Synthesis and
Simulation
Design Guide

S XILINX®

2 XILINX®

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate
on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright
laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents,
copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design.
Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no
obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the
accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS
WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR
ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER
EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION
WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE
AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF
ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE
THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-
safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or
weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

Copyright © 1995-2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks
of Xilinx, Inc. PowerPC is a trademark of IBM, Inc. All other trademarks are the property of their respective owners.

Synthesis and Simulation Design Guide www.xilinx.com 8.1i

http://www.xilinx.com

SO XILINX®
Preface

About This Guide

This guide provides a general overview of designing Field Programmable Gate Arrays
(FPGA devices) with Hardware Description Languages (HDLs). It includes design hints
for the novice HDL user, as well as for the experienced user who is designing FPGA
devices for the first time.

The design examples in this guide were:

e created with Verilog and VHSIC Hardware Description Language (VHDL)

e compiled with various synthesis tools

e targeted for Spartan™-II, Spartan-1IE, Spartan-3, Spartan-3E, Virtex™, Virtex-E,
Virtex-II, Virtex-II Pro, Virtex-II Pro X and Virtex-4 devices

Xilinx® equally endorses both Verilog and VHDL. VHDL may be more difficult to learn
than Verilog, and usually requires more explanation.

This guide does not address certain topics that are important when creating HDL designs,
such as the design environment; verification techniques; constraining in the synthesis tool;
test considerations; and system verification. For more information, see your synthesis tool
documentation and design methodology notes.

Before using this guide, you should be familiar with the operations that are common to all
Xilinx software tools.

Guide Contents

This guide contains the following chapters.

e Chapter 1, “Introduction,” provides a general overview of designing Field
Programmable Gate Arrays (FPGA devices) with HDLs. This chapter also includes
installation requirements and instructions.

¢ Chapter 2, “Understanding High-Density Design Flow,” provides synthesis and
Xilinx implementation techniques to increase design performance and utilization.

e Chapter 3, “General HDL Coding Styles,” includes HDL coding hints and design
examples to help you develop an efficient coding style.

e Chapter 4, “Coding Styles for FPGA Devices,” includes coding techniques to help you
use the latest Xilinx FPGA devices.

e Chapter 5 “Using SmartModels,” describes the special considerations encountered
when simulating designs for Virtex-II Pro and Virtex-II Pro X FPGA devices.

e Chapter 6, “Simulating Your Design,” describes simulation methods for verifying the
function and timing of your designs.

e Chapter 7, “Equivalency Checking.” Information on equivalency checking is no
longer included in the Synthesis and Simulation Design Guide. For information on

Synthesis and Simulation Design Guide www.xilinx.com 3
8.1i

http://www.xilinx.com

Preface: About This Guide 27 XILINX®

running formal verification with Xilinx devices, see
http:/ /www.xilinx.com/xInx/xil_tt_product.jsp?BV_UseBVCookie=yes&sProduct=f
ormal

Additional Resources

To find additional documentation, see the Xilinx website at:

http:/ /www.xilinx.com/literature.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http:/ /www.xilinx.com/support.

Conventions
This document uses the following conventions. An example illustrates each convention.
Typographical
The following typographical conventions are used in this document:
Convention Meaning or Use Example
Messages, prompts, and
Courier font program files that the system | speed grade: - 100
displays
Courier bold L1tera'l command.s that you ngdbuild design_name
enter in a syntactical statement
fCommands that you select File -Open
Helvetica bold rom a menu
Keyboard shortcuts Ctrl+C
Variables in a syntax
statement for which you must | ngdbuild design_name
supply values
See the Development System
Italic font References to other manuals | Reference Guide for more
information.
If a wire is drawn so that it
Emphasis in text overlaps the pin of a symbol,
the two nets are not connected.
An optional entry or
Square brackets [| para'n?ete.r. However, in bus ngdl?uild [option_name]
specifications, such as design_name
bus[7:01], they are required.
Braces | | A list of items from which you lowpwr ={on|off}
must choose one or more
4 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=xilinx+literature
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/xlnx/xil_tt_product.jsp?BV_UseBVCookie=yes&sProduct=formal
http://www.xilinx.com/xlnx/xil_tt_product.jsp?BV_UseBVCookie=yes&sProduct=formal
http://www.xilinx.com

ST XILINX®

Conventions

Convention

Meaning or Use

Example

Vertical bar |

Separates items in a list of
choices

lowpwr ={on|off}

Vertical ellipsis

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name CLKIN'

Horizontal ellipsis ...

Repetitive material that has

allow block block name

been omitted locl Ioc2 locn;
Online Document
The following conventions are used in this document:

Convention Meaning or Use Example
Cross-reference link to a See the section “Additional
location in the current file or | Resources” for details.

Blue text . o
in another file in the current Refer to “Title Formats” in
document Chapter 1 for details..
Red text Cross-reference link to a See Figure 2-5 in the Virtex-II
location in another document | Platform FPGA User Guide.
. . . Go to http:/ /www.xilinx.com
Blue, underlined text | Hyperlink to a website (URL) for the latest speed files.

Synthesis and Simulation Design Guide

8.1i

www.Xxilinx.com

http://www.xilinx.com
http://www.xilinx.com

Preface: About This Guide 27 XILINX®

6 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

Table of Contents

Preface: About This Guide

Guide Contents e 3
Additional ReSOUICeSottt 4
CONVENLIONSottt e 4
Typographical. 4
Online DocUmMentot 5

Chapter 1: Introduction

Device Support 17
Hardware Description Languages ... 17
Advantages of Using HDLs to Design FPGA Devices 18
Top-Down Approach for Large Projects 18
Functional Simulation Early in the Design Flow. 18
Synthesis of HDL CodetoGates 18
Early Testing of Various Design Implementations 18
Reuse of RTL Codeo i 19
Designing FPGA DeviceswithHDLs.. 19
Designing FPGA Devices with Verilog.................... 19
Designing FPGA Deviceswith VHDLl 19
Designing FPGA Devices with Synthesis Tools 20
Using FPGA System Features .. 20
Designing Hierarchy 20
Specifying Speed Requirementsl 20

Chapter 2: Understanding High-Density Design Flow

Design Flow 24
Entering Your Design and Selecting Hierarchy 25
Design Entry Recommendations................o oo oL 25

USe RTL Code. . .o i ittt et e e e e e e e e e e e e 25

Select the Correct Design Hierarchyo . 25
Architecture Wizard 25
Opening Architecture Wizard. i 25
Architecture Wizard Componentso 26

CORE Generator.ottt e e e e e e 27
CORE Generator Templates 27

CORE Generator Files. e e e e e e e 27
Functional Simulation. 28
Simulation Recommendationsttt 28
Perform Separate Simulations. 28
CreateaTestBench. i i e e e e 28
ModelSim Simulators 29
Synthesizing and Optimizing 29
Creating an Initialization File............ 29
Creating a Compile Run Script 29

Synthesis and Simulation Design Guide www.xilinx.com

8.1i

http://www.xilinx.com

SXILINX®

DCEPGA . . . 29
LeonardoSpectrumt 31

Precision RTL Synthesis 32

SYNPLfy. . oo 32

X e 33
Synthesizing Your Design i 33
Modifying Your Designoou i 33
Synthesizing Large Designso i 33

Saving Compiled Designas EDIFor NGC 33

Reading Cores. 34

X e 34
LeonardoSpectrumt 34

Synplify Proo 34

Precision RTL Synthesis i 34

Setting Constraints.............. 34
Setting Constraints Using a Synthesis Tool Constraints Editor 35
Setting Constraintsinthe UCEFile.................. 35
Setting Constraints Using the Xilinx Constraints Editor 36
Setting Constraints Using PACE i i ... 36
Evaluating Design Size and Performance 36
Estimating Device Utilization and Performance............................... 37
Determining Actual Device Utilization and Pre-routed Performance............. 37
Using Project Navigator to Map Your Design 37

Using the Command Line to Map Your Design 38
Evaluating Coding Style and System Features 38
Modifying YourCode 39
Using FPGA System Features 39
Using Xilinx-Specific Features of Your Synthesis Tool 39
Incremental Design 39
Modular Design. 40
Placingand Routing......... 40
Decreasing Implementation Timel 40
Improving ImplementationResults oL 41

Map TIMING .« o et ettt e e 41

Extra Effort Mode iIn PAR o 41

Turns Engine Option i 41

Reentrant Routing Option. i i 42

Guide Optiono 42

Timing Simulation. 43

Chapter 3: General HDL Coding Styles

Introduction 45
Naming, Labeling, and General Coding Styles............................... 45
Using Xilinx Naming Conventions, 46
Naming Guidelines for Signals and Instances................................. 46
General 46
Recommendations for VHDL and Verilog Capitalization 47
Matching File Names to Entity and Module Names 47
Naming Identifiers......... 47
www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

Guidelines for Instantiation of Sub-Modules. 48
VHDL Example.o e 48
Verilog Example 48

Recommended Lengthof Line...................... 49

Usinga Common FileHeader .. 49

Use of Indentation and SpacingintheCode 50
VHDL Example.o e 50
Verilog Example 50

Use of TRANSLATE_OFF and TRANSLATE_ON in Source Code 51

Attributes and Constraints 51
Attributeso 51
Synthesis Constraints 51
Implementation Constraints. 52

Passing Attributes 52
VHDL Primitive Attribute Example i 52
Verilog Primitive Attribute Example oL 53
VHDL Synthesis Attribute Examples i i 53
Verilog Synthesis Attribute Examples oL 54

Synthesis Tool Naming Conventions, 56
LeonardoSpectrum and Precision Synthesis Naming Styles. 56
Synplify Naming Styles i 56

Specifying Constants. 57

Using Constants and Parameters to Clarify Code 57
VHDL Example.o 57
Verilog Exampleo 57

Using Generics and Parameters to Specify Dynamic Bus and Array Widths. 58
VHDL Example.o 58
Verilog Exampleo 59

Choosing DataType i 59

Declaring Ports....... ... 60

Using Arrays in Port Declarations. 60
Incompatibility with Verilog. 60
Inability to Store and Re-Create Original Declaration of the Array 60
Mis-Correlation of Software PiIn Nameso i, 61

Minimizing the Use of Ports Declared as Buffers 61

Comparing Signals and Variables (VHDL only)............................... 62
Using Signals (VHDL) i 62
Using Variables (VHDL).ot i 63

Using “timescale 64

Coding for Synthesis.......... 64

Omit the Use of Delays in Synthesis Code.................................... 64

Order and Group Arithmetic Functions................ 65

Use of Resets and Synthesis Optimization.................................... 65
VHDL Example One. i i 66
Verilog Example One o 67
VHDL Example TWo. oot i 67
Verilog Example TWOo 68
VHDL Example Three.o i 68
Verilog Example Three 69
VHDL Example Four i i 69
Verilog Example Four. 70

Considerations When Not Using Asynchronous Resetsina Design.............. 70

Comparing If Statement and Case Statement 71

Synthesis and Simulation Design Guide www.xilinx.com

8.1i

http://www.xilinx.com

SXILINX®

4-to-1 Multiplexer Design with If Construct 71
4-to-1 Multiplexer Design with Case Construct. 72
Implementing Latches and Registers .. 74
LatchInference i 74
Converting Latchto DRegister. i 75
Converting Latchtoa LogicGate, 76
VHDL Example.o e 76
Verilog Example 76
ResourceSharing 77
Using Clock Enable Pin Instead of Gated Clocks 79
Converting the Gated Clock toa Clock Enable. 80

Chapter 4: Coding Styles for FPGA Devices

Applicable Architectures 83
FPGA HDL Coding Features 84
Instantiating Components........... i 84
Instantiating FPGA Primitives............ o i 84
VHDL Example. oot e e 84

Verilog Exampleo e 85

Passing Generics and Parameters 85
VHDL Example. oot e 86

Verilog Exampleo 86
Instantiating CORE Generator Modules 87
Using Boundary Scan 87
Using Global Clock Buffers 88
Inserting Global Clock Buffers............ 88
LeonardoSpectrum and Precision Synthesis. 88

SYNPLfY. . o 88

XS o 89
Instantiating Global Clock Buffers 89
Instantiating Buffers Driven fromaPort. o i i 89
Instantiating Buffers Driven from Internal Logic, 90

Using Advanced Clock Management .. 93
Virtex-II, Virtex-II Pro, Virtex-Il Pro X, and Spartan-3DCMs. 93

Virtex-d DCMS . .o 94

Using CLKDLL in Virtex, Virtex-Eand Spartan-II............................. 94
Using the Additional CLKDLLin Virtex-E 95
Using DCM_ADVin Virtex-4 i 99
VHDL Example.o 99

Verilog Exampleo 101

Using DCM in Other Devices. o i i i it 101
VHDL EXample. oot e 102

Verilog Exampleo 103

Using Dedicated Global Set/Reset Resource 104
Recommendations i 104
Advantages to Implicitly Codingol 104
Initial State of the Registers and Latches 105
VHDL Example. 105

Verilog Exampleo 105

10 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

Implementing Inputs and Outputs ... 105
I/OStandards.o 105
Specifying [/OStandards 106

LeonardoSpectrumot 106
SYNPLfy. . o 106
Precision Synthesis, Synplifyand XST il 107
Outputs 109
Using IOB Registerand Latch 110
Virtex, Virtex-E, and Spartan-ITIOBs o i, 110
Virtex-ITand Newer IOBso i 110
Inferring Usage of Flip-Flops o i i 110
Pulling Flip-Flopsintothe IOB. i 111
Using Dual Data Rate IOB Registers............................. 111
VHDLExample.o 112
Verilog Example oo 112
Using Output Enable IOBRegister. 113
VHDLExample.o 113
Verilog Example 114
Using the Pack Registers OptionwithMap 114
Virtex-Eand Spartan-IIEIOBs i 114
Additional I/O Standards for Virtex-EDevices oo 114
Coding Examples for LVDSI/OStandards 115
Coding Examples Using the IOSTANDARD Generic or Parameter............... 118
Virtex-Iland Newer IOBs o 120
Differential Signaling i i 120
Differential Signaling Coding Examples. o ... 120

Encoding State Machines.l 123

Using Binary Encoding i i 123
Binary Encoded State Machine VHDL Example., 124
Binary Encoded State Machine Verilog Example 126

Using Enumerated Type Encoding o oo L. 128
Enumerated Type Encoded State Machine VHDL Example..................... 128
Enumerated Type Encoded State Machine Verilog Example 129

Using One-HotEncoding o o i i i i 130
One-Hot Encoded State Machine VHDL Example 130
One-Hot Encoded State Machine Verilog Example 131

Accelerating FPGA Macros with One-Hot Approach 132

Summary of Encoding Styleso ol 132

Initializing the State Machine.............o o oo 133
Initializing the State Machine VHDL Example............... 133
Initializing the State Machine Verilog Example 133

Implementing Operators and Generating Modules 133

Using the DSP48 Block i 133
RESOUICES . .ottt ittt e 133
VHDL Code Exampleso i 134
Verilog Code Examples. 143

Adderand Subtractor 150

Multiplier 150
VHDL Example One: Pipelined Multiplier. 150
VHDL Example Two: Synchronous Multiplier. 151
Verilog Example One: Pipelined Multiplier 151
Verilog Example Two: Synchronous Multiplier 152

Synthesis and Simulation Design Guide www.xilinx.com 11

8.1i

http://www.xilinx.com

SXILINX®

COUNEETS ..ottt e e et e e e e e e 152
VHDL Example: Loadable Binary Counter.ooiiiion.. 152
Verilog Example: Loadable Binary Counter 153

