
CSE 372 (Martin): Synthesizable Verilog 1

CSE372
Digital Systems Organization and Design

 Lab

Prof. Milo Martin

Unit 1: Synthesizable Verilog

CSE 372 (Martin): Synthesizable Verilog 2

Hardware Description Languages (HDLs)

• Textural representation of a digital logic design
• Easier to edit and revise than schematics

• However, you still need to think in terms of schematics (pictures)

• HDLs are not “programming languages”
• No, really. Even if they look like it, they are not.

• One of the most difficult conceptual leaps of this course

• Similar development chain
• Compiler: source code ! assembly code ! binary machine code

• Synthesis tool: HDL source ! gate-level specification ! hardware

CSE 372 (Martin): Synthesizable Verilog 3

Hardware Description Languages (HDLs)

• Write “code” to describe hardware
• Specify wires, gates, modules

• Also hierarchical

• Pro: easier to edit and create; Con: more abstract

module mux2to1(S, A, B, O);

input S, A, B;

output O;

wire S_, AnS_, BnS;

not (S_, S);

and (AnS_, A, S_);

and (BnS, B, S);

or (O, AnS_, BnS);

endmodule

S

O

B

A

CSE 372 (Martin): Synthesizable Verilog 4

Verilog HDL

• Verilog
• One of two commonly-used HDLs

• Verilog is a (surprisingly) big language

• Lots of features for synthesis and simulation of hardware

• We’re going to learn a focused subset of Verilog
• Focus on synthesizable constructs

• Focus on avoiding subtle synthesis errors

• Use as an educational tool

• Initially restrict some features to “build up” primitives

• Rule: if you haven’t seen it in lecture, you can’t use it

• Ask me if you have any questions

CSE 372 (Martin): Synthesizable Verilog 5

HDL History

• 1970s: First HDLs

• Late 1970s: VHDL
• VHDL = VHSIC HDL = Very High Speed Integrated Circuit HDL

• VHDL inspired by programming languages of the day (Ada)

• 1980s:
• Verilog first introduced

• Verilog inspired by the C programming language

• VHDL standardized

• 1990s:
• Verilog standardized (Verilog-1995 standard)

• 2000s:
• Continued evolution (Verilog-2001 standard)

• Both VHDL and Verilog evolving, still in use today

CSE 372 (Martin): Synthesizable Verilog 6

Two Roles of HDL and Related Tools

• #1: Specifying digital logic
• Specify the logic that appears in final design

• Either

• Translated automatically (called synthesis) or

• Optimized manually (automatically checked for equivalence)

• #2: Simulating and testing a design
• High-speed simulation is crucial for large designs

• Many HDL interpreters optimized for speed

• Testbench: code to test design, but not part of final design

CSE 372 (Martin): Synthesizable Verilog 7

Synthesis vs Simulation

• HDLs have features for both synthesis and simulation
• E.g., simulation-only operations for error messages, reading files

• Obviously, these can be simulated, but not synthesized into circuits

• Also has constructs such as for-loops, while-loops, etc.

• These are either un-synthesizable or (worse) synthesize poorly

• Trends: a moving target
• Good: better synthesis tools for higher-level constructs

• Bad: harder than ever to know what is synthesizable or not

CSE 372 (Martin): Synthesizable Verilog 8

Structural vs Behavioral HDL Constructs

• Structural constructs specify actual hardware structures
• Low-level, direct correspondence to hardware

• Primitive gates (e.g., and, or, not)

• Hierarchical structures via modules

• Analogous to programming software in assembly

• Behavioral constructs specify an operation on bits
• High-level, more abstract

• Specified via equations, e.g., out = (a & b) | c

• Statements, e.g., if-then-else

• Analogous to programming software in C

• Not all behavioral constructs are synthesizable
• Even higher-level, synthesize poorly or not at all (e.g., loops)

• Perhaps analogous to programming in Perl, Python, Matlab, SQL

CSE 372 (Martin): Synthesizable Verilog 9

Verilog Structural vs Behavioral Example

module mux2to1(S, A, B, Out);

 input S, A, B;

 output Out;

 wire S_, AnS_, BnS;

 not (S_, S);

 and (AnS_, A, S_);

 and (BnS, B, S);

 or (Out, AnS_, BnS);

endmodule

S

Out

B

A

module mux2to1(S, A, B, Out);
 input S, A, B;
 output Out;
 assign Out = (~S & A) | (S & B);
endmodule

