
CSE 372 (Martin): Synthesis 1

CSE372
Digital Systems Organization and Design

 Lab

Prof. Milo Martin

Unit 5: Hardware Synthesis

CSE 372 (Martin): Synthesis 2

Overview

• CAD (Computer Aided Design)
• Use computers to design computers

• Virtuous cycle

• Architectural-level, logical-level, physical-level

• Goal: simplify the design of efficient hardware
• Much like high-level languages

• Source: “Synthesis and Optimization of Digital Circuits”
• Giovanni De Micheli, 1994

• Somewhat dated, but an important guide

• Some pictures from his slides

• Active area of research

CSE 372 (Martin): Synthesis 3

Hardware CAD

• Our focus

• Digital, synchronous systems

• Synthesis

• Convert “code” into “logic blocks”

• Logic blocks is implementation technology specific

• Reduce logic delays and area

• Place & Route

• Physical-level layout of circuits on chip

• Reduce wire delays and area

CSE 372 (Martin): Synthesis 4

Two Types of Chips

• General-purpose processors
• Design for specific domains, but still “general-purpose”

• Program using a traditional programming language

• Special-purpose chips
• ASICs (application-specific integrated circuits)

• Hard-code logic

• Example domains: media encoding, decoding, signal processing

• General purpose chips slow take over ASICs

• ASICs find new niche (bleeding edge applications)

• Aside: hardware/software co-design (or co-synthesis)
• Given a software algorithm, make a processor for running it

• Advanced hardware synthesis and compiler optimizations

CSE 372 (Martin): Synthesis 5

Design Implementation Approaches

• Full-custom

• Designs specify every transistor

• Used for performance-critical parts of high-volume designs

• Semi-custom

• Mixture of full-custom and synthesis design flows

• Use of macro-cells: special highly-optimized components

• Examples: memory arrays, adders, multipliers, etc.

• Standard cells (all synthesis)

• Synthesis and place & route does everything

• Much like our FPGA design flow

• Our project Verilog + $$$$ = actual chip

CSE 372 (Martin): Synthesis 6

Standard Cell Example

• Standard cell libraries

• Blocks of logic primitives

• “AOI” gates

• Any and/or/invert operations

• Might include all three-input gates

• Also includes flip-flops, etc.

• Much like a FPGA
design flow

• Faster

• Not programmable

3-input NAND cell

(from ST Microelectronics):

© Giovanni De Micheli – All rights reserved

BA

A

B

CSE 372 (Martin): Synthesis 7

Top-down view:

p-

oxide

n+ n+

Vd Vs

Aside: Transistor Physical Layout

© UC Regents Fall 2005 - CS 152 L11: VLSI CSE 372 (Martin): Synthesis 8

Cell-based Design (or standard cells)

Routing channel

requirements are

reduced by presence

of more interconnect

layers

Functional
module
(RAM,
multiplier,…)

Routing
channel

Logic cellFeedthrough cell

© Giovanni De Micheli – All rights reserved

CSE 372 (Martin): Synthesis 9

Cell-structure

hidden under

interconnect layers

© Giovanni De Micheli – All rights reserved

Cell-based Layout

CSE 372 (Martin): Synthesis 10

Combinational Logic Optimizations

• Constant propagation

• Any hard-coded value pre-computed

• Common sub-expression elimination

• Avoid redundant re-computation of signals

• Strength reduction

• Transform harder operations into simpler operations

• Example: “x * 2” into “x << 1”

• Resource sharing

• Reduce logic by reuse

• Mux and adder example

CSE 372 (Martin): Synthesis 11

Heterogeneous Programmable Platforms

Xilinx Vertex-II Pro

Courtesy Xilinx
High-speed I/O

Embedded PowerPC

Embedded memories

Hardwired multipliers

FPGA Fabric

© Giovanni De Micheli – All rights reserved CSE 372 (Martin): Synthesis 12

CAD Tool Goals

• Maximize performance

• Minimize area

• Minimize power

• Always a trade off

© Giovanni De Micheli – All rights reserved

CSE 372 (Martin): Synthesis 13

Combinational Logic Minimization

• Given a truth table…

• Create fast and small logic to compute it

• Example: may be faster to calculate inverse of function, then just
invert the output

• Two types

• Two-level

• Calculate truth table from HDL code

• PLA-like, simple

• Not practical for large number of inputs

• Multi-level

• Keep structure from code

• Transform it to improve it

CSE 372 (Martin): Synthesis 14

State Machine Optimization

• State minimization

• Reduce number of states by coalescing identical states

• State encoding

• Encoding of state affects combinational logic

• Next-state logic and output logic

• Assign binary encoding to each unique state

• Common approach: one-hot encoding

• Pro: simple logic

• Con: One state bit per state

• Combinational optimization

• As before

CSE 372 (Martin): Synthesis 15

State Minimization Example

• Find states than can
be combined

© Giovanni De Micheli – All rights reserved CSE 372 (Martin): Synthesis 16

Sequential Logic Optimizations

• Retiming
• Moving logic and/or registers

• Balance stages (move logic from one stage to another)

• Which is better? (a) or (b)?

• Register insertion
• Give tool combinational logic, ask for n-pipeline stages

• Tool breaks the logic into stages

• Xilinx will do this, actually

• Example: memory arrays

CSE 372 (Martin): Synthesis 17

Technology Mapping

• Map abstract logic to actual hardware primitives
• Standard cells or FPGA lookup tables

• Which is better?

• Another opportunity: late arriving signals

• FPGA mapping
• LUTs of any four-inputs

• Many possible coverings

• Note: 4-input P37X opcode, single LUT per output control signal

CSE 372 (Martin): Synthesis 18

Place and Route

• Placing the primitives on the chip (or FPGA)

• Possible algorithm:

• Start with guess of reasonable placement

• Pick two elements, evaluate swapping them

• If “better”, perform the swap

• If “worse”, don’t swap

• Evaluation metrics:

• Average wire length (cheap to recalculate)

• Re-evaluate circuit critical path (expensive to recalculate)

• Routing

• Connecting the parts with wires

• The fuller the FPGA, the harder the problem

CSE 372 (Martin): Synthesis 19

Synthesis Under Constraints

• “Fast enough”

• Given a delay goal, make it small (or low power)

• “Small enough”

• Given an area (or power) budget, make it fast

• Why? No point in over-optimizing parts not on critical path

• Example: pipelined processor

• Once you know your slowest stage’s delay

• Re-optimize the other stages to save area

• Example: top-down floor planning

• Your design group has an area budget, can’t exceed it

CSE 372 (Martin): Synthesis 20

High-Level Synthesis

• Give the tool an algorithm
• Tool creates logic to implement algorithm

• Including cyclic computations

• Examples: apply a low-pass filter to a stream of values

• More abstract than HDL
• Not gate-level or cycle-level design

• Sometimes Matlab’s input language is used

• Xilinx has a Matlab DSP (digital signal processing) design flow

• SystemC
• A way to specify hardware using C++ library

• Works like an HDL for hardware/software designs

• Research: C-code in, custom chip out

CSE 372 (Martin): Synthesis 21

Miscellaneous Issues

• All synthesis and place & route phases interact
• A decision later could make an earlier decision less good

• Fundamentally hard problem

• Iterative approaches can help

• Sometimes manual intervention is needed

• Non-repeatable in some cases
• Small design change, larger synthesis output change

• CAD tools are buggy
• Lots of effort on synthesis verification

• Take the output, verify it matches the input

• Random or exhaustive test cases

• Symbolic equivalence testing