Comparator. ... 153
VHDL Example: Unsigned 16-Bit Greater or Equal Comparator 154
Verilog Example: Unsigned 8-Bit Greater Or Equal Comparator................. 154

Encoder and Decodersiiiiiiiii i e 154
VHDL Example: LeonardoSpectrum Priority Encoding. 154
Verilog Example: LeonardoSpectrum Priority Encoding 155

Implementing Memory. 156

Implementing Block RAM 157

Instantiating Block SelectRAM.. i 157
Instantiating Block SelectRAM VHDL Example. 158
Instantiating Block SelectRAM Verilog Examples 160

Inferring Block SelectRAM VHDL Examples 161
LeonardoSpectrtimo vttt 162
SYNPLfY. . o 163
5 165

Inferring Block SelectRAM Verilog Examples................................ 165
LeonardoSpectrtimo vttt 165
SYNPLfY. . o 166
XSO e e e 167

Block SelectRAM In Virtex-4 i e 167
VHDL EXample. oot e 167
Verilog Exampleo 168
Single Port VHDL Examples.oiiniii i 169
Single Port Verilog Examples i 172
Dual Port Block SelectRAM VHDL Examplesooiiiniinien.... 175
Dual Port Verilog Examples o i 180

Implementing Distributed SelectRAM 183
Instantiating Distributed SelectRAMin VHDL. 184
Instantiating Distributed SelectRAM in Verilog oo 185
Inferring Distributed SelectRAM in VHDL. 186
Inferring Distributed SelectRAM in Verilog 188

Implementing ROMs 189
RTL Description of a Distributed ROM VHDL Example 189
RTL Description of a Distributed ROM Verilog Example. 190

Implementing ROMs Using Block SelectRAM 191
LeonardoSpectrtimo vt 191
SYNPLLY. . o 191
RTL Description of a ROM VHDL Example Using Block SelectRAM 191
RTL Description of a ROM Verilog Example using Block SelectRAM 192

Implementing FIFOs 193

Implementing CAM. 193

Using CORE Generator to Implement Memory 193

Implementing Shift Registers, 193
Inferring SRL1I6in VHDL o 194
Inferring SRL16in Verilogt 195
Inferring Dynamic SRL16in VHDL i, 195
Inferring Dynamic SRL16in Verilog.o 196
Implementing LESR. 196
12 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

Implementing Multiplexers 197
Virtex, Virtex-E, and Spartan-II Families o ... 197

Virtex-Il Partsand Newer. 197

Mux Implemented with Gates VHDL Example 197

MUX Implemented with Gates Verilog Example 198

Wide MUX Mapped to MUXFs.o oot i 198

Using Pipelining 199
Before Pipelining 199
After Pipelining 199
Design Hierarchy 200
Advantages of Hierarchical Designs.. 200
Disadvantages of Hierarchical Designs 200
Using Synthesis Tools with Hierarchical Designs 200
Restrict Shared Resources to the Same Hierarchy Level 201

Compile Multiple Instances Together. 201

Restrict Related Combinatorial Logic to the Same Hierarchy Level 201

Separate Speed Critical Paths from Non-Critical Paths 201

Restrict Combinatorial Logic that Drives a Register to the Same Hierarchy Level. ... 201

Restrict Module Size. i 201

Register ALOULPULS oo 201

Restrict One Clock to Each Module or to Entire Design 202

Chapter 5: Using SmartModels

Using SmartModels to Simulate Designs 203
SmartModel Simulation Flow 204
About SmartModels. 204
Supported Simulators.......... 205
Installing SmartModels 205
Method One e 205
Method ONe 0N LINUX. « o v vttt et et et e ettt ettt et e e aen 206

Method One on WIndOWS. . .. oo vttt et et et ettt e eeen 206

Method ONne 0N SOlariS . . v v vttt et et e et et e e e 206

Method TWO . ..ot e e e 206
Method TWO ON LINUX ..o vt i ittt e ettt et e e e 206

Method TWo on WINdOWsottt e e et et e 207

Method TWO 0N SolariS. . . v v oottt e e e et et e e e 208

Setting Up and Running Simulation................. 208
MTI ModelSim SEand ModelSImPE 209

MTI ModelSim SE and ModelSim PEon Linuxciiueeeenen... 209

MTI ModelSim SE and ModelSim PEon Windows 210

MTI ModelSim SE and ModelSim PEon Solaris., 211

Cadence NC-Verilog i 212
Cadence NC-VerilogonLinuxooiiiiii i 212

Cadence NC-Verilogon Windowso i, 213

Cadence NC-Verilogon Solarisooiiiiiiii ... 213

Cadence NC-VHDLL o e 214
Cadence NC-VHDL on LinuX. . ..o oottt i e e et e e e e e 214

Cadence NC-VHDL on Windows.o i ittt e et e e e e e e 215

Cadence NC-VHDL 0N S0laris oottt i e et e e e e e 216

Synthesis and Simulation Design Guide www.xilinx.com 13

8.1i

http://www.xilinx.com

SXILINX®

Synopsys VCS-MX 217
Synopsys VCS-MXonLinuxX.oovii i 217
Synopsys VCS-MXonSolariscoviiii i 218

Synopsys VCS-MXIi 219
Synopsys VCS-MXionLinux . ..o 219
Synopsys VCS-MXionSolariscoiiiiiiiiiiiii i 220

Chapter 6: Simulating Your Design

Introduction 221
Adhering to Industry Standards oL 222
Standards Supported by Xilinx SimulationFlow 222
Xilinx Supported Simulators 222
XilinX LiDTrariesottt e e 222
Simulation Points........... 223
Primary Simulation Points for HDL Designs................................. 223
Register Transfer Level (RTL) i L. 225
Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation 225
Post-NGDBuild (Pre-Map) Gate-Level Simulation............................ 226
Post-Map Partial Timing (Block Delays) 226
Timing Simulation Post-Placeand Route............... 226
Providing Stimulus 227
Test Bencheso 227
CreatingaTestBenchl 227
Creating a Test BenchinISETOOIsov i 227

Creating a Test Bench in Waveform Editor. 228

Creating a Test BenchinNetGen i, 228

Test Bench Recommendationsttt 228
VHDL and Verilog Librariesand Models................................... 228
Required Libraries 228

First SIMulation POINt oot vttt e e e e e 228

Second SIMulation POINt. . .. oot vttt e e e 229

Third, Fourth, and Fifth Simulation Points. ittt 229
Simulation Phase Library Information L. 229
Locating Library Source Files.....................l 230
Using the Libraries. 232
Using the UNISIM Libraryot i 232

Using the VHDL UNISIM Library i 232

Using the Verilog UNISIM Library.o i 232

Using the CORE Generator XilinxCoreLib Library................. 233

Using the SIMPRIM Library oo it i 233

Using the SmartModel Library i 233
Compiling Xilinx Simulation Libraries (COMPXLIB) 234
Compiling Simulation Libraries oL 234
Compiling Simulation Libraries from Project Navigator 234

Project Navigator Options i 234
Compiling Simulation Libraries from the Command Line 236
COMPXLIB SUPPOIt ..ottt 236
LADraries . . o oottt e 236

Device Families.o v i e 236
SIMULALOTS. . . ettt e e e e 236

14 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

COMPXLIB SYNtaXvvvviiiiii i 237
COMPXLIB Command Line Optionso i 237
COMPXLIB Command Line Examples. 239

Specifying Run Time Options, 241
Sample Configuration File (Windows Version) 243

Running NetGen.......... 246

Running NetGen from Project Navigator 246

Running NetGen from XFLOWo i i 246
Creating a Simulation Netlist from XFLOW 246
Changing Options. o 247

Running NetGen from the Command Line or a Script File.................. ... 247
Post-NGD simulation 247
Post-Map Simulation 247
Post-PAR simulation.o 247

Disabling X Propagation i 248
Using the ASYNC_REG Constraint, 248
SIM_COLLISION_CHECK. e 249
Use WithCare.ot e e 249
SIM_COLLISION_CHECK Strings 249
MIN/TYP/MAX Simulation 250

Definitions.ot 250
Maximum (MAX) . . .ottt e 250
Typical (TYP) . ..o 250
Minimum (MIN)o e e e 250

Obtaining Accurate Resultsl 251

Using NetGen ... 251
Using the VOLTAGE and TEMPERATURE Constraints 251

Understanding the Global Reset and 3-state for Simulation 253
Simulating VHDL. 254

Emulating the Global GSR Pulse in VHDL in Functional Simulation 254
Using VHDL Reset-On-Configuration (ROC) Cell 254
Using VHDLROCBUF Cell i 257

Simulating Special Componentsin VHDL. 259
Simulating CORE Generator Componentsin VHDL 259
Differential I/O (LVDS, LVPECL)ttt ettt ee e 259

Simulating Verilog......... 260

Defining Global Signalsin Verilog oo oL 260

Using theglblvModule 260

Defining GSR/GTSinaTestBench 261

Emulating the Global GSR in a Verilog Functional Simulation 261
Code Example.o 261

Simulating Special Components in Verilog 262
Defparam Support Considerations. o i 262
Differential /O (LVDS,LVPECL)o 262
Simulation CORE Generator Components, 263

Design Hierarchy and Simulation .. 263

Advantages of Hierarchyl 263

Improving Design Utilization and Performance........................... ... 263

Good Design Practices. 263

Maintaining the Hierarchyl 264
Using the KEEP_HIERARCHY Constraint. iia.. 264
ExampleFile.o 265

Synthesis and Simulation Design Guide www.xilinx.com 15

8.1i

http://www.xilinx.com

SXILINX®

RTL Simulation Using Xilinx Libraries 266
Simulating Certain Xilinx Components 266
CLKDLL, DCM and DCM_ADV e 267
CLKDLL/DCM Clocks Do Not Appear De-Skewed 267
TRACE/Simulation Model Differences i, 267
Non-LVITLInput Drivers i i 268
Viewer Considerationso 268
Attributes for Simulation and Implementation. 269
Simulating the DCM in Digital Frequency Synthesis Mode Only. 269
JTAG / BSCAN (Boundary Scan) Simulation. o .. 269
Timing Simulation.......... 270
Glitchesin Your Design i i 270
Debugging Timing Problems il 270
Identifying Timing Violations. i 270
Verilog System Timing Tasks i i 271
VITALTiming Checks i 271
Timing Problem Root Causes. il 272
Design Not Constrained o i 272
Path Not or Improperly Constrained, 273
Design Does Not Meet Timespec 273
Simulation Clock Does Not Meet Timespec, 274
Unaccounted Clock Skew o 274
Asynchronous Inputs, Asynchronous Clock Domains, Crossing Out-of-Phase 275
Debugging Tipsot 275
Special Considerations for Setup and Hold Violations 276
Zero Hold Time Considerations i 276
Negative Hold Times i 276
RAM Considerationsouiuininiiuiii i, 276
SWidth VIolationscvtit i e 277
$Recovery Violations......... i 277
Simulation Flows 278
ModelSIm SE/PE/XEVHDL 278
Using Shared Precompiled Libraries 278
VCS-MX VHDL ..o 279
Using Shared Precompiled Libraries, 279
NC-SIMVHDL 279
Using Shared Precompiled Libraries 279
NC-SIM Verilog 280
Using Library Source Files With Compile Time Options 280
Using Shared Precompiled Libraries 280
VCS-MX Verilog. 281
Using Library Source Files With Compile Time Options 281
Using Shared Precompiled Libraries 282
ModelSim Verilog 282
Using Library Source Files With Compile Time Options 283
Using Shared Precompiled Libraries 283

IBIS 1I/0O Buffer Information Specification (IBIS)............................ 283

Chapter 7: Equivalency Checking

16 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

$7 XILINX®

Chapter 1

Introduction

This chapter provides a general overview of designing Field Programmable Gate Arrays
(FPGA devices) with Hardware Description Languages (HDLs). It includes the following
sections.

Device Support

“Device Support”

“Hardware Description Languages”

“Advantages of Using HDLs to Design FPGA Devices”
“Designing FPGA Devices with HDLs”

The ISE software supports the following devices:

Virtex'

Virtex-1I

Virtex-E

Virtex-1I PRO
Virtex-II PRO X
Virtex-4 (SX/LX/FX)
Spartan™

Spartan-II
Spartan-IIE
Spartan-3
Spartan-3E
CoolRunner™ XPLA3
CoolRunner-II
XC9500™ (XL/XV)

Hardware Description Languages

Designers use Hardware Description Languages (HDLs) to describe the behavior and
structure of system and circuit designs. This chapter includes:

A general overview of designing FPGA devices with HDLs.
System requirements and installation instructions for designs available from the web.

A brief description of why FPGA devices are superior to ASICs for your design needs.

Synthesis and Simulation Design Guide www.xilinx.com 17

8.1i

http://www.xilinx.com

Chapter 1: Introduction

SXILINX®

Understanding FPGA architecture allows you to create HDL code that effectively uses
FPGA system features. To learn more about designing FPGA devices with HDL:

Enroll in training classes offered by Xilinx and by the vendors of synthesis software.
Review the sample HDL designs in the later chapters of this guide.
Download design examples from Xilinx Support.

Take advantage of the many other resources offered by Xilinx, including
documentation, tutorials, Tech Tips, service packs, a telephone hotline, and an
answers database. See “Additional Resources” in the Preface of this guide.

Advantages of Using HDLs to Design FPGA Devices

Using HDLs to design high-density FPGA devices has the following advantages:

“Top-Down Approach for Large Projects”
“Functional Simulation Early in the Design Flow”
“Synthesis of HDL Code to Gates”

“Early Testing of Various Design Implementations”
“Reuse of RTL Code”

Top-Down Approach for Large Projects

Designers use to create complex designs. The top-down approach to system design
supported by HDLs is advantageous for large projects that require many designers
working together. After they determine the overall design plan, designers can work
independently on separate sections of the code.

Functional Simulation Early in the Design Flow

You can verify the functionality of your design early in the design flow by simulating the
HDL description. Testing your design decisions before the design is implemented at the
RTL or gate level allows you to make any necessary changes early in the design process.

Synthesis of HDL Code to Gates

You can synthesize your hardware description to target the FPGA implementation. This
step:

Decreases design time by allowing a higher-level specification of the design rather
than specifying the design from the FPGA base elements.

Generally reduces the number of errors that can occur during a manual translation of
a hardware description to a schematic design.

Allows you to apply the automation techniques used by the synthesis tool (such as
machine encoding styles and automatic I/O insertion) during the optimization of
your design to the original HDL code. This results in greater optimization and
efficiency.

Early Testing of Various Design Implementations

HDLs allow you to test different implementations of your design early in the design flow.
Use the synthesis tool to perform the logic synthesis and optimization into gates.

18

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=tech+tips

S XILINX® Designing FPGA Devices with HDLs

Additionally, Xilinx FPGA devices allow you to implement your design at your computer.
Since the synthesis time is short, you have more time to explore different architectural
possibilities at the Register Transfer Level (RTL). You can reprogram Xilinx FPGA devices
to test several implementations of your design.

Reuse of RTL Code

You can retarget RTL code to new FPGA architectures with a minimum of recoding.

Designing FPGA Devices with HDLs

If you are used to schematic design entry, you may find it difficult at first to create HDL
designs. You must make the transition from graphical concepts, such as block diagrams,
state machines, flow diagrams, and truth tables, to abstract representations of design
components. Ease this transition by not losing sight of your overall design plan as you
code in HDL.

To effectively use an HDL, you must understand:
e the syntax of the language

¢ the synthesis and simulator software

e the architecture of your target device

e the implementation tools

This section gives you some design hints to help you create FPGA devices with HDLs.