Behavioral

Structural

CSE 372 (Martin): Synthesizable Verilog 10

Recall: Two Types of Digital Circuits

• Combinational Logic
• Logic without state variables

• Examples: adders, multiplexers, decoders, encoders

• No clock involved

• Sequential Logic
• Logic with state variables

• State variables: latches, flip-flops, registers, memories

• Clocked

• State machines, multi-cycle arithmetic, processors

• Today’s lecture: Verilog for specifying combinational logic
• Sequential logic will be covered later

• Focus on structural constructs with limited behavioral ones

CSE 372 (Martin): Synthesizable Verilog 11

Verilog Structural Primitives

• Gate-level
• One-output boolean operators: and, or, xor, nand, nor, xnor

• E.g., C = A+B
 or (C, A, B);

• E.g., C= A+B+D
 or (C, A, B, D);

• One-input operators: not, buf

• E.g., A = not Z
 not (A, Z);

• E.g., A = not Z, B = not Z
 not (A, B, Z);

• Buf just replicates signals (can increase drive strength)

• Transistor-level primitives too
• Will not use

CSE 372 (Martin): Synthesizable Verilog 12

Three Module Components

• Interface specification
module mux2to1(S, A, B, O);

input S, A, B;

output O;

• Can also have inout: bidirectional wire (we will not need)

• Alternative: Verilog 2001 interface specification
module mux2to1(input S, A, B, output O);

• Declarations
• Internal wires, i.e., “local” variables

• Wires also known as “nets” or “signals”

wire S_, AnS_, BnS;

• Implementation: primitive and module instantiations
and (AnS_, A, S_);

CSE 372 (Martin): Synthesizable Verilog 13

Verilog Module Example

module mux2to1(S, A, B, O);

input S, A, B;

output O;

wire S_, AnS_, BnS;

not (S_, S);

and (AnS_, A, S_);

and (BnS, B, S);

or (O, AnS_, BnS);

endmodule

S

O

B

A

CSE 372 (Martin): Synthesizable Verilog 14

Hierarchical Verilog Example

• Build up more complex modules using simpler modules

• Example: 4-bit wide mux from four 1-bit muxes
• Again, just “drawing” boxes and wires

module mux2to1_4(Sel, A, B, O);

input [3:0] A;

 input [3:0] B;

input Sel;

output [3:0] O;

mux2to1 mux0 (Sel, A[0], B[0], O[0]);

mux2to1 mux1 (Sel, A[1], B[1], O[1]);

mux2to1 mux2 (Sel, A[2], B[2], O[2]);

mux2to1 mux3 (Sel, A[3], B[3], O[3]);

endmodule

CSE 372 (Martin): Synthesizable Verilog 15

Connections by Name

• Can (should) specify module connections by name
• Helps keep the bugs away

• Example
mux2to1 mux0 (.S(Sel), .A(A[0]), .B(B[0]), .O(O[0]));

• Also, order doesn’t matter
mux2to1 mux1 (.A(A[1]), .B(B[1]), .O(O[1]), .S(Sel));

CSE 372 (Martin): Synthesizable Verilog 16

Vectors of Wires

• Wire vectors:
 wire [7:0] W1; // 8 bits, w1[7] is MSB

 wire [0:7] W2; // 8 bits, w2[0] is MSB

• Also called “arrays” or “busses”

• Operations
• Bit select: W1[3]

• Range select: W1[3:2]

• Concatenate: {<expr>[,<expr>]*}
vec = {x, y, z};

{carry, sum} = vec[0:1];

• e.g., swap high and low-order bytes of 16-bit vector
wire [15:0] w1, w2;

assign w2 = {w1[7:0], w1[15:8]}

CSE 372 (Martin): Synthesizable Verilog 17

Wire and Vector Assignment

• Wire assignment: “continuous assignment”
• Connect combinational logic block or other wire to wire input

• Order of statements not important, executed totally in parallel

• When right-hand-side changes, it is re-evaluated and re-assigned

• Designated by the keyword assign

wire c;

assign c = a | b;

wire c = a | b; // same thing

CSE 372 (Martin): Synthesizable Verilog 18

Operators

• Operators similar to C or Java

• On wires:
• & (and), | (or), ~ (not), ^ (xor)

• On vectors:
• &, |, ~, ^ (bit-wise operation on all wires in vector)

• E.g., assign vec1 = vec2 & vec3;

• &, |, ^ (reduction on the vector)

• E.g., assign wire1 = | vec1;

• Even ==, != (comparisons) +, -, * (arithmetic), <<, >> (shifts)

• But you can’t use these, yet. Can you guess why?

