupt signal
to processor

8-22CSE 240

Testing for Interrupt Signal
 CPU looks at interrupt signal

• If not set, continues with next instruction (PC = PC + 1)
• If set, “jumps” to interrupt service routine (PC = Mem[x0100+i])

 Interrupt service routine
• Operating system code at

a well-know location
• Uses regular I/O register

to interact with devices
• Interrupt simply tells the

software when to query

EA

OP

EX

S

F

D

interrupt
signal?

Transfer to
Service routine
Mem[x0100+i]

NO

YES

More information in Chapter 10

8-23CSE 240

Role of the Operating System
 In real systems, only the operating system (OS) does I/O

• “Normal” programs ask the OS to perform I/O on its behalf

 Hardware prevents non-operating system code from
• Accessing I/O registers
• Operating system code and data
• Accessing the code and data of other programs

 Why?
• Protect programs from themselves
• Protect programs from each other
• Multi-user environments

8-24CSE 240

Memory Protection
 The hardware has two modes

• “Supervisor” or “privileged” mode
• “User” or “unprivileged” mode

 Code in privileged mode
• Can do anything
• Used exclusively by the operating system

 Code in user mode
• Can’t access I/O parts of memory
• Can only access some parts of memory

 Division of labor
• OS - make policy choices
• Hardware - enforce the OS’s policy

7

8-25CSE 240

OS and Hardware Cooperate for Protection
 Hardware support for protected memory

• For example, consider a 16-bit protection register (MPR) in the
processor
MPR[0] corresponds to x0000 - x0FFF
MPR[1] corresponds to x1000 - x1FFF
MPR[2] corresponds to x2000 - x2FFF, etc.

 When a processor performs a load or store
• Checks the corresponding bit in MPR
• If MPR bit is not set (and not in privileged mode)

Trigger illegal access

 The OS must set these bits before running each program
• Example, If a program should access only x4000 - x6FFF

OS sets MPR[4, 5, 6] to 1 (clears rest)
8-26CSE 240

Invoking the Operating System
 How does non-privileged code perform I/O?

• Answer: it doesn’t; it asks the OS to perform I/O on its behalf

 How is this done?
• Making a system call into the operating system

 In LC-3: The TRAP instruction
• Calls into the operating system (sets privileged mode)
• Different part of the OS called for each trap number
• OS performs the operations (in privileged mode)
• OS leaves privileged mode
• OS returns control back to user program (jumps to the PC after

the TRAP instruction)

 Topic of next chapter…

8-27CSE 240

Discussion Questions
 What is the danger of not testing the DSR before writing
data to the screen?

 What is the danger of not testing the KBSR before
reading data from the keyboard?

What if the display was a synchronous device, e.g., we
know that it will be ready 1 microsecond after character is
written?

• Can we avoid polling? How?
• What are advantages and disadvantages?

8-28CSE 240

Discussion Questions
 Do you think polling is a good approach for other
devices, such as a disk or a network interface?

 What is the advantage of using LDI/STI for accessing
device registers?

8

8-29CSE 240

Simple Implementation: Memory-Mapped Input

Address Control Logic
determines whether
MDR is loaded from

Memory or from KBSR/KBDR.

8-30CSE 240

Simple Implementation: Memory-Mapped Output

Sets LD.DDR
or selects

DSR as input.

8-31CSE 240

Full Implementation of LC-3 Memory-Mapped I/O

Because of interrupt enable bits, status registers (KBSR/DSR)
must be written, as well as read.

8-32CSE 240

Priority
 Every instruction executes at a stated level of urgency
 LC-3: 8 priority levels (PL0-PL7)

• Example:
Payroll program runs at PL0
Nuclear power correction program runs at PL6

• It’s OK for PL6 device to interrupt PL0 program,
but not the other way around

 Priority encoder selects highest-priority device,
compares to current processor priority level,
and generates interrupt signal if appropriate