Designing FPGA Devices with Verilog
Verilog is popular for synthesis designs because:

e Verilog is less verbose than traditional VHDL.

e Verilog is standardized as IEEE-STD-1364-95 and IEEE-STD-1364-2001.

Since Verilog was not originally intended as an input to synthesis, many Verilog constructs
are not supported by synthesis software. The Verilog examples in this guide were tested
and synthesized with current, commonly-used FPGA synthesis software. The coding

strategies presented in the remaining chapters of this guide can help you create HDL
descriptions that can be synthesized.

SystemVerilog is a new emerging standard for both synthesis and simulation. It is
currently unknown if, or when, this standard will be adopted and supported by the
various design tools.

Whether or not you plan to use this new standard, Xilinx recommends that you:

e Review the standard to make sure that your current Verilog code can be readily
carried forward as the new standard evolves.

e Review any new keywords specified by the standard.

e Avoid using the new keywords in your current Verilog code.

Designing FPGA Devices with VHDL

VHSIC Hardware Description Language (VHDL) is a hardware description language for
designing Integrated Circuits (ICs). It was not originally intended as an input to synthesis,
and many VHDL constructs are not supported by synthesis software. However, the high

Synthesis and Simulation Design Guide www.xilinx.com 19
8.1i

http://www.xilinx.com

Chapter 1: Introduction 27 XILINX®

level of abstraction of VHDL makes it easy to describe the system-level components and
test benches that are not synthesized. In addition, the various synthesis tools use different
subsets of the VHDL language. The examples in this guide work with most commonly
used FPGA synthesis software. The coding strategies presented in the remaining chapters
of this guide can help you create HDL descriptions that can be synthesized.

Designing FPGA Devices with Synthesis Tools

Most of the commonly-used FPGA synthesis tools have special optimization algorithms
for Xilinx FPGA devices. Constraints and compiling options perform differently
depending on the target device. Some commands and constraints in ASIC synthesis tools
do not apply to FPGA devices. If you use them, they may adversely impact your results.

You should understand how your synthesis tool processes designs before you create FPGA
designs. Most FPGA synthesis vendors include information in their guides specifically for
Xilinx FPGA devices.

Using FPGA System Features

To improve device performance, area utilization, and power characteristics, create HDL
code that uses such FPGA system features as DCM, multipliers, shift registers, and
memory. For a description of these and other features, see the FPGA data sheet and user
guide. The choice of the size (width and depth) and functional characteristics need to be
taken into account by understanding the target FPGA resources and making the proper
system choices to best target the underlying architecture.

Designing Hierarchy

Hardware Description Languages (HDLs) give added flexibility in describing the design.
However, not all HDL code is optimized the same. How and where the functionality is
described can have dramatic effects on end optimization. For example:

e Certain techniques may unnecessarily increase the design size and power while
decreasing performance.

e Other techniques can result in more optimal designs in terms of any or all of those
same metrics.

This guide will help instruct you in techniques for optional FPGA design methodologies.

Design hierarchy is important in both the implementation of an FPGA and during
incremental or interactive changes. Some synthesizers maintain the hierarchical
boundaries unless you group modules together. Modules should have registered outputs
so their boundaries are not an impediment to optimization. Otherwise, modules should be
as large as possible within the limitations of your synthesis tool.

The “5,000 gates per module” rule is no longer valid, and can interfere with optimization.
Check with your synthesis vendor for the preferred module size. As a last resort, use the
grouping commands of your synthesizer, if available. The size and content of the modules
influence synthesis results and design implementation. This guide describes how to create
effective design hierarchy.

Specifying Speed Requirements

To meet timing requirements, you should understand how to set timing constraints in both
the synthesis tool and the placement and routing tool. If you specify the desired timing at

20 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

ST XILINX®

Designing FPGA Devices with HDLs

the beginning, the tools can maximize not only performance, but also area, power, and tool
runtime. This generally results in a design that better matches the desired performance. It
may also result in a design that is smaller, and which consumes less power and requires
less time processing in the tools. For more information, see “Setting Constraints” in
Chapter 2 of this guide.

Synthesis and Simulation Design Guide www.xilinx.com 21

8.1i

http://www.xilinx.com

Chapter 1: Introduction

SXILINX®

22

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

$7 XILINX®

Chapter 2

Understanding High-Density Design

Flow

This chapter describes the steps in a typical HDL design flow. Although these steps may
vary with each design, the information in this chapter is a good starting point for any
design. This chapter includes the following sections.

“Design Flow”

“Entering Your Design and Selecting Hierarchy”
“Functional Simulation”

“Synthesizing and Optimizing”

“Setting Constraints”

“Evaluating Design Size and Performance”
“Evaluating Coding Style and System Features”
“Incremental Design”

“Modular Design”

“Placing and Routing”

“Timing Simulation”

Synthesis and Simulation Design Guide www.xilinx.com 23

8.1i

http://www.xilinx.com

Chapter 2: Understanding High-Density Design Flow

SXILINX®

Design Flow

The following figure shows an overview of the design flow steps.

Entering your Design
and Selecting Hierarchy

Functional Simulation
of your Design

Adding Design
Constraints

Synthesizing and Optimizing
your Design

Evaluating your Design Size
and Performance

Evaluating your Design's Coding Style
and System Features

Placing and Routing
your Design

Timing Simulation Static Timing

of your Design Analysis

Generating a Bitstream

Downloading to the Device,
In-System Debugging

Creating a PROM, ACE
or JTAG File

Figure 2-1: Design Flow Overview

X10303

24

www.Xxilinx.com

Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

S XILINX® Entering Your Design and Selecting Hierarchy

Entering Your Design and Selecting Hierarchy

The first step in implementing your design is to create the HDL code based on your design
criteria.

Design Entry Recommendations

The following recommendations can help you create effective designs.

Use RTL Code

Use register transfer level (RTL) code, and, when possible, do not instantiate specific
components. Following these two practices allows for:

e Readable code

e Ability to use the same code for synthesis and simulation
e Faster and simpler simulation

e Portable code for migration to different device families

e Reusable code for future designs

Note: In some cases instantiating optimized CORE Generator™ modules is beneficial with RTL.

Select the Correct Design Hierarchy

Selecting the correct design hierarchy:

e Improves simulation and synthesis results
e Improves debugging and modifying modular designs

e Allows parallel engineering, in which a team of engineers can work on different parts
of the design at the same time

e Improves the placement and routing by reducing routing congestion and improving
timing

e Allows for easier code reuse in the current design, as well as in future designs

Architecture Wizard

The Architecture Wizard in Project Navigator lets you configure complicated aspects of
some Xilinx® devices. The Architecture Wizard consists of several components for
configuring specific device features. Each component is presented as an independent
wizard. See “Architecture Wizard Components” below.

The Architecture Wizard can also produce a VHDL, Verilog, or EDIF file, depending on the
flow type that is passed to it. The generated HDL output is a module consisting of one or
more primitives and the corresponding properties, and not just a code snippet. This allows
the output file to be referenced from the HDL Editor. There is no UCF output file, since the
necessary attributes are embedded inside the HDL file.

Opening Architecture Wizard

There are two ways to open the Architecture Wizard, from Project Navigator and from the
command line.

Synthesis and Simulation Design Guide www.xilinx.com 25
8.1i

http://www.xilinx.com

Chapter 2: Understanding High-Density Design Flow 27 XILINX®

Opening Architecture Wizard from Project Navigator

To open Architecture Wizard from Project Naviator:

1. Select Project —New Source.

2. Select IP (Coregen & Architecture Wizard) from the New Source window.
Opening Architecture Wizard from the Command Line

To open Architecture Wizard from the command line, type arwz.

Architecture Wizard Components

The following wizards make up the Architecture Wizard:
e “Clocking Wizard”

e “RocketlO Wizard”

e “ChipSync Wizard”

o “XtremeDSP Slice Wizard”

Clocking Wizard
The Clocking Wizard enables:

e digital clock setup

e DCM and clock buffer viewing

e DRC checking

The Clocking Wizard allows you to:

e view the DCM component

e specify attributes

e generate corresponding components and signals

e execute DRC checks

e display up to eight clock buffers

e set up the Feedback Path information

e set up the Clock Frequency Generator information and execute DRC checks
e view and edit component attributes

e view and edit component constraints

e automatically place one component in the XAW file
e save component settings in a VHDL file

e save component settings in a Verilog file

RocketlO Wizard

The RocketIO Wizard enables serial connectivity between devices, backplanes, and
subsystems.

The RocketIO Wizard allows you to:
e specify RocketlO type
¢ define Channel Bonding options

¢ specify General Transmitter Settings, including encoding, CRC, and clock

26

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Entering Your Design and Selecting Hierarchy

e specify General Receptor Settings, including encoding, CRC, and clock
e provide the ability to specify Synchronization

e specify Equalization, Signal integrity tip (resister, termination mode...)
e view and edit component attributes.

e view and edit component constraints

e automatically place one component in the XAW file

e save component settings to a VHDL file

e save component settings to a Verilog file

ChipSync Wizard
The ChipSync Wizard applies to Virtex-4 only.

The ChipSync Wizard facilitates the implementation of high-speed source synchronous
applications. The wizard configures a group of I/O blocks into an interface for use in
memory, networking, or any other type of bus interface. The ChipSync Wizard creates
HDL code with these features configured according to your input:

e Width and IO standard of data, address, and clocks for the interface
e Additional pins such as reference clocks and control pins

e Adjustable input delay for data and clock pins

¢ Clock buffers (BUFIO) for input clocks

e ISERDES/OSERDES or IDDR/ODDR blocks to control the width of data, clock
enables, and 3-state signals to the fabric

XtremeDSP Slice Wizard

The XtremeDSP Slice Wizard applies to Virtex-4 only. The XtremeDSP Slice Wizard
facilitates the implementation of the XtremeDSP Slice. For more information, see the
Virtex-4 Data Sheet and the Virtex-4 DSP Design Considerations User Guide.

CORE Generator

CORE Generator delivers parameterized cores optimized for Xilinx FPGA devices. It
provides a catalog of ready-made functions ranging in complexity from simple arithmetic
operators such as adders, accumulators, and multipliers, to system-level building blocks
such as filters, transforms, FIFOs, and memories.

CORE Generator Templates

When ISE™ generates cores, it adds an instantiation template to the Language Templates.
To access the core template:

1. Select Edit —Language Templates from Project Navigator.
2. Select COREGEN in the Templates window.

CORE Generator Files

For each core it generates, CORE Generator produces the following files:

e “EDN and NGC Files”
e “VHO Files”

Synthesis and Simulation Design Guide www.xilinx.com 27
8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

Chapter 2: Understanding High-Density Design Flow 27 XILINX®

e “VEO Files”
e “Vand VHD Wrapper Files”

EDN and NGC Files

The Electronic Data Interchange Format (EDIF) netlist (EDN file) and NGC files contain
the information required to implement the module in a Xilinx FPGA. Since NGC files are in
binary format, ASCII NDF files may also be produced to communicate resource and timing
information for NGC files to third party synthesis tools. NGC files are generated for certain
cores only.

The NDF file is equivalent to an EDIF file. The ASY and XSF symbol information files allow
you to integrate the CORE Generator module into a schematic design for Mentor or ISE
tools.

VHO Files

VHDL template (VHO) template files contain code that can be used as a model for
instantiating a CORE Generator module in a VHDL design. VHO filed come with a VHDL
(VHD) wrapper file.

VEO Files

Verilog template (VEO) files contain code that can be used as a model for instantiating a
CORE Generator module in a Verilog design. VEO files come with a VHDL (VHD)
wrapper file.

V and VHD Wrapper Files

V and VHD wrapper files support functional simulation. These files contain simulation
model customization data that is passed to a parameterized simulation model for the core.
In the case of Verilog designs, the V wrapper file also provides the port information
required to integrate the core into a Verilog design for synthesis.

The V and VHD wrapper files mainly support simulation and are not synthesizable.

Functional Simulation

Use functional or RTL simulation to verify the syntax and functionality of your design.

Simulation Recommendations

Xilinx recommends that you do the following when you simulate your design:

e “Perform Separate Simulations”
e “Create a Test Bench”
Perform Separate Simulations

With larger hierarchical HDL designs, perform separate simulations on each module
before testing your entire design. This makes it easier to debug your code.

Create a Test Bench

Once each module functions as expected, create a test bench to verify that your entire
design functions as planned. Use the same test bench again for the final timing simulation
to confirm that your design functions as expected under worst-case delay conditions.

28

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Synthesizing and Optimizing

ModelSim Simulators

You can use ModelSim simulators with Project Navigator. The appropriate processes
appear in Project Navigator when you choose ModelSim as your design simulator,
provided you have installed any of the following:

e ModelSim Xilinx Edition-II
e ModelSim PE, EE or SE
You can also use these simulators with third-party synthesis tools in Project Navigator.

For more information about ModelSim support, see the Xilinx Tech Tips.

Synthesizing and Optimizing

This section includes recommendations for compiling your designs to improve your
results and decrease the run time. For more information, see your synthesis tool
documentation.

Creating an Initialization File

Most synthesis tools provide a default initialization with default options. You may modify
the initialization file or use the application to change compiler defaults, and to point to the
applicable implementation libraries. For more information, see your synthesis tool
documentation.

Creating a Compile Run Script
The following tools all support TCL scripting:
o “DCFPGA”
e “LeonardoSpectrum”
e “Precision RTL Synthesis”
e “Synplify”
o “XST”

TCL scripting can make compiling your design easier and faster while achieving shorter
compile times. With more advanced scripting, you can run a compile multiple times using
different options and write to different directories. You can also invoke and run other
command line tools.

You can run the following sample scripts from the command line or from the application.

DCFPGA

DCFPGA needs a setup file to tell the tool where to find all of the libraries. The libraries are
installed from the Xilinx installation CDs only on Solaris and Linux platforms.

Once you have determined that the libraries have been installed properly in the
$XILINX/synopsys directory, you can modify your setup file (.synopsys_dc.setup).

DCFPGA first looks for the setup file in your project directory, then in your home directory.
If DCFPGA does not find the file in one of those locations, it relies on a default file located
in the DCFPGA installation area. Below are two sample setup scripts for DCFPGA.