• Note: use with care, assume unsigned numbers

• Verilog 2001: signed vs unsigned vectors, >>> operator

• Can be arbitrarily nested: (a & ~b) | c

CSE 372 (Martin): Synthesizable Verilog 19

Conditional Operator

• Verilog supports the ?: conditional operator
• Almost never useful in C (in my opinion)

• Much more useful in Verilog

• Examples:
assign out = S ? B : A;

assign out = sel == 2'b00 ? a :
 sel == 2'b01 ? b :
 sel == 2'b10 ? c :
 sel == 2'b11 ? d : 1'b0;

• What do these do?

CSE 372 (Martin): Synthesizable Verilog 20

Miscellaneous

• Operators and expressions can be used with modules
• !mux2to1 mux0 (cond1 & cond2, a, b, out);

• C/Java style comments
• // comment until end of line

• /* comment between markers */

• All variable names are case sensitive

• Constants:
• assign x = 3’b011

• The “3” is the number of bits

• The “b” means “binary” - “h” for hex, “d” for decimal

• The “011” are the digits (in binary in this case)

CSE 372 (Martin): Synthesizable Verilog 21

Arrays of Modules

• Verilog also supports arrays of module instances
• Well, at least some Verilog tools

• Support for this feature varies

module mux2to1_4(Sel, A, B, O);

input [3:0] A;

 input [3:0] B;

input Sel;

output [3:0] O;

mux2to1 mux0[3:0] (Sel, A, B, O);

endmodule

CSE 372 (Martin): Synthesizable Verilog 22

Parameters

• Allow per-instantiation module parameters
• Use “parameter” statement

• modname #(10, 20, 30) instname(in1, out1);

• Example:

module mux2to1_N(Sel, A, B, O);

parameter N = 1

input [N-1:0] A;

 input [N-1:0] B;

input Sel;

output [N-1:0] O;

mux2to1 mux0[N-1:0] (Sel, A, B, O);

endmodule

…

Mux2to1_N #(4) mux1 (S, in1, in2, out)

CSE 372 (Martin): Synthesizable Verilog 23

Last Multiplexer Example

• Using conditional operator

module mux2to1_N(Sel, A, B, Out);

parameter N = 1

input [N-1:0] A;

 input [N-1:0] B;

input Sel;

output [N-1:0] Out;

assign Out = Sel ? B : A

endmodule

CSE 372 (Martin): Synthesizable Verilog 24

Verilog Pre-Processor

• Like the C pre-processor
• But uses ` (back-tick) instead of #

• Constants: `define

• No parameterized macros

• Use ` before expanding constant macro

`define letter_A 8’h41

wire w = `letter_A;

• Conditional compilation: `ifdef, `endif

• File inclusion: `include

• Parameter vs `define
• Parameter only for “per instance” constants

• `define for “global” constants

CSE 372 (Martin): Synthesizable Verilog 25

Common Errors

• Tools are from a less gentle time
• More like C, less like Java

• Assume that you mean what you say

• Common errors:
• Not assigning a wire a value

• Assigning a wire a value more than once

• Implicit wire declarations (default to type “wire”)

• Disable by adding the following to the file:

• `default_nettype none

• Does not work with ModelSim

• !Avoid names such as:
• clock, clk, power, pwr, ground, gnd, vdd, vcc, init, reset, rst

• Some of these are “special” and will silently cause errors

CSE 372 (Martin): Synthesizable Verilog 26

Additional Verilog Resources

• Elements of Logic Design Style by Shing Kong, 2001
• Dos, do-nots, tips

• http://www.cis.upenn.edu/~milom/elements-of-logic-design-style/

• Verilog HDL Synthesis: A Practical Primer
• By J. Bhasker, 1998

• To the point (<200 pages)

• Advanced Digital Design with the Verilog HDL
• By Michael D. Ciletti, 2003

• Verilog plus lots of digital logic design (~1000 pages)

• Verilog tutorial on CD from “Computer Org. and Design”

CSE 372 (Martin): Synthesizable Verilog 27

CSE372
Digital Systems Organization and Design

 Lab

Prof. Milo Martin

Unit 1: Synthesizable Verilog (continued)

CSE 372 (Martin): Synthesizable Verilog 28

Lab 1 - ALU (Arithmetic/Logical Unit)

• Task: design an ALU for a P37X CPU

• Ten operations:
• Addition, subtraction

• Multiplication

• And, or, not, xor

• Shift left, logical shift right, arithmetic shift right

• The different adder implementations
• Ripple-carry

• Two carry-select adders

• Pay close attention in CSE371 lecture this week!

