CSE372
Digital Systems Organization and Design
Lab

Prof. Milo Martin

Unit 7: Hints on Pipelining & Wrapup

CSE 372 (Martin): Pipelining hints 1

Optimism

Agenda

Ramblings on design & testing

Discuss pipelining issues
¢ Some (hopefully) helpful hints
¢ BlockRAM troubles

Discuss where CSE371/372 should go in the future

Course evaluations

CSE 372 (Martin): Pipelining hints 2

Testing and Testbenches

e "We're almost done, we just have to test it.”

e From Fred Brooks’ The Mythical Man-Month:
Optimism

All programmers are optimists. Perhaps this modern sorcery espe-
cially attracts those who believe in happy endings and fairy god-
mothers. Perhaps the hundreds of nitty frustrations drive away all
but those who habitually focus on the end goal. Perhaps it is
merely that computers are young, programmers are younger, and
the young are always optimists. But however the selection process
works, the result is indisputable: “This time it will surely run,” or
“I just found the last bug.”

CSE 372 (Martin): Pipelining hints 3

e “Good Enough”
e On an exam, 95% is a good score
¢ In “design”, 95% correct isn't good enough
¢ Different mentality

e Testbenches are not just academic artifacts for grading
¢ Real systems use “unit tests” and randomized testing to find bugs

e Testing is integral to any development project

¢ For a three-week (almost four) project, how much of that should
be testing?

CSE 372 (Martin): Pipelining hints 4

More Fred Brooks

For some years I have been successfully using the following

rule of thumb for scheduling a software task:

Y4 planning

Y% coding

Y4 component test and early system test
Y4 system test, all components in hand.

This differs from conventional scheduling in several important

ways:

1.

2.

3.

The fraction devoted to planning is larger than normal. Even
s0, it is barely enough to produce a detailed and solid specifi-
cation, and not enough to include research or exploration of
totally new techniques.

The half of the schedule devoted to debugging of completed
code is much larger than normal.

The part that is easy to estimate, i.e., coding, is given only
one-sixth of the schedule.

CSE 372 (Martin): Pipelining hints

Design

e Design matters

e Getting this working isn't just “implementation”, it requires design

¢ A strong design makes lots of difference
» This project is too difficult to brute force

e Can't take the CSE371 slides too literally
¢ Design to explain pipelining, not an actual implementation

e Few discussed implementation of bypassing and stalling in

design document

CSE 372 (Martin): Pipelining hints

More Fred Brooks

In examining conventionally scheduled projects, I have found
that few allowed one-half of the projected schedule for testing,
but that most did indeed spend half of the actual schedule for that
purpose. Many of these were on schedule until and except in
system testing.?

Failure to allow enough time for system test, in particular, is
peculiarly disastrous. Since the delay comes at the end of the
schedule, no one is aware of schedule trouble until almost the
delivery date. Bad news, late and without warning, is unsettling
to customers and to managers.

CSE 372 (Martin): Pipelining hints 6

Bypassing and Stalling

¢ Fully decode instruction vs latching it each cycle
¢ Think about how the CSE371 homework abstracted this issue

¢ For each instruction:
¢ Determine what register it writes
¢ 3-bit register ID, 1-bit “write enable” valid bit
¢ Determine what register it reads
¢ Two x (3-bit register ID, 1-bit “read enable” valid bit)
¢ Does it write memory? (just the “write enable”)
¢ Does it read memory?

¢ Once you have this, bypassing and stalling should be
mostly opcode and instruction independent

CSE 372 (Martin): Pipelining hints 8

Some Tricky Bypassing Cases

e LDR 2 € [r1+10]
STR r2 = [r3+5]

. JSR LABEL
LABEL: ADD RO € R7, RO

¢ Note: be sure to “next-PC” predict all sorts of control
transfer instructions
o In fact, just predict “all” instructions, should work just fine

CSE 372 (Martin): Pipelining hints 9

Nullifying Instructions

¢ How to squash an instruction?
e Approach #1: mux in a NOOP encoding
e Approach #2: set an explicit “not valid” bit
e Approach #3: set all “read enables” and “write enables” to zero

e My suggestion: some combination of approach #2 and #3

¢ Goes along with not tracking the actual instruction encoding
everywhere

¢ Note: need to track type of stall or squash for performance
counters anyway...

CSE 372 (Martin): Pipelining hints 11

4

Tricky Bypass: M—\—PI Controller I ‘‘‘‘

R7 :=PC+1 1]8:6] > - 1
) (TIRTE v, BR Logic
A
4b0100)
6 Memory 16 1[8:6 3 [l v
PC 216 by 16 bit Pri11:9 p|inData WE
d1is:3 3 Memory
1129 216 by 16 bit
JULE 3
3'b111 |‘\'>
+1 16
aY =
»

s:008 —— 15

b 00

o

Addr Out 16

©d

7

T

E
-
=

=

A

1

N

Zero
. —\-> 16
<« A T
16 ~ 1 \ g

&
l

N -

CSE 372 (Martin): Pipelining hints 10

Block RAM Troubles

e Our 128KByte memory must use Xilinx “block RAMs”
¢ Wouldn't fit on the FPGA otherwise

¢ Xilinx blockRAMs are synchronous read
¢ Unlike our asynchronous read register file
e Hard, real-world constraint; we need to work around this

Reg—» Memory —-—>

Input Registered

CSE 372 (Martin): Pipelining hints 12

Block RAM Partial Solutions

Register File Bypass

e Approach #1: Use the global write enable (GWE)
e Use it to make the BlockRAMs look asynchronous
* Add explicit pipelined registers where needed

e Approach #2: Stay the course
¢ Keep with assumption that BRAMs are input registered
¢ Handle some of the tricky stall cases by changing read address

e Approach #3: Add read enable to BRAM
o Like approach #2, but simplifies stall logic (See TAs for code)

e Approach #4: Assume output registered BRAMs
¢ Unfortunately, hard to do bypassing into Memory stage

CSE 372 (Martin): Pipelining hints 13

Course Recap

e Our register file hands writes differently than book
e Solution: add one more local bypass
¢ Can be done totally internal to register file

e Why aren’t we using both negative & positive clock edges
¢ Can really complicate on-board functionality
¢ Risk avoidance
¢ Disallowed by some standard cell ASIC design flows
¢ Should work, but who really knows

CSE 372 (Martin): Pipelining hints 14

CSE372 in the Future

o We've talked about digital logic design
¢ Verilog
¢ Design flows
¢ FPGAs and hardware devices

e We've talked about design
¢ Breaking a task into parts
¢ The process of design
¢ Hands on experience
¢ Learning by doing

e Recall: last year, no CSE372 lectures
¢ They were on their own

CSE 372 (Martin): Pipelining hints 15

e What should be do next year?

Same as this year (1.0/0.5 credit split with separate lab lecture)

Combine CSE371/CSE372 into a single class
* Remove some of the material
o Keep project

Abandon project altogether (no, in my opinion)

Split into two 1.0 courses in different semesters

¢ Your thoughts?

CSE 372 (Martin): Pipelining hints 16