Synthesis and Simulation Design Guide www.xilinx.com 29
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=tech+tips
http://www.xilinx.com

Chapter 2: Understanding High-Density Design Flow

SXILINX®

Sample DCFPGA Setup Script One

f=============================s=s=ss=sss=ss==ss====== f
Template .synopsys_dc.setup file appropriate for
use with DC FPGA when targetting Xilinx VIRTEXT™2
architecture.
===============s===s=ssssss=ssss=ss==sss=ss==s========

setenv XILINX /u/pdg _cae/tools/synopsys/dcfpga-1ib/2005.03
set XilinxInstall [getenv XILINX]

- T T T 1 A A O O O A A A N BN A O #

Ensure that your UNIX environment
includes the environment variable:
SXILINX (points to the Xilinx
installation directory)

#orrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrnd #
#set search_path ". $XilinxInstall/VIRTEX2 S$search_path"
set search_path ". $XilinxInstall/synopsys/libraries/syn S$search_path"

Sample DCFPGA Setup Script Two

Define a work library in the current project dir
to hold temporary files and keep the project area
uncluttered. Note: You must create a subdirectory
in your project directory called WORK.
===_
define_design_lib WORK -path ./WORK
—=========—===================—====================_
You may like to copy this file to your project
directory, rename it ".synopsys_dc.setup".
$ ===

set target_library "xdcf_virtex2.db"
set synthetic_library "tmg.sldb"
set link_library "* xdcf_virtex2.db tmg.sldb"

set cache_dir_chmod_octal "1777"

set hdlin_enable_non_integer_parameters "true"
set hdlin_translate_off_ skip_text "true"

set edifout_ground_name "GND"

set edifout_ground_pin_name "G"

set edifout_ground_port_name "G"

set edifout_power_name "VCC"

set edifout_power_pin_name "P"

set edifout_power_port_name "P"

set edifout_netlist_only "true"

set edifout_power_and_ground_representation "cell"
set hdlin_enable_vpp "true"

set the edifout attributes.

set edifout_write_properties_list " DUTY_CYCLE_CORRECTION INIT_00 INIT_O01 INIT_02 INIT_03 \
INIT_04 INIT_05 INIT_06 INIT_07 INIT 08 INIT 09 INIT OA INIT OB INIT 0OC \

30

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Synthesizing and Optimizing

INIT_OD INIT_OE INIT OF INIT CLKDV_DIVIDE IOB EQN \
lut_function instance_number pad_location part \
INIT_10 INIT 11 INIT 12 INIT_13 INIT 14 INIT 15

INIT_16 INIT 17 INIT 18 INIT_19 INIT 1A INIT 1B

INIT_1C INIT_1D INIT 1E INIT 1F INIT 20 INIT 21

INIT_22 INIT_23 INIT 24 INIT 25 INIT 26 INIT 27

INIT_28 INIT_29 INIT 2A INIT 2B INIT 2C INIT 2D

INIT 2E INIT 2F INIT 30 INIT 31 INIT 32 INIT 33

INIT 34 INIT 35 INIT 36 INIT 37 INIT 38 INIT 39

INIT_3A INIT 3B INIT 3C INIT_3D INIT 3E INIT 3F

INIT_A INIT B SRVAL_A SRVAL_B SRVAL WRITE_MODE \
WRITE_MODE_A WRITE_MODE_B INITP_00 INITP_01 INITP_02 \

INITP_03 INITP_04 INITP_05 INITP_06 INITP_O07 \

DLL_FREQUENCY MODE DUTY CYCLE_CORRECT CLKDV_DIVIDE \

CLK_FEEDBACK CLKOUT_PHASE_SHIFT STARTUP_WAIT FACTORY_JF \

DSS_MODE PHASE_SHIFT CLKFX_MULTIPLY CLKFX_DIVIDE DFS_FREQUENCY_MODE \
DESKEW_ADJUST FACTORY_JF STEPPING "

P g G e

set post_compile_cost_check "false"

set_fpga_defaults xilinx_ virtex2

LeonardoSpectrum

To run the following TCL script from LeonardoSpectrum:
1. Select File —Run Script.
2. Typein the Level 3 command line, source script_file.tcl

3. Type in the UNIX/DOS prompt with the EXEMPLAR environment path set up,
spectrum —file script_file.tcl

4. Type spectrumat the UNIX/DOS prompt.
5. At the TCL prompt type source script_file.tcl

You can enter the following TCL commands in LeonardoSpectrum.

Table 2-1: LeonardoSpectrum TCL Commands

Function Command
set part type set part vblecs144
read the HDL files read macrol.vhd macro2.vhd top_level.vhd
set assign buffers PAD IBUF_LVDS data(7:0)
optimize while preserving hierarchy | optimize -ta xcve -hier preserve
write out the EDIF file auto_write ./M1/ff example.cdf
Synthesis and Simulation Design Guide www.xilinx.com 31

8.1i

http://www.xilinx.com

Chapter 2: Understanding High-Density Design Flow 27 XILINX®

Precision RTL Synthesis

To run the TCL script from Precision RTL Synthesis:

1. Set up your project in Precision.

2. Synthesize your project.

3. Run the following commands to save and run the TCL script.

Table 2-2: Precision RTL Synthesis Commands

Function Command
save the TCL script File -Save Command File
run the TCL script File -Run Script

run the TCL script from a command line

c:\precision -shell -file project.tcl

complete the synthesis process

add_input_file top.vhdl
setup_design -manufacturer Xilinx -family Virtex-II -part 2040cs144 -speed 6
compile

synthesize

Synplify

To run the following TCL script from Synplify:
e Select File - Run TCL Script.

OR

o Type synplify -batch script_file.tcl at a UNIX or DOS command prompt.

Enter the following TCL commands in Synplify.

Table 2-3: Synplify Commands

Function

Command

start a new project

project -new

set device options

set_option -technology Virtex-E
set_option -part XCV50E
set_option -package CS144
set_option -speed_grade -8

add file options

add_file -constraint “watch.sdc”
add_file -vhdl -lib work “macrol.vhd”
add_file -vhdl -lib work “macro2.vhd”
add_file -vhdl -lib work “top_levle.vhd”

set compilation/mapping options

set_option -default_enum_encoding onehot
set_option -symbolic_fsm_compiler true

set_option -resource_sharing true

32

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Synthesizing and Optimizing

Table 2-3: Synplify Commands

Function Command

set simulation options set_option -write_verilog false

set_option -write_vhdl false

set automatic place and route (vendor) options | set_option -write_apr_constraint true
set_option -part XCV50E
set_option -package C5144
set_option -speed_grade -8

set result format/file options project -result_format “edif”
project -result_file “top_level.edf”
project -run

project -save “watch.prj”

exit exit

XST

For information and options used with the Xilinx Synthesis Tool (XST), see the Xilinx XST
User Guide.

Synthesizing Your Design

Xilinx recommends the following to help you successfully synthesize your design.

Modifying Your Design

You may need to modify your code to successfully synthesize your design because certain
design constructs that are effective for simulation may not be as effective for synthesis. The
synthesis syntax and code set may differ slightly from the simulator syntax and code set.

Synthesizing Large Designs

Older versions of synthesis tools required incremental design compilations to decrease run
times. Some or all levels of hierarchy were compiled with separate compile commands and
saved as output or database files. The output netlist or compiled database file for each
module was read during synthesis of the top level code. This method is not necessary with
new synthesis tools, which can handle large designs from the top down. The 5,000 gates
per module rule of thumb no longer applies with the new synthesis tools. For more
information, see your synthesis tool documentation.

Saving Compiled Design as EDIF or NGC

After your design is successfully compiled, save it as an EDIF or NGC file for input to the
Xilinx software.

Synthesis and Simulation Design Guide www.xilinx.com 33
8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=8.1i&topic=online+books&sub=docs/xst/xst.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=8.1i&topic=online+books&sub=docs/xst/xst.pdf

Chapter 2: Understanding High-Density Design Flow 27 XILINX®

Reading Cores

The following tools support the use of CORE Generator EDIF files for timing and area
analysis:

o “XST”

e “LeonardoSpectrum”

e “Synplify Pro”

e “Precision RTL Synthesis”

Reading the EDIF files results in better timing optimizations, since the delay through the
logic elements inside the CORE file is known.

The procedures for reading in cores in these synthesis tools are as follows.

XST

Invoke XST using the read_cores switch. When the switch is set to on, the default, XST, reads
in EDIF and NGC netlists. For more information, see the Xilinx XST User Guide. For more
information on doing this in ISE, see the Project Navigator help.

LeonardoSpectrum

Use the read_coregen TCL command line option. For more information, see Xilinx
Answer Record 13159, “How do I read in a CORE Generator core’s EDIF netlist in
LeonardoSpectrum?”

Synplify Pro

EDIF is treated as just another source format, but when reading in EDIF, you must specify
the top level VHDL/ Verilog in your project. Support for reading in EDIF is included in
Synplify Pro version 7.3. For more information, see the Synplify documentation.

Precision RTL Synthesis

Precision RTL Synthesis can add EDIF and NGC files to your project as source files. For
more information, see the Precision RTL Synthesis help.

Setting Constraints

Setting constraints is an important step in the design process. It allows you to control
timing optimization and enables more efficient use of synthesis tools and implementation
processes. This efficiency helps minimize runtime and achieve the requirements of your
design.

There are many different types of constraints that can be set. Additionally, there can be
multiple constraints files used in the design process. The table below outlines the different
types of constraints, the methods by which they are most commonly entered, and the files
they are found in.

34 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=13159
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=13159
http://www.xilinx.com

ST XILINX®

Setting Constraints

Table 2-4: Constraints Table

Type of Constraint

Constraint Entry Method

Where Found

Synthesis

Constraints Editor
Text Editor (HDL source)

Netlist Constraints File
(NCF)

XST Constraints File
(XCF)

Implementation (Mapping,

Constraints Editor

User Constraints File

Placing, Routing) Text Editor (HDL source) (UCE)
Floorplanner Netlist Constraints File
. (NCF)
FPGA Editor Physical Constraints File
(PCF)
Timing Text Editor (HDL Source) User Constraints File

Text Editor (UCF, NCF,
PCF)

(UCF)
Netlist Constraints File
(NCF)

Physical Constraints File
(PCF)

Pinout & Area

Pinout and Area
Constraints Editor (PACE)

User Constraints File
(UCF)

Setting Constraints Using a Synthesis Tool Constraints Editor

LeonardoSpectrum, Precision RTL Synthesis, and Synplify all have constraints editors that
allow you to apply constraints to your HDL design. For more information on how to use
your synthesis tool’s constraints editor, see your synthesis tool documentation.

You can add the following constraints:

Clock frequency or cycle and offset

Input and Output timing

Signal Preservation
Module constraints
Buffering ports
Path timing

Global timing

Generally, the timing constraints are written to an NCF file, and all other constraints are
written to the output EDIF file. In XST, all constraints are written to the NGC file.

Setting Constraints in the UCF File

The UCF gives you tight control of the overall specifications by giving you access to more
types of constraints; the ability to define precise timing paths; and the ability to prioritize
signal constraints. To simplify timing specifications, group signals together. Some

Synthesis and Simulation Design Guide

8.1i

www.Xxilinx.com

35

http://www.xilinx.com

Chapter 2: Understanding High-Density Design Flow 27 XILINX®

synthesis tools translate certain synthesis constraints to Xilinx implementation constraints.
The translated constraints are placed in the NCF/EDIF file (NGC file for XST). For more
information on timing specifications in the UCF file, see the Xilinx Constraints Guide.

Setting Constraints Using the Xilinx Constraints Editor

The Xilinx Constraints Editor:

e enables you to easily enter design constraints in a spreadsheet form

e writes out the constraints to the UCF file

¢ eliminates the need to know the UCF syntax

e reads the design

e lists all the nets and elements in the design

To run the Xilinx Constraints Editor from Project Navigator:

1. Go to the Processes window.

2. Select Design Entry Utilities —tser Constraints —Create Timing Constraints.
To run the Xilinx Constraints Editor from the command line, type constraints_editor.
Some constraints are not available from Constraints Editor. For unavailable constraints:
1. Enter the unavailable constraints directly in the UCF file with a text editor.

2. Use the command line method to re-run the new UCE file through the Translate step or
NGDBuild.

Setting Constraints Using PACE

The Xilinx Pinout and Area Constraints Editor (PACE) enables you to:

e assign pin location constraints

e assign certain 1O properties such as IO Standards
To run PACE from Project Navigator:

1. Go to the Processes window.

2. Select Design Entry Utilities —User Constraints —Assign Package Pins OR
—Create Area Constraints.

To run PACE from the command line, type pace.

Evaluating Design Size and Performance

Your design must:

¢ function at the specified speed

e fitin the targeted device

After your design is compiled, use your synthesis tool’s reporting options to determine
preliminary device utilization and performance. After your design is mapped by the Xilinx
tools, you can determine the actual device utilization.

At this point in the design flow, you should verify that your chosen device is large enough
to accommodate any future changes or additions, and that your design will perform as
specified.

36

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=8.1i&topic=online+books&sub=docs/xst/xst.pdf

S XILINX® Evaluating Design Size and Performance

Estimating Device Utilization and Performance

Use the area and timing reporting options of your synthesis tool to estimate device
utilization and performance. After compiling, use the report area command to obtain a
report of device resource utilization. Some synthesis tools provide area reports
automatically. For correct command syntax, see your synthesis tool documentation.

The device utilization and performance report lists the compiled cells in your design, as
well as information on how your design is mapped in the FPGA. These reports are
generally accurate because the synthesis tool creates the logic from your code and maps
your design into the FPGA. However, these reports are different for the various synthesis
tools. Some reports specify the minimum number of CLBs required, while other reports
specify the “unpacked” number of CLBs to make an allowance for routing. For an accurate
comparison, compare reports from the Xilinx mapper tool after implementation.

Any instantiated components, such as CORE Generator modules, EDIF files, or other
components that your synthesis tool does not recognize during compilation, are not
included in the report file. If you include these components, you must include the logic
area used by these components when estimating design size. Sections of your design may
get trimmed during the mapping process, which may result in a smaller design.

Use the timing report command of your synthesis tool to obtain a report with estimated
data path delays. For more information on command syntax, see your synthesis tool
documentation.

The timing report is based on the logic level delays from the cell libraries and estimated
wire-load models. This report is an estimate of how close you are to your timing goals;
however, it is not the actual timing. An accurate timing report is only available after the
design is placed and routed.

Determining Actual Device Utilization and Pre-routed Performance

To determine if your design fits the specified device, map it using the Xilinx Map program.
The generated report file design name.mrp contains the implemented device utilization
information. To read the report file, double-click Map Report in the Project Navigator
Processes window. Run the Map program from Project Navigator or from the command
line.

Using Project Navigator to Map Your Design

To map your design using Project Navigator:

1. Go to the Processes window.

2. Click the “+” symbol in front of Implement Design.
3. Double-click Map.

4. To view the Map Report, double-click Map Report.

If the report does not currently exist, it is generated at this time. A green check mark in
front of the report name indicates that the report is up-to-date, and no processing is
performed.

5. If the report is not up-to-date:
a. Click the report name.
b. Select Process —Rerun to update the report.

The auto-make process automatically runs only the necessary processes to update
the report before displaying it.

Synthesis and Simulation Design Guide www.xilinx.com 37
8.1i

http://www.xilinx.com

Chapter 2: Understanding High-Density Design Flow 27 XILINX®

Alternatively, you may select Process —Rerun All to re-run all processes— even
those processes that are currently up-to-date— from the top of the design to the
stage where the report would be.

6. View the Logic Level Timing Report with the Report Browser. This report shows the
performance of your design based on logic levels and best-case routing delays.
Run the Timing Analyzer to create a more specific report of design paths (optional).
Use the Logic Level Timing Report and any reports generated with the Timing

Analyzer or the Map program to evaluate how close you are to your performance and
utilization goals.

Use these reports to decide whether to proceed to the place and route phase of
implementation, or to go back and modify your design or implementation options to
attain your performance goals. You should have some slack in routing delays to allow
the place and route tools to successfully complete your design. Use the verbose option
in the Timing Analyzer to see block-by-block delay. The timing report of a mapped
design (before place and route) shows block delays, as well as minimum routing
delays.

A typical Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, or Virtex-4 design should
allow 40% of the delay for logic, and 60% of the delay for routing. If most of your time is
taken by logic, the design will probably not meet timing after place and route.

Using the Command Line to Map Your Design

To map your design using the command line:

Note: For available options, enter only the trce command at the command line without any
arguments.

1. Run the following command to translate your design:
ngdbuild —p target_device design_name.edf (or ngc)
2. Run the following command to map your design:

map design_name.ngd

3. Use a text editor to view the Device Summary section of the design_name.mrp Map
Report. This section contains the device utilization information.

4. Run a timing analysis of the logic level delays from your mapped design as follows.

trce [options] design_name.ncd

Use the Trace reports to evaluate how close you are to your performance goals. Use the
report to decide whether to proceed to the place and route phase of implementation, or
to go back and modify your design or implementation options to attain your
performance goals. You should have some slack in routing delays to allow the place
and route tools to successfully complete your design.