CSE 372 (Martin): Synthesizable Verilog 29

Aside: Honors Points

• Goals:
• Make the labs accessible to all

• Challenge those that want more

• So, I’m trying something different
• Again, experimental

• Labs will have two types of “points”
• “Normal” - standard labs

• “Honors” - above and beyond

• Normal points
• Get all the normal points -> A- in the class

• Honors points
• Will distinguish the A- from A and A+

• May bump others a third of a letter grade

• Examples: fast adders (lab 1), advanced pipelines

CSE 372 (Martin): Synthesizable Verilog 30

Aside: Due Dates and Late Days

• Normal due dates
• Lab demos are on Fridays

• Lab write-ups are due on Mondays (at start of class)

• I’ll give you two “late credits” for the semester
• Used for emergencies, sickness, travel, etc.

• Otherwise, no late assignments accepted

• Impact of using a “late credit”
• Demo moved from Friday to Monday

• Lab write-up moved from Monday to Wednesday (in TA lab hours)

• No “honors points” for these late assignments

CSE 372 (Martin): Synthesizable Verilog 31

Repeated Signals

• Last time we discussed vector concatenation

 assign vec = {x, y, z};

• Can also repeat a signal n times

 assign vec = {16{x}}; // 16 copies of x

• Example uses (what does this do?):

 wire [7:0] out;

 wire [3:0] A;

 assign out = {{4{0}}, A[3:0]};

• What about this?

 assign out = {{4{A[3]}}, A[3:0]};

CSE 372 (Martin): Synthesizable Verilog 32

FYI: Non-binary Hardware Values

• A hardware signal can have four values
0, 1

X: don’t know, don’t care

Z: high-impedance (no current flowing)

• Uses for “x”
• Tells synthesis tool you don’t care

• Synthesis tool makes the most convenient circuit (fast, small)

• Use with care, leads to synthesis dependent operation

• Uses for “z”
• Tri-state devices drive a zero, one, or nothing (z)

• Many tri-states drive the same wire, all but one must be “z”

• Makes some circuits very fast

• Example: multiplexer

• Why Verilog allows multiple assignments to same wire.

CSE 372 (Martin): Synthesizable Verilog 33

Simulation

• Used to test and debug our designs

• Graphical output via waveforms

CSE 372 (Martin): Synthesizable Verilog 34

Levels of Simulation

• Functional (or Behavioral) Simulation
• Simulates Verilog abstractly

• No timing information, can’t detect timing “bugs”

• Post-synthesis Timing Simulation
• Simulating devices generated via synthesis

• Gates, transistors, FPGA logical units (LUTs)

• No interconnect delay

• Not all internal signals may still exist

• Synthesis might have optimized or changed the design

• Slower

• Layout Timing Simulation
• After synthesis, the tool “places and routes” the logic blocks

• Includes all sources of delay

• Even slower

CSE 372 (Martin): Synthesizable Verilog 35

Sequential Logic in Verilog

• How do we specify state-holding constructs in Verilog?

module dff (Clock, D, WE, Reset, Q);

 input Clock, D, WE, Reset;

 output Q;

 reg Q;

 always @(posedge Clock)

 begin

 if (Reset)

 Q = 1'b0;

 else if (WE)

 Q = D;

 end

 endmodule

CSE 372 (Martin): Synthesizable Verilog 36

Designing Sequential Logic

• CSE372 design rule: separate comb. logic from sequential
state elements
• Not enforced by Verilog, but a very good idea

• Possible exceptions: counters, shift registers

• We’ll give you a 1-bit flip-flop module (see previous slide)
• Edge-triggered, not a latch

• Use it to build a n-bit register

• Example use: state machine

Combinational

Logic

State

Register

Output

Next State

Current

State

Clock

CSE 372 (Martin): Synthesizable Verilog 37

Clocks Signals

• Clocks signals are not normal signals

• Travel on dedicated “clock” wires
• Reach all parts of the chip

• Special “low-skew” routing

• Ramifications:
• Never do logic operations on the clocks

• If you want to add a “write enable” to a flip-flop:

• Use a mux to route the old value back into it

• Do not just “and” the write-enable signal with the clock!

• Messing with the clock can cause a errors
• Often can only be found using timing simulation