The following is the Design Summary section of a Map Report containing device
information.

Evaluating Coding Style and System Features

At this point, if you are not satisfied with your design performance, re-evaluate your code
and make any necessary improvements. Modifying your code and selecting different
compiler options can dramatically improve device utilization and speed.

38 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Incremental Design

This section describes ways to improve design performance by modifying your code and
by incorporating FPGA system features. Most of these techniques are described in more
detail in this guide.

Modifying Your Code

Improve design performance with the following design modifications.
e Reduce levels of logic to improve timing
¢ use pipelining and retiming techniques
¢ rewrite the HDL descriptions
¢ enable or disable resource sharing
¢ Redefine hierarchical boundaries to help the compiler optimize design logic
¢ restructure logic
¢ Reduce critical nets fanout to improve placement and reduce congestion
¢ perform logic replication

e Take advantage of device resource with the CORE Generator modules

Using FPGA System Features

After correcting any coding style problems, use any of the following FPGA system features
in your design to improve resource utilization and to enhance the speed of critical paths.

Each device family has a unique set of system features. For more information about the
system features available for the device you are targeting, see the device data sheet.

e Use clock enables

e In Virtex family components, modify large multiplexers to use 3-state buffers
¢ Use one-hot encoding for large or complex state machines

e Use I/O registers when applicable

e In Virtex families, use dedicated shift registers

¢ In Virtex-1I families, use dedicated multipliers

Using Xilinx-Specific Features of Your Synthesis Tool

Your synthesis tool allows better control over the logic generated, the number of logic
levels, the architecture elements used, and fanout. The place and route tool (PAR) has
advanced its algorithms to make it more efficient to use your synthesis tool to achieve
design performance if your design performance is more than a few percentages away from
the requirements of your design.

Most synthesis tools have special options for the Xilinx-specific features listed in the
previous section. For more information on using Xilinx-specific features, see your
synthesis tool documentation.

Incremental Design

Incremental design allows you to make last minute changes to your design and rerun
synthesis on only those sections of the design that have changed. This keeps the
unchanged sections of the design locked down and unaffected when resynthesizing your

Synthesis and Simulation Design Guide www.xilinx.com 39
8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 2: Understanding High-Density Design Flow 27 XILINX®

design. To use incremental design, you must first define area groups in your design. For
more information, see the following.

Table 2-5: Incremental Desigh Resources

Item Resource
INCREMENTAL_SYNTHESIS constraint Xilinx XST User Guide
AREA_GROUP constraint Xilinx Constraints Guide

General use and concepts of incremental design | Xilinx Development System Reference
Guide

Modular Design

Modular design allows a team of engineers to independently work on different sections, or
modules, of a design and later merge these modules into a single FPGA design. Modular
design can help you plan and manage large designs. For more information, see the Xilinx
Development System Reference Guide.

Placing and Routing

Note: For more information on placing and routing your design, see the Xilinx Development
System Reference Guide.

The overall goal when placing and routing your design is fast implementation and high-
quality results. However, depending on the situation and your design, you may not always
accomplish this goal, as described in the following examples.

e Earlier in the design cycle, run time is generally more important than the quality of
results, and later in the design cycle, the converse is usually true.

e If the targeted device is highly utilized, the routing may become congested, and your
design may be difficult to route. In this case, the placer and router may take longer to
meet your timing requirements.

e If design constraints are rigorous, it may take longer to correctly place and route your
design, and meet the specified timing.

Decreasing Implementation Time

The placement and routing options you select directly influence run time. Generally, these
options decrease the run time at the expense of the best placement and routing for a given
device. Select your options based on your required design performance.

To decrease implementation time using Project Navigator:
1. Right click Place & Route in theProcesses window.
2. Select Properties.
3. Set the following options in the Process Properties dialog box:
a. Place & Route Effort Level
Note: Alternatively, run the —o1 switch at the command line.

Generally, to reduce placement times, select a less CPU-intensive algorithm for
placement. Set the placement level at one of three settings:

- Standard (fastest run time) (the default)

40

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Placing and Routing

- Medium (medium run time with equal place and route optimization)
- Highest (longest run time with the best place and route results)

Note: In some cases, poor placement with a lower placement level setting can result in
longer route times.

b. Router Options

To limit router iterations to reduce routing times, set the Number of Routing
Passes option. However, this may prevent your design from meeting timing
requirements, or your design may not completely route. The amount of time spent
routing is controlled with router effort level (-r1).

c. Use Timing Constraints During Place and Route

To improve run times, do not specify some or all timing constraints. This is useful
at the beginning of the design cycle during the initial evaluation of the placed and
routed circuit. To disable timing constraints in the Project Navigator, uncheck the
Use Timing Constraints check box. To disable timing constraints at the command
line, run the —x switch with PAR.

Click OK to exit the Process Properties dialog box.

5. Double click Place & Route in the Processes window to begin placing and routing
your design.

Improving Implementation Results

You can select options that increase the run time, but produce a better design. These options
generally produce a faster design at the cost of a longer run time. These options are useful
when you run your designs for an extended period of time (overnight or over the
weekend). Use the following options to improve implementation results. For more
information, see the Xilinx Development System Reference Guide.

Map Timing

Use the Xilinx Map program Timing option to improve timing during the mapping phase.
This switch directs the mapper to give priority to timing critical paths during packing. To
use this feature at the command line, use the -timing switch.

Extra Effort Mode in PAR

Use the Xilinx PAR program Extra Effort mode to invoke advanced algorithmic techniques
to provide higher quality results. To use this feature at the command line, use the -xe
level switch. The level can be a value from 0 to 5; the defaultis 1.

Turns Engine Option

This Unix and Linux-only feature works with the Multi-Pass Place and Route option to
allow parallel processing of placement and routing on several Unix or Linux machines.
The only limitation to how many cost tables are concurrently tested is the number of
workstations you have available.

To use this option in Project Navigator, see the Project Navigator help for a description of
the options that can be set under Multi-Pass Place and Route.

Synthesis and Simulation Design Guide www.xilinx.com 41

8.1i

http://www.xilinx.com

Chapter 2: Understanding High-Density Design Flow 27 XILINX®

To use this feature at the command line:

e runthe -mswitch to specify a node list

e run the —n switch to specify the number of place and route iterations

Reentrant Routing Option

Use the reentrant routing option to further route an already routed design. The router
reroutes some connections to improve the timing, or to finish routing unrouted nets. You
must specify a placed and routed design (. ncd) file for the implementation tools. This
option is best used when router iterations are initially limited, or when your design timing
goals are close to being achieved.

From Project Navigator
To initiate a reentrant route from Project Navigator:

1. Right click Place & Route in the Processes window.
2. Select Properties.

3. In the Process Properties dialog box, set the Place And Route Mode option to
Reentrant Route.

Click OK.
5. Double click Place & Route in the Processes window to place and route your design.

Using PAR and Cost Tables

The PAR module places in two stages: a constructive placement and an optimizing
placement. PAR writes the NCD file after constructive placement, and modifies the NCD
after optimizing placement.

During constructive placement, PAR places components into sites based on factors such as
constraints specified in the input file (for example, certain components must be in certain
locations), the length of connections, and the available routing resources. This placement
also takes into account “cost tables,” which assign weighted values to each of the relevant
factors. There are 100 possible cost tables. Constructive placement continues until all
components are placed. PAR writes the NCD file after constructive placement.

From the Command Line

To initiate a reentrant route from the command line, run PAR with the =k and -p options,
as well as any other options you want to use for the routing process. You must either
specify a unique name for the post reentrant routed design (.ncad) file or use the -w
switch to overwrite the previous design file, as shown in the following examples.

par -k -p other_options design_name.ncd new_name.ncd

par -k -p -w other_options design_name.ncd design.ncd

Guide Option

Use a guide file for both Map and PAR to instruct the implementation processes to use
existing constraints in an input design file. This is useful if minor incremental changes
have been made to an existing design to create a new design. To increase productivity, use
your last design iteration as a guide design for the next design iteration.

This option is generally not recommended for synthesis-based designs, except for modular
design flows. Re-synthesizing modules can cause the signal and instance names in the

42

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Timing Simulation

resulting netlist to be significantly different from those in earlier synthesis runs. This can
occur even if the source level code (Verilog or VHDL) contains only a small change.
Because the guide process is dependent on the names of signals and comps, synthesis
designs often result in a low match rate during the guiding process. Generally, this option
does not improve implementation results.

For more information on the guide option in modular design flows, see:

¢ Xilinx Modular Design on the Xilinx Support website

e Xilinx Development System Reference Guide, “Modular Design”

Timing Simulation

Timing simulation is important in verifying the operation of your circuit after the worst-
case placed and routed delays are calculated for your design. In many cases, you can use
the same test bench that you used for functional simulation to perform a more accurate
simulation with less effort. Compare the results from the two simulations to verify that
your design is performing as initially specified. The Xilinx tools create a VHDL or Verilog
simulation netlist of your placed and routed design, and provide libraries that work with
many common HDL simulators. For more information on design simulation, see Chapter
6, “Simulating Your Design” in this guide.

Timing-driven PAR is based upon TRACE, the Xilinx timing analysis software. TRACE is
an integrated static timing analysis, and does not depend on input stimulus to the circuit.
Placement and routing are executed according to timing constraints that you specify at the
beginning of the design process. TRACE interacts with PAR to make sure that the timing
constraints you impose on the design are met.

If you have timing constraints, TRACE generates a report based on your constraints. If
there are no constraints, TRACE has an option to write out a timing report containing:

¢ An analysis that enumerates all clocks and the required OFFSETs for each clock

e An analysis of paths having only combinatorial logic, ordered by delay

For more information on TRACE, see the Xilinx Development System Reference Guide. For
more information on Timing Analysis, see the Timing Analyzer help.

Synthesis and Simulation Design Guide www.xilinx.com 43

8.1i

http://www.support.xilinx.com/xlnx/xil_prodcat_product.jsp?title=modular_design
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=8.1i&topic=online+books&sub=docs/dev/dev.pdf

Chapter 2: Understanding High-Density Design Flow

SXILINX®

44 www.xilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

$7 XILINX®
Chapter 3

General HDL Coding Styles

This chapter contains HDL coding styles and design examples to help you develop an
efficient coding style. This chapter includes the following sections.

e “Introduction”

e “Naming, Labeling, and General Coding Styles”
e “Specifying Constants”

e “Choosing Data Type”

e “Coding for Synthesis”

Introduction

HDLs contain many complex constructs that are difficult to understand at first. In
addition, the methods and examples included in HDL guides do not always apply to the
design of FPGA devices. If you currently use HDLs to design ASIC devices, your
established coding style may unnecessarily increase the number of gates or CLB levels in
FPGA designs.

HDL synthesis tools implement logic based on the coding style of your design. To learn
how to efficiently code with HDLs, you can:

e Attend training classes
¢ Read reference and methodology notes

e See synthesis guidelines and templates available from Xilinx® and the synthesis
vendors

When coding your designs, remember that HDLs are mainly hardware description
languages. You should try to find a balance between the quality of the end hardware
results and the speed of simulation.

The hints and examples included in this chapter are not intended to teach you every aspect
of VHDL or Verilog, but they should help you develop an efficient coding style.

Naming, Labeling, and General Coding Styles

Xilinx recommends that you and your design team agree on a style for your code at the
beginning of your project. An established coding style allows you to read and understand
code written by your team members. Inefficient coding styles can adversely impact
synthesis and simulation, which can result in slow circuits. Because portions of existing
HDL designs are often used in new designs, you should follow coding standards that are
understood by the majority of HDL designers. This chapter describes recommended
coding styles that you should establish before you begin your designs.

Synthesis and Simulation Design Guide www.xilinx.com 45
8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

Using Xilinx Naming Conventions

Use the Xilinx naming conventions listed in this section for naming signals, variables, and
instances that are translated into nets, buses, and symbols.

VHDL-200x Key words (such as entity, architecture, signal, and component)

System Verilog 3.1a key word: (such as module, reg, and wire). See Annex B of System
Verilog Spec version 3.1a

A user generated name should not contain a forward slash (/). The forward slash (/)
is generally used to denote a hierarchy separator.

Names must contain at least one non-numeric character.
Names must not contain a dollar sign ($).

Names must not use less-than (<)or greater-than signs (>). These signs are sometimes
used to denote a bus index.

The following FPGA resource names are reserved. They should not be used to name
nets or components.

¢ Device architecture names (such as CLB, I0B, PAD, and Slice)
¢ Dedicated pin names (such as CLK and INIT)

¢ GND and VCC

¢ UNISIM primitive names such as BUFG, DCM, and RAMB16

¢ Do not use pin names such as P1 and A4 for component names

For language-specific naming restrictions, see the language reference manual for Verilog or
VHDL. Xilinx does not recommend using escape sequences for illegal characters. In
addition, if you plan to import schematic, or to use mixed language synthesis or
verification, use the most restrictive character set.

Naming Guidelines for Signals and Instances

Xilinx recommends that you follow the naming conventions set forth below in order to
help achieve the goals of:

maximum line length

coherent and legible code

allowance for mixed VHDL and Verilog design
consistent HDL code

General

Xilinx recommends that you observe the following general rules:

Do not use reserved words for signal or instance names.

Do not exceed 16 characters for the length of signal and instance names, whenever
possible.

Create signal and instance names that reflect their connection or purpose.

Do not use mixed case for any particular name or keyword. Use either all capitals, or
all lowercase.

46

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Naming, Labeling, and General Coding Styles

Recommendations for VHDL and Verilog Capitalization

Xilinx recommends that you observe the following guidelines when naming signals and
instances in VHDL and Verilog.

Table 3-1: VHDL and Verilog Capitalization
Lower Case Upper Case Mixed Case
library names USER PORTS Comments
keywords INSTANCE NAMES
module names UNISIM COMPONENT
NAMES
entity names PARAMETERS
user component names GENERICS
internal signals

Matching File Names to Entity and Module Names

Xilinx recommends the following practices in naming your HDL files.

e Make sure that the VHDL or Verilog source code file name matches the designated
name of the entity (VHDL) or module (Verilog) specified in your design file. This is
less confusing, and generally makes it easier to create a script file for the compilation
of your design.

e If your design contains more than one entity or module, put each in a separate file
with the appropriate file name. For VHDL design, Xilinx recommends grouping the
entity and the associated architecture into the same file.

e Itis a good idea to use the same name as your top-level design file for your synthesis
script file with either a .do, .scr, .script, or the appropriate default script file extension
for your synthesis tool.

Naming ldentifiers

Follow these naming practices to make design code easier to debug and reuse:

e Use concise but meaningful identifier names.

e Use meaningful names for wires, regs, signals, variables, types, and any identifier in
the code such as CONTROL_REGISTER.

e Use underscores to make the identifiers easier to read.

Synthesis and Simulation Design Guide
8.1i

www.Xxilinx.com 47

http://www.xilinx.com

Chapter 3: General HDL Coding Styles

SXILINX®

Guidelines for Instantiation of Sub-Modules

Follow these guidlines when instantiating sub-modules.

Xilinx recommends that you always use named association to prevent incorrect
connections for the ports of instantiated components. Never combine positional and
named association in the same statement as illustrated in the following examples.

Table 3-2: Correct and Incorrect VHDL and Verilog Examples

O=>CLOCK_OUuT
)

VHDL Verilog
CLK_1: BUFG BUFG CLK_1 (
port map (.I(CLOCK_IN),
Incorrect I=>CLOCK_IN, CLOCK_OUT
CLOCK_OUT)i
)
CLK_1: BUFG BUFG CLK_1 (
port map (.I(CLOCK_IN),
Correct I=>CLOCK_IN, .0 (CLOCK_OUT)

)

Xilinx also recommends using one port mapping per line to improve readability, provide

space for a comment, and allow for easier modification.

VHDL Example

-- FDCPE: Single Data Rate D Flip-Flop with Asynchronous Clear,

-- Clock Enable (posedge clk).
-- Xilinx HDL Language Template

All families.

FDCPE_inst FDCPE
generic map (

INIT => '0') -- Initial value of register ('0' or '1l")
port map (

Q => Q, -- Data output

Cc => C, -- Clock input

CE => CE, -- Clock enable input

CLR => CLR, -- Asynchronous clear input

D => D, -- Data input

PRE => PRE -- Asynchronous set input

)i

-- End of FDCPE_inst instantiation

Verilog Example

// FDCPE: Single Data Rate D Flip-Flop with Asynchronous Clear,
// Clock Enable (posedge clk). All families.
// Xilinx HDL Language Template

FDCPE # (
.INIT(1'b0) // Initial value of register (1'b0 or 1'bl)
) FDCPE_inst (

Set and

Set and

-Q(QY, // Data output
.c(C), // Clock input
.CE(CE), // Clock enable input
48 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

S XILINX® Naming, Labeling, and General Coding Styles

.CLR(CLR), // Asynchronous clear input
.D(D), // Data input
.PRE (PRE) // Asynchronous set input

)

// End of FDCPE_inst instantiation

Recommended Length of Line

Xilinx recommends that the length of a line of VHDL or Verilog code not exceed 80
characters. If a line needs to exceed this limit, break it with the continuation character, and
align the subsequent lines with the proceeding code. Choose signal and instance names
carefully in order to not break this limit.

Try not to make too many nests in the code, such as nested if and case statements. If you
have too many if statements inside of other if statements, it can make the line length too
long, as well as inhibit optimization. By following this guideline, code is generally more
readable and more portable, and can be more easily formatted for printing.

Using a Common File Header

Xilinx recommends that you use a common file header surrounded by comments at the
beginning of each file. A common file header:

e allows for better documentation of the design and code

e improves code revision tracking

e enhances reuse

The contents of the header depend on personal and company standards. Following is an
example file header in VHDL.

-- Copyright (c) 1996-2003 Xilinx, Inc.
-- All Rights Reserved

-/ /\/ / Company: Xilinx

- /_/ N\ / Design Name: MY_CPU

-\ \ \/ Filename: my_cpu.vhd

-— A\ \ Version: 1.1.1

-/ / Date Last Modified: Fri Sep 24 2004
- /__/ /\ Date Created: Tue Sep 21 2004

-=\ N/ N\

= _\/_\

--Device: XC3S1000-5FG676

--Software Used: ISE 8.11

--Libraries used: UNISIM

--Purpose: CPU design

--Reference:

-— CPU specification found at: http://www.mycpu.com/docs
--Revision History:

- Rev 1.1.0 - First created, joe_engineer, Tue Sep 21 2004.
-- Rev 1.1.1 - Ran changed architecture name from CPU_FINAL
-- john_engineer, Fri Sep 24 2004.

Synthesis and Simulation Design Guide www.xilinx.com 49
8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

Use of Indentation and Spacing in the Code

Proper indentation in code offers the following benefits:

e More readable and comprehensible code by showing grouped constructs at the same
indentation level

e Fewer coding mistakes

e Easier debugging

The indentation style is somewhat arbitrary. But as long as a common theme is used, the
benefit listed above are generally achieved.

Following are examples of code indentation in VHDL and Verilog.

VHDL Example

entity AND_OR is

port (
AND_OUT : out std_logic;
OR_OUT : out std_logic;
10 : in std_logic;
I1 : in std_logic;
CLK : in std_logic;
CE : in std_logic;
RST : in std_logic);

end AND_OR;
architecture BEHAVIORAL_ARCHITECTURE of AND_OR 1is

signal and_int : std_logic;
signal or_int : std_logic;
begin

AND_OUT <= and_int;
OR_OUT <= or_int;
process (CLK)
begin
if (CLK'event and CLK='1l') then
if (RST='1l') then
and_int <= '0';
or_int <= '0';
elsif (CE ='1') then
and_int <= I0 and I1;
or_int <= I0 or Il;
end if;
end if;
end process;

end AND_OR;
Verilog Example
module AND_OR (AND_OUT, OR_OUT, IO, Il, CLK, CE, RST);
output reg AND_OUT, OR_OUT;

input I0, I1;
input CLK, CE, RST;

50 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Naming, Labeling, and General Coding Styles

always @ (posedge CLK)

if (RST) begin
AND_OUT <= 1'b0;
OR_OUT <= 1'b0;

end else (CE) begin
AND_OUT <= I0 and I1;
OR_OUT <= I0 or Il;

end

endmodule

Use of TRANSLATE_ OFF and TRANSLATE_ON in Source Code

The synthesis directives TRANSLATE_OFF and TRANSLATE_ON were formerly used
when passing generics/parameters for synthesis tools, since most synthesis tools were
unable to read generics/parameters. These directives were also used for library
declarations such as library UNISIM, since synthesis tools did not understand that library.

More recent synthesis tools can now read generics/parameter, and can understand the use
of the UNISIM library. Accordingly, there is no longer any need to use these directives in
synthesizable code. The TRANSLATE_OFF and TRANSLATE_ON directives can also be
used to embed simulation-only code in synthesizable files. Xilinx recommends that any
simulation-only constructs reside in simulation-only files or test benches.

Attributes and Constraints

The terms attribute and constraint have been used interchangeably by some in the
engineering community, while others give different meanings to these terms. In addition,
language constructs use the terms attribute and directive in similar yet different senses. For
the purpose of clarification, the Xilinx documentation refers to the terms attributes and
constraints as defined below.

Attributes

An attribute is a property associated with a device architecture primitive component that
generally affects an instantiated component’s functionality or implementation. Attributes
are passed as follows:

e in VHDL, by means of generic maps

e in Verilog, by means of defparams or inline parameter passing while instantiating the
primitive component

Examples of attributes are:

e the INIT property on a LUT4 component
e the CLKFX_DIVIDE property on a DCM

All attributes are described in the appropriate Xilinx Libraries Guide as a part of the
primitive component description.

Synthesis Constraints

Synthesis constraints direct the synthesis tool optimization technique for a particular
design or piece of HDL code. They are either embedded within the VHDL or Verilog code,
or within a separate synthesis constraints file. Examples of synthesis constraints are:

Synthesis and Simulation Design Guide www.xilinx.com 51
8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

o USE_DSP48 (XST)
e RAM_STYLE (XST)

Synthesis constraints are documented as follows:

e XST constraints are documented in the Xilinx XST User Guide.

e Synthesis constraints for other synthesis tools should be documented in the vendor’s
documentation. For more information on synthesis constraints, see your synthesis
tool documentation.

Implementation Constraints

Implementation constraints are instructions given to the FPGA implementation tools to
direct the mapping, placement, timing or other guidelines for the implementation tools to
follow while processing an FPGA design. Implementation constraints are generally placed
in the UCF file, but may exist in the HDL code, or in a synthesis constraints file. Examples
of implementation constraints are:

¢ LOC (placement) constraints
e PERIOD (timing) constraints

For more information about implementation constraints, see the Xilinx Constraints Guide.

Passing Attributes

Attributes are properties that are attached to Xilinx primitive instantiations in order to
specify their behavior. They are generally passed by specifying a generic map specifying
the attribute or a defparam or inline parameter passing in Verilog. By passing the attribute
in this way, you can make sure that it is properly passed to both synthesis and simulation.

VHDL Primitive Attribute Example

-- RAM16X1S:

The following VHDL code shows an example of setting the INIT primitive attribute for an
instantiated RAM16X1S which will specify the initial contents of this RAM symbol to the
hexadecimal value of A1B2.

16 x 1 posedge write distributed => LUT RAM
All FPGA

-- Xilinx HDL Language Template

small_ram_inst : RAM16X1S

generic map (

INIT => X"AlB2")

port map (
O => ram_out, -- RAM output
A0 => addr(0), -- RAM address[0] input
Al => addr (1), -- RAM address[1l] input
A2 => addr(2), -- RAM address[2] input
A3 => addr(3), -- RAM address[3] input
D => data_in, -- RAM data input
WCLK => clock, -- Write clock input
WE => we -- Write enable input

)

-—- End of small_ram inst instantiation

52

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Naming, Labeling, and General Coding Styles

Verilog Primitive Attribute Example

The following Verilog example shows an instantiated IBUFDS symbol in which the
DIFF_TERM and IOSTANDARD are specified as "FALSE" and "LVDS_25" respectively.

// IBUFDS: Differential Input Buffer
// Virtex-II/II-Pro/4, Spartan-3/3E
// Xilinx HDL Language Template

IBUFDS # (
// Differential Termination (Virtex-4 only)
.DIFF_TERM("FALSE"),
.IOSTANDARD ("LVDS_25") // Specify the input I/0O standard
) serial_data_inst (
.0(diff_data), // Clock buffer output
.I(DATA_P), // Diff_p clock buffer input
.IB(DATA_N) // Diff_n clock buffer input
)

// End of serial_data_inst instantiation

A constraint can be attached to HDL objects in your design, or specified from a separate
constraints file. You can pass constraints to HDL objects in two ways:

e Predefine data that describes an object
e Directly attach an attribute to an HDL object

Predefined attributes can be passed with a COMMAND file or constraints file in your
synthesis tool, or you can place attributes directly in your HDL code. This section
illustrates passing attributes in HDL code only. For information on passing attributes via
the command file, see your synthesis tool documentation.

Most vendors adopt identical syntax for passing attributes in VHDL, but not in Verilog.
The following examples illustrate the VHDL syntax

VHDL Synthesis Attribute Examples
The following are examples of VHDL attributes:

e “Attribute Declaration”
e “Attribute Use on a Port or Signal”
e “Attribute Use on an Instance”

e “Attribute Use on a Component”

Attribute Declaration

attribute attribute_name : attribute type;

Attribute Use on a Port or Signal

attribute attribute_name of object_name : signal is attribute value

Example:

library IEEE;
use IEEE.std_logic_1164.all;
entity d_register is
port (
CLK, DATA: in STD_LOGIC;

Synthesis and Simulation Design Guide www.xilinx.com 53
8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

Q: out STD_LOGIC) ;
attribute FAST : string;
attribute FAST of Q : signal is "true";
end d_register;

Attribute Use on an Instance

attribute attribute_name of object_name : label is attribute value

Example:

architecture struct of spblkrams is
attribute LOC: string;
attribute LOC of SDRAM_CLK_IBUFG: label is "AA27";

Begin

-—- IBUFG:

Single-ended global clock input buffer
All FPGA

-- Xilinx HDL Language Template

SDRAM_CLK_IBUFG : IBUFG
generic map (
TOSTANDARD => "DEFAULT")

port map (
O => SDRAM_CLK_o, -- Clock buffer output
I => SDRAM_CLK_ i -- Clock buffer input

)

-- End of IBUFG_inst instantiation

Attribute Use on a Component

attribute attribute name of object_name : component is attribute_value

Example:

architecture xilinx of tenths_ex is
attribute black_box : boolean;
component tenths
port (
CLOCK : in STD_LOGIC;
CLK_EN : in STD_LOGIC;
Q_OUT : out STD_LOGIC_VECTOR(9 downto 0)
)i
end component;
attribute black_box of tenths : component is true;
begin

Verilog Synthesis Attribute Examples

Following are examples of attribute passing in Verilog via a method called meta-
comments. Attribute passing in Verilog is synthesis tool specific.

e “Attribute Use in Precision Synthesis Syntax”
e “Synthesis Attribute Use in Synplify Syntax”

Attribute Use in Precision Synthesis Syntax

//pragma attribute object_name attribute_name attribute_ value

Examples:

54

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Naming, Labeling, and General Coding Styles

my_fd Ul (
.D(data),
.CLK(clock),
.Q(data_out)) ;
//pragma attribute Ul hierarchy "preserve";

Synthesis Attribute Use in Synplify Syntax

/* synthesis directive */
/* synthesis attribute name=value>*/

Examples:
// FDCE: Single Data Rate D Flip-Flop with Asynchronous Clear and

// Clock Enable (posedge clk). All families.
// Xilinx HDL Language Template
FDCE # (

VINIT(1'b0) // Initial value of register (1'b0 or 1'bl)
) U2 (

.Q(al), // Data output

.C(clk), // Clock input

.CE(ce), // Clock enable input

.CLR(rst), // Asynchronous clear input

.D(g0) // Data input

) /* synthesis rloc="rlcO" */;

// End of FDCE_inst instantiation
or

module MY _BUFFER(I, O) /* synthesis black box */

input I;
output O;
endmodule
Verilog 2001 provides a uniform syntax of passing attributes. Since the attribute is declared
immediately before the object is declared, the object name is not mentioned during the
attribute declaration.
(* attribute_name = "attribute_value" *)
Verilog_object;
For example:
// FDCE: Single Data Rate D Flip-Flop with Asynchronous Clear and
// Clock Enable (posedge clk). All families.
// Xilinx HDL Language Template
(* RLOC = "R1C0.S0" *) FDCE #(
INIT(1'b0) // Initial value of register (1'b0 or 1'bl)
) U2 (
.Q(gl), // Data output
.C(clk), // Clock input
.CE(ce), // Clock enable input
.CLR(rst), // Asynchronous clear input
.D(g0) // Data input
)i
// End of FDCE_inst instantiation
This method of attribute passing is not supported by all synthesis tools. For more
information, see your synthesis tool documentation.
Synthesis and Simulation Design Guide www.xilinx.com 55

8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

Synthesis Tool Naming Conventions

Some net and logic names are preserved and some are altered by the synthesis tools during
the synthesis process. This may result in a netlist that is hard to read or trace back to the
original code.

This section discusses how different synthesis tools generate names from your

VHDL /Verilog codes. This helps you determine how nets and component names
appearing in the EDIF netlist relate to the original input design. It also helps determine
how nets and names during your after-synthesis design view of the VHDL /Verilog source
relate to the original input design.

Note: The following naming conventions apply to inferred logic. The names of instantiated
components and their connections, and port names are preserved during synthesis.

LeonardoSpectrum and Precision Synthesis Naming Styles

Register instance: reg_outputsignal

Output of register: preserved, except if the output is also an external port of the design.
In this case, it is signal_dup0

Clock buffer/ibuf: driversignal_ibuf

Output of clock buffer/ibuf: driversignal_int
3-state instance: tri_outputsignal

Driver and output of 3-state: preserved

Hierarchy notation: “_

Other names are machine generated.

Synplify Naming Styles
Register instance: output_signal
Output of register: output_signal
Clock buffer instance/ibuf: portname_ibuf
Output of clock buffer: clkname_c
Output/inout 3-state instance: outputsignal_obuft or outputsignal_iobuf
Internal 3-state instance: unn_signalname_tb (n can be any number), or signalname_tb
Output of 3-state driving an output/inout : name of port
Output of internal 3-state: signalname_tb_number
RAM instance and its output
¢ Dual Port RAM:

ram instance: memoryname_n.I_n
ram output : DPO->memoryname_n.rout_bus, SPO->memory_name_n.wout_bus

¢ Single Port RAM:

ram instance: memoryname.l_n
ram output: memoryname

¢ Single Port Block SelectRAM™:

56

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Specifying Constants

ram_instance: memoryname.l_n
ram output: memoryname

¢ Dual Port Block SelectRAM:

ram_instance: memory_name.l_n

ram output: memoryname [the output that is used]

Hierarchy delimiter is usually a ".", however when syn_hier="hard", the hierarchy
delimiter in the edif is "/"

Other names are machine generated.

Specifying Constants

Use constants in your design to substitute numbers to more meaningful names. Constants
make a design more readable and portable.

Using Constants and Parameters to Clarify Code

Specifying constants can be a form of in-code documentation that allows for easier
understanding of code function. For VHDL, Xilinx generally recommends not to use
variables for constants in your code. Define constant numeric values in your code as
constants and use them by name. For Verilog, parameters can be used as constants in the
code in a similar manner. This coding convention allows you to easily determine if several
occurrences of the same literal value have the same meaning. In the following code
examples, the OPCODE values are declared as constants/parameters, and the names refer
to their function. This method produces readable code that may be easier to understand
and modity.

VHDL Example

constant ZERO : STD_LOGIC_VECTOR (1 downto 0):=200";
constant A _AND B: STD_LOGIC_VECTOR (1 downto 0):=“01";
constant A_OR_B : STD_LOGIC_VECTOR (1 downto 0):=“10";
constant ONE : STD_LOGIC_VECTOR (1 downto 0):=“11";
process (OPCODE, A, B)
begin
if (OPCODE = A_AND_B)then OP_OUT <= A and B;
elsif (OPCODE = A_OR_B) then
OP_OUT <= A or B;
elsif (OPCODE = ONE) then
OP_OUT <= ‘1°';
else
OP_OUT <= ‘0';
end if;
end process;
Verilog Example
//Using parameters for OPCODE functions
parameter ZERO = 2'b00;
parameter A_AND_B = 2'b01;
parameter A_OR_B = 2'bl0;
parameter ONE = 2'bll;
Synthesis and Simulation Design Guide www.xilinx.com 57

8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles

SXILINX®

always @ (*)
begin
if (OPCODE == ZERO)
OP_OUT = 1'b0;

else if (OPCODE == A_AND_B)

OP_OUT=A&B;

else if (OPCODE == A_OR_B)

OP_OUT = A|B;
else
OP_OUT = 1'bl;
end

Using Generics and Parameters to Specify Dynamic Bus and Array

Widths

To specify a dynamic or paramatizable bus width for a VHDL or Verilog design module:

1. Define a generic (VHDL) or parameter (Verilog).

2. Use the generic (VHDL) or parameter (Verilog) to define the bus width of a port or

signal.

The generic (VHDL) or parameter (Verilog) can contain a default which can be overridden
by the instantiating module. This can make the code easier to reuse, as well as making it

more readable.

VHDL Example

-—- FIFO_WIDTH data width (number of bits)
-- FIFO_DEPTH by number of address bits

-- for the FIFO RAM i.e. 9 -> 2**9 -> 512 words

-- FIFO_RAM_TYPE: BLOCKRAM or DISTRIBUTED_RAM

-- Note: DISTRIBUTED_RAM suggested for FIFO_DEPTH

-- of 5 or less

entity async_fifo is

generic (FIFO_WIDTH: integer := 16;)
FIFO_DEPTH: integer := 9; FIFO_RAM_TYPE: string := "BLOCKRAM"); port (din

in std_logic_vector (FIFO_WIDTH-1 downto 0);

rd_clk : in std_logic;

rd_en : in std_logic;

ainit : in std_logic;

wr_clk : in std_logic;

wr_en : in std_logic;

dout : out std_logic_vector (FIFO_WIDTH-1 downto 0) := (others=> '0');

empty : out std_logic := '1‘';

full : out std_logic := '0';

almost_empty : out std_logic := 'l';

almost_full
end async_fifo;

architecture BEHAVIORAL of async_fifo is

out std_logic := '0');

type ram_type is array ((2**FIFO_DEPTH)-1 downto 0) of std_logic_vector (FIFO_WIDTH-1

downto 0) ;

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Choosing Data Type

Verilog Example

-—- FIFO_WIDTH data width (number of bits)

-- FIFO_DEPTH by number of address bits

-- for the FIFO RAM i.e. 9 -> 2**9 -> 512 words
-- FIFO_RAM TYPE: BLOCKRAM or DISTRIBUTED_RAM

-- Note:

DISTRIBUTED_RAM suggested for FIFO_DEPTH

-- of 5 or less

module async_fifo (din, rd_clk, rd_en, ainit, wr_clk, wr_en, dout, empty,
almost_empty, almost_full, wr_ack);

parameter FIFO_WIDTH = 16;

parameter FIFO_DEPTH = 9;

parameter FIFO_RAM_TYPE = "BLOCKRAM";
input [FIFO_WIDTH-1:0] din;

input rd_clk;

input rd_en;

input ainit;

input wr_clk;

input wr_en;

output reg [FIFO_WIDTH-1:0] dout;

output empty;
output full;

output almost_empty;
output almost_full;
output reg wr_ack;

reg [FIFO_WIDTH-1:0] fifo_ram [(2**FIFO_DEPTH)-1:0];

Choosing Data Type

Note: This section applies to VHDL only.

Use the Std_logic (IEEE 1164) standards for hardware descriptions when coding your

design. These standards are recommended for the following reasons.

1. Applies as a wide range of state values

Std_logic has nine different values that represent most of the states found in digital

circuits.

2. Allows indication of all possible logic states within the FPGA

full,

a. Std_logic not only allows specification of logic high (1) and logic low (0) but also

whether a pullup (H) or pulldown (L) is used, or whether an output in high

impedance (Z).

b. Std_logic allows the specification of unknown values (X) due to possible

contention, timing violations, or other occurrences, or whether an input or signal

is unconnected (U).

c. Std_logic allows a more realistic representation of the FPGA logic for both
synthesis and simulation which many times will allow more accurate results.

3. Easily performs board-level simulation

Synthesis and Simulation Design Guide www.xilinx.com

8.1i

59

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

For example, if you use an integer type for ports for one circuit and standard logic for
ports for another circuit, your design can be synthesized; however, you need to
perform time-consuming type conversions for a board-level simulation.

The back-annotated netlist from Xilinx implementation is in Std_logic. If you do not use
Std_logic type to drive your top-level entity in the test bench, you cannot reuse your
functional test bench for timing simulation. Some synthesis tools can create a wrapper for
type conversion between the two top-level entities; however, this is not recommended by
Xilinx.

Declaring Ports

Xilinx recommends that you use the Std_logic type for all entity port declarations. This
type makes it easier to integrate the synthesized netlist back into the design hierarchy
without requiring conversion functions for the ports. The following VHDL example uses
the Std_logic type for port declarations.

Entity alu is

port (
A : in STD_LOGIC_VECTOR (3 downto 0);
B : in STD_LOGIC_VECTOR (3 downto 0);
CLK : in STD_LOGIC;
C : out STD_LOGIC_VECTOR (3 downto 0)
)i
end alu;

If a top-level port is specified as a type other than STD_LOGIC, then software generated
simulation models (such as timing simulation) may no longer bind to the test bench. This
is due to the following factors:

¢ Type information can not be stored for a particular design port.

e Simulation of FPGA hardware requires the ability to specify the values of
STD_LOGIC such as high-Z (3-state), and X unknown in order to properly display
hardware behavior.

Xilinx recommends that you not declare arrays as ports. This information can not be
properly represented or re-created. For this reason, Xilinx recommends that you use
STD_LOGIC and STD_LOGIC_VECTOR for all top-level port declarations.

Using Arrays in Port Declarations

VHDL allows you to declare a port as an array type. However, Xilinx strongly
recommends that you never do this, for the following reasons.

Incompatibility with Verilog

There is no equivalent way to declare a port as an array type in Verilog. Verilog does not
allow ports to be declared as arrays. This limits portability across languages. It also limits
as the ability to use the code for mixed-language projects.

Inability to Store and Re-Create Original Declaration of the Array

When you declare a port as an array type in VHDL, the original declaration of the array can
not be stored and re-created. The EDIF netlist format, as well as the Xilinx database, are
unable to store the original type declaration for the array.

60 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Choosing Data Type

Consequently, when NetGen or another netlister attempts to re-create the design, there is
no information as to how the port was originally declared. The resulting netlist generally
has mis-matched port declarations and resulting signal names. This is true not only for the
top-level port declarations, but also for the lower-level port declarations of a hierarchical

design since the KEEP_HIERARCHY mechanism can be used to attempt to preserve those
net names.

Mis-Correlation of Software Pin Names

Another effect array port declarations can have is a mis-correlation of the software pin
names from the original source code. Since the software must treat each I/O as a separate
label, the corresponding name for the broken-out port may not match what is expected by
the user. This makes design constraint passing, design analysis and design reporting more
difficult to understand.

Minimizing the Use of Ports Declared as Buffers

Do not use buffers when a signal is used internally and as an output port. In the following
VHDL example, signal C is used internally and as an output port.

Entity alu is

port (
A : in STD_LOGIC_VECTOR(3 downto 0);
B : in STD_LOGIC_VECTOR(3 downto 0);
CLK : in STD_LOGIC;
C : buffer STD_LOGIC_VECTOR(3 downto 0));
end alu;
architecture BEHAVIORAL of alu is
begin

process begin
if (CLK'event and CLK='1l') then
C <= UNSIGNED(A) + UNSIGNED (B) UNSIGNED(C) ;
end if;
end process;
end BEHAVIORAL;

Because signal C is used both internally and as an output port, every level of hierarchy in
your design that connects to port C must be declared as a buffer. However, buffer types are
not commonly used in VHDL designs because they can cause problems during synthesis.

To reduce the amount of buffer coding in hierarchical designs, you can insert a dummy
signal and declare port C as an output, as shown in the following VHDL example.

Entity alu is

port (
A : in STD_LOGIC_VECTOR (3 downto 0);
B : in STD_LOGIC_VECTOR (3 downto 0);
CLK : in STD_LOGIC;
C : out STD_LOGIC_VECTOR (3 downto 0)
)
end alu;

architecture BEHAVIORAL of alu is
-- dummy signal
signal C_INT : STD_LOGIC_VECTOR (3 downto 0);
begin
C <= C_INT;
process begin

Synthesis and Simulation Design Guide www.xilinx.com 61

8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

if (CLK'event and CLK='1l') then
C_INT <= A and B and C_INT;
end if;
end process;
end BEHAVIORAL;

Comparing Signals and Variables (VHDL only)

You can use signals and variables in your designs. Signals are similar to hardware and are
not updated until the end of a process. Variables are immediately updated and, as a result,
can affect the functionality of your design. Xilinx recommends using signals for hardware
descriptions; however, variables allow quick simulation. The following VHDL examples
show a synthesized design that uses signals and variables, respectively. These examples
are shown implemented with gates in the “Gate Implementation of XOR_VAR” and “Gate
Implementation of XOR_SIG” figures.

Note: If you assign several values to a signal in one process, only the final value is used. When you
assign a value to a variable, the assignment takes place immediately. A variable maintains its value
until you specify a new value.

Using Signals (VHDL)

-- XOR_SIG.VHD
Library IEEE;
use IEEE.std_logic_1164.all;

entity xor_sig is
port (
A, B, C: in STD_LOGIC;
X, Y: out STD_LOGIC
)i
end xor_sig;

architecture SIG_ARCH of xor_sig is
signal D: STD_LOGIC;

begin
SIG:process (A,B,C)
begin
D <= A; -- ignored !!
X <= C xor D;
D <= B; -- overrides !!

Y <= C xor D;
end process;
end SIG_ARCH;

62

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Choosing Data Type

y

y

C IBUF I:::> E::>
OBUF X

XOR2

y

B IBUF

OBUF Y

X8542

Figure 3-1: Gate implementation of XOR_SIG

Using Variables (VHDL)

-- XOR_VAR.VHD

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity xor_var is
port (
A, B, C: in STD_LOGIC;
X, Y: out STD_LOGIC
)i
end xor_var;

architecture VAR_ARCH of xor_var is
begin
VAR:process (A,B,C)
variable D: STD_LOGIC;

begin
D := A;
X <= C xor D;
D := B;

Y <= C xor D;
end process;
end VAR_ARCH;

Synthesis and Simulation Design Guide www.xilinx.com 63
8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

y

C IBUF
= ¥ =
/ OBUF X
A IBUF XOR2
—) =
/D OBUF Y

B IBUF XOR2
X8543

Figure 3-2: Gate Implementation of XOR_VAR

Using “timescale

Note: This section applies to Verilog only.

All Verilog test bench and source files should contain a “timescale directive, or reference an
include file containing a “timescale directive. Place this near the beginning of the source
file, and before any module or other design unit definitions in the source file. Xilinx
recommends that you use a “timescale with the resolution of 1 ps. Some Xilinx primitive
components such as DCM require a 1ps resolution in order to properly work in either
functional or timing simulation. Little or no simulation speed difference should be seen
with the use of a 1ps resolution over a more coarse resolution.

The following “timescale directive is a typical default:

‘timescale 1ns / lps

Coding for Synthesis

VHDL and Verilog are hardware description and simulation languages that were not
originally intended as inputs to synthesis. Therefore, many hardware description and
simulation constructs are not supported by synthesis tools. In addition, the various
synthesis tools use different subsets of VHDL and Verilog. VHDL and Verilog semantics
are well defined for design simulation. The synthesis tools must adhere to these semantics
to make sure that designs simulate the same way before and after synthesis. Follow the
guidelines in the following sections to create code that simulates the same way before and
after synthesis.

Omit the Use of Delays in Synthesis Code

Donot usethewait for XX ns (VHDL) or the #XX (Verilog) statement in your code. XX
specifies the number of nanoseconds that must pass before a condition is executed. This
statement does not synthesize to a component. In designs that include this construct, the
functionality of the simulated design does not always match the functionality of the
synthesized design. VHDL and Verilog examples of the Wait for XX ns statement are
as follows.

64

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Coding for Synthesis

e VHDL
wait for XX ns;
e Verilog
#XX;

Also, do not use the ...After XX ns statement in your VHDL code or the Delay assignment
in your Verilog code. Examples of these statements are as follows.

e VHDL

(Q <=0 after XX ns)
e Verilog

assign #XX Q=0;

XX specifies the number of nanoseconds that must pass before a condition is executed. This
statement is usually ignored by the synthesis tool. In this case, the functionality of the
simulated design does not match the functionality of the synthesized design.

Order and Group Arithmetic Functions

The ordering and grouping of arithmetic functions can influence design performance. For
example, the following two VHDL statements are not necessarily equivalent.

ADD <= Al + A2 + A3 + A4;
ADD <= (Al + A2) + (A3 + A4d);

For Verilog, the following two statements are not necessarily equivalent.

ADD = Al + A2 + A3 + A4;
ADD = (Al + A2) + (A3 + A4d);

The first statement cascades three adders in series. The second statement creates two
adders in parallel: A1 + A2 and A3 + A4. In the second statement, the two additions are
evaluated in parallel and the results are combined with a third adder. RTL simulation
results are the same for both statements, however, the second statement results in a faster
circuit after synthesis (depending on the bit width of the input signals).

Although the second statement generally results in a faster circuit, in some cases, you may
want to use the first statement. For example, if the A4 signal reaches the adder later than
the other signals, the first statement produces a faster implementation because the
cascaded structure creates fewer logic levels for A4. This structure allows A4 to catch up to
the other signals. In this case, Al is the fastest signal followed by A2 and A3; A4 is the
slowest signal.

Most synthesis tools can balance or restructure the arithmetic operator tree if timing
constraints require it. However, Xilinx recommends that you code your design for your
selected structure.

Use of Resets and Synthesis Optimization

Xilinx FPGA devices have an abundance of flip-flops. All architectures support the use of
an asynchronous reset for those registers and latches. Even though this capability exists,
Xilinx does not generally recommend that you code for it. The use of asynchronous resets
may not only result in more difficult timing analysis, but may also result in a less optimal
optimization by the synthesis tool.

Synthesis and Simulation Design Guide www.xilinx.com 65
8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

The timing hazard an asynchronous reset poses on a synchronous system is generally well
known; however, less well known is the optimization trade-off the asynchronous reset
poses on a design.

The use of any reset when inferring shift registers will prohibit the inference of the Shift
Register LUT component. All current Xilinx FPGA architectures contain LUTs that may be
configured to act as a 16-bit shift register called an SRL (Shift Register LUT).

The SRL is a very efficient structure for building static and variable length shift registers;
however, a reset (either synchronous or asynchronous) would preclude the use of this
component. This generally leads to a less efficient structure using a combination of
registers and, sometimes, logic.

The choice between synchronous and asynchronous resets can also change the choices of

how registers are used within larger blocks of IP in the FPGA. For instance, the DSP48 in

the Virtex-4 family has several registers within the block which, if used, can not only result
in a possible substantial area savings, but can also improve the overall performance of the
circuit.

The DSP48 has only a synchronous reset. This means if a synchronous reset is inferred in
registers around logic that could be packed into a DSP48, the registers can also be packed
into the component as well, resulting in a smaller and generally faster design. If, however,
an asynchronous reset is used, the register must remain outside of the block, resulting in a
less optimal design. Similar optimization applies to the block RAM registers and other
components within the FPGA.

The flip-flops within the FPGA are configurable to be either an asynchronous set/reset, or
a synchronous set/reset. If an asynchronous reset is described in the code, the synthesis
tool must configure the flip-flop to use the asynchronous reset/preset. This precludes the
use of any other signals using this resource.

If, however, a synchronous reset (or no reset at all) is described for the flip-flop, the
synthesis tool can configure the set/reset as a synchronous operation. Doing so allows the
synthesis tool to use this resource as a set/reset from the described code. It may also use
this resource to break up the data path. This may result in fewer resources and shorter data
paths to the register. Details of these optimizations depend on the code and synthesis tools
used.

To illustrate how the use of asynchronous resets can inhibit optimization, see the following
code examples.

VHDL Example One

process (CLK, RST)

begin
if (RST = '1') then
Q <= '0";
elsif (CLK'event and CLK = 'l') then
Q <= A or (B and C and D and E);
end if;

end process;

66 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Coding for Synthesis

Verilog Example One

always @ (posedge CLK, posedge RST)

if (RESET)
Q <= 1'b0;
else
Q<=2A| (B&C&D&E);

To implement the following code, the synthesis tool has no choice but to infer two LUTs for
the data path since there are 5 signals used to create this logic. A possible implementation
of the above code can now look like:

D| LUT4

_E] LUT4

FDCE

ols >

LK
_CLKD
CLR

RST

x10299

Figure 3-3: Verilog Example One

If however, this same code is re-written for a synchronous reset, see the following
examples.

VHDL Example Two

process (CLK)

begin
if (CLK'event and CLK = '1l') then
if (RST = '1l') then
Q <= 1'0";
else
Q <= A or (B and C and D and E);
end if;
end if;

end process;

Synthesis and Simulation Design Guide www.xilinx.com 67
8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

Verilog Example Two

always @ (posedge CLK)

if (RESET)
Q <= 1'b0;
else
Q <= A | (B&C&D&E) ;

The synthesis tool now has more flexibility as to how this function can be represented. A
possible implementation of the above code can now look like:

LUT4

nlolo s
[9)

FDRSE

LK
C_>

RST |

x10300

Figure 3-4: Verilog Example Two

In the above implementation, the synthesis tool can identify that any time A is active high,
Qs always a logic one. With the register now configured with the set/reset as a
synchronous operation, the set is now free to be used as part of the synchronous data path.
This reduces the amount of logic necessary to implement the function, as well as reducing
the data path delays for the D and E signals. Logic could have also been shifted to the reset
side as well if the code was written in a way that was a more beneficial implementation.

VHDL Example Three

Now consider the following addition to the above example:

process (CLK, RST)

begin
if (RST = '1') then
Q <= 1'0";
elsif (CLK'event and CLK = 'l') then
Q <= (F or G or H) and (A or (B and C and D and E));
end if;

end process;

68 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Coding for Synthesis

Verilog Example Three

always @ (posedge CLK, posedge RST)

if (RESET)
Q <= 1'b0;
else
Q <= (F|G|H) & (A | (B&C&D&E));

Now that there are eight signals that contribute to the logic function, a minimum of 3 LUTs
would be needed to implement this function. A possible implementation of the above code

can now look like:

F| LUT4
__G]
__H]
LUT4
_A FDCE
(Q
B LUT4
D CLR
_E RST
x10301
Figure 3-5: Verilog Example Three
VHDL Example Four
If the same code is written with a synchronous reset:
process (CLK)
begin
if (CLK'event and CLK = '1l') then
if (RST = '1l') then
Q <= '0";
else
Q <= (F or G or H) and (A or (B and C and D and E));
end if;
end if;

end process;

Synthesis and Simulation Design Guide www.xilinx.com
8.1i

69

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

Verilog Example Four

always @ (posedge CLK)

if (RESET)
Q <= 1'b0;
else
Q <= (F|G|H) & (A | (B&C&D&E));

A possible implementation of the above code can now look like:

A

_ B| LUT4

_Cj

_D S Q

E FDRSE

CLKp

RST| LUT4 R

_F]

_G]

__H]

x10302

Figure 3-6: \Verilog Example Four

Again the resulting implementation above not only uses fewer LUTs to implement the
same logic function but also could potentially result in a faster design due to the reduction
of logic levels for practically every signal that creates this function. These examples are
simple in nature but do illustrate the point of how the use of asynchronous resets force all
synchronous data signals on the data input to the register thus resulting in a potentially
less optimal implementation.

In general, the more signals that fan into a logic function, the more effective the use of
synchronous sets/resets (or no resets at all) can be in minimizing logic resources and in
maximizing performance of the design.

Considerations When Not Using Asynchronous Resets in a Design

Many users familiar with ASIC designs include a global asynchronous reset signal in the
design. This not only allows for proper initialization of the end device, but also aids in
simulation of the design. As stated above, however, this practice can have a negative
consequence for the end design optimization, and is not necessary.

All Xilinx FPGAs have a dedicated asynchronous reset called GSR (Global Set Reset). GSR
is automatically asserted at the end of FPGA configuration, regardless of the coding style.
For gate-level simulation, this GSR signal is also inserted to mimic this operation to allow
accurate simulation of the initialized design as it happens in the silicon. Adding another
asynchronous reset to the actual code only duplicates this dedicated feature. It is not
necessary for device initialization or simulation initialization.

70 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Coding for Synthesis

Comparing If Statement and Case Statement

The If statement generally produces priority-encoded logic and the Case statement
generally creates balanced logic. An If statement can contain a set of different expressions
while a Case statement is evaluated against a common controlling expression. In general,
use the Case statement for complex decoding and use the If statement for speed critical
paths.

Most synthesis tools can determine whether the if-elsif conditions are mutually exclusive,
and do not create extra logic to build the priority tree. Keep the following in mind when
writing if statements.

e Make sure that all outputs are defined in all branches of an if statement. If not, it can
create latches or long equations on the CE signal. A good way to prevent this is to
have default values for all outputs before the if statements.

¢ Remember that limiting the number of input signals into an if statement can reduce
the number of logic levels. If there are a large number of input signals, see if some of
them can be pre-decoded and registered before the if statement.

e Avoid bringing the dataflow into a complex if statement. Only control signals should
be generated in complex if-else statements.

4—to—1 Multiplexer Design with If Construct

The following examples use an if construct in a 4-to—1 multiplexer design.

VHDL Example

-- IF_EX.VHD

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity if_ex is

port (

SEL: in STD_LOGIC_VECTOR(1 downto 0);
A,B,C,D: in STD_LOGIC;
MUX_OUT: out STD_LOGIC) ;

end if_ex;

architecture BEHAV of if_ex is
begin

IF_PRO: process (SEL,A,B,C,D)
begin
if (SEL="00") then MUX_OUT <= A;
elsif (SEL="01") then
MUX_OUT <= B;
elsif (SEL="10") then
MUX_OUT <= C;
elsif (SEL="11") then
MUX_OUT <= D;

else
MUX_OUT <= '0';
end if;
end process; --END IF_PRO
end BEHAV;
Synthesis and Simulation Design Guide www.xilinx.com 71

8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles

SXILINX®

Verilog Example

L1770 770 7700770077707 770 770777707 77777777777777777

// IF_EX.V /)
// Example of a If statement showing a //
// mux created using priority encoded logic //

// HDL Synthesis Design Guide for FPGA devices //
[17770777

module if_ex (

input A, B, C, D,

input [1:0] SEL,

output reg MUX_OUT) ;

always @
begin
if

(*)
(SEL ==
MUX_OUT =
else if (SEL
MUX_OUT =
else if (SEL
MUX_OUT =
else if (SEL
MUX_OUT =
else
MUX_OUT =
end
endmodule

2 1

b00)

A;

== 2'b01)
B;

== 2'b10)
C;
== 2'bll)

D;

0;

4—to—1 Multiplexer Design with Case Construct

The following VHDL and Verilog examples use a Case construct for the same multiplexer.
Figure 3-7 shows the implementation of these designs. In these examples, the Case
implementation requires only one slice while the If construct requires two slices in some
synthesis tools. In this case, design the multiplexer using the Case construct because fewer
resources are used and the delay path is shorter.

When writing case statements, make sure all outputs are defined in all branches.

VHDL Example

-- CASE_EX.VHD
-- May 2001
library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity case_ex is

port (
SEL :
A,B,C,D:
MUX_OUT:
end case_ex;

in STD_LOGIC_VECTOR(1l downto 0);
in STD_LOGIC;
out STD_LOGIC) ;

architecture BEHAV of case_ex is

begin

CASE_PRO: process

begin
case SEL is

(SEL,A,B,C,D)

72

www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

Coding for Synthesis

when
when
when
when
when

end process;

end BEHAV;

Verilog Example

LI770770 7770777077777 7777777777777777777777777777

nOQ”
\\01”
n{Q”
w1

=> MUX_OUT <
=> MUX_OUT <
=> MUX_OUT <
=> MUX_OUT <

1
g 0w

others => MUX_OUT <=
end case;

// CASE_EX.V

// Example of a Case statement showing
// A mux created using parallel logic
// HDL Synthesis Design Guide for FPGA devices //
[177707777770777777777777777777777777777777777777
module case_ex (

input A, B, C, D,

SEL,

input [1:0]

--End CASE_PRO

output reg MUX_OUT) ;

always @ (*)

begin
case (SEL)
2'b00: MUX_OUT = A;
2'b01: MUX_OUT = B;
2'b10: MUX_OUT = C;
2'bll: MUX_OUT = D;
default: MUX_OUT = O0;
endcase
end
endmodule

'O';

Synthesis and Simulation Design Guide

8.1i

www.Xxilinx.com

73

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

SEL [1:0] [>— |

SEL [0]

BU
AC> >

|
|
T
: LUT4 |
|
[

OBUF
>—1 > mux_out

LUT4

SEL [1] X999¢

Figure 3-7: Case_Ex Implementation

Implementing Latches and Registers

Synthesizers infer latches from incomplete conditional expressions, such as:

e an If statement without an Else clause

e anintended register without a rising edge or falling edge construct

Many times this is done by mistake. However, the design may still appear to function
properly in simulation. This can be problematic for FPGA designs, since timing for paths
containing latches can be difficult and challenging to analyze. Synthesis tools usually
report in the log files when a latch is inferred to alert you to this occurrence.

For FPGA designs, Xilinx generally recommends that you avoid the use of latches, even
though they can be properly implemented in the device, due to the more difficult timing
analyses that take place when latches are used.

Latch Inference

Following are examples of latch inference.

VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;

entity d_latch is
port (

74

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Coding for Synthesis

GATE, DATA: in STD_LOGIC;
Q: out STD_LOGIC) ;

end d_latch;

architecture BEHAV of d_latch is

begin
LATCH: process (GATE, DATA)
begin
if (GATE = '1') then
Q <= DATA;
end if;

end process;
end BEHAV;

Verilog Example

module d_latch (
input GATE, DATA,
output reg Q

)i

always @ (*)
if (GATE)
Q = DATA;

endmodule

Converting Latch to D Register

If your intention is to not infer a latch, but rather to infer a D register, then the
following code is the latch code example, modified to infer a D register.

VHDL Example

library IEEE;

use IEEE.std_logic_1164.all;

entity d_register is

port (

CLK, DATA: in STD_LOGIC;
Q: out STD_LOGIC

)i
end d_register;

architecture BEHAV of d_register is

begin

MY_D_REG: process (CLK)

begin
if (CLK'event and CLK='1l")
Q <= DATA;
end if;
end process; --End MY_D_REG
end BEHAV;
Synthesis and Simulation Design Guide www.xilinx.com 75

8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles

SXILINX®

Verilog Example

module d_register (
input CLK, DATA,
output reg Q);

always @ (posedge CLK)
begin: My_D_Reg
Q <= DATA;
end
endmodule

Converting Latch to a Logic Gate

If your intention is to not infer a latch, but rather to infer logic for the code, include an else
clause if you are using an if statement, or a default clause if you are using a case statement.

VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;

entity latch2gate is
port (

GATE, DATA: in STD_LOGIC;

Q: out STD_LOGIC) ;
end d_latch;

architecture BEHAV of d_latch is

begin
GATE: process (GATE, DATA)
begin
if (GATE = '1l') then
Q <= DATA;
else
Q <= '0";
end if;

end process;

end BEHAV;

Verilog Example

module latch2gate (GATE, DATA,

input GATE;
input DATA;
output Q;
reg Q;

always @ (GATE or DATA)

begin
if (GATE == 1'bl)
Q <= DATA;
else
Q <= 1'b0;

Q) ;

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Coding for Synthesis

end

endmodule

With some synthesis tools you can determine the number of latches that are implemented
in your design. Check your software documentation for information on determining the
number of latches in your design.

You should convert all If statements without corresponding Else statements and without a
clock edge to registers or logic gates. Use the recommended coding styles in the synthesis
tool documentation to complete this conversion.

Resource Sharing

Resource sharing is an optimization technique that uses a single functional block (such as
an adder or comparator) to implement several operators in the HDL code. Use resource
sharing to improve design performance by reducing the gate count and the routing
congestion. If you do not use resource sharing, each HDL operation is built with separate
circuitry. However, you may want to disable resource sharing for speed critical paths in
your design.

The following operators can be shared either with instances of the same operator or with
an operator on the same line.

*
+ -
> >= < <=

For example, a + operator can be shared with instances of other + operators or with —
operators. A * operator can be shared only with other * operators.

You can implement arithmetic functions (+, —, magnitude comparators) with gates or with
your synthesis tool’s module library. The library functions use modules that take
advantage of the carry logic in the FPGAs. Carry logic and its dedicated routing increase
the speed of arithmetic functions that are larger than 4-bits. To increase speed, use the
module library if your design contains arithmetic functions that are larger than 4-bits or if
your design contains only one arithmetic function. Resource sharing of the module library
automatically occurs in most synthesis tools if the arithmetic functions are in the same
process.

Resource sharing adds additional logic levels to multiplex the inputs to implement more
than one function. Therefore, you may not want to use it for arithmetic functions that are
part of your design’s time critical path.

Since resource sharing allows you to reduce the number of design resources, the device
area required for your design is also decreased. The area that is used for a shared resource
depends on the type and bit width of the shared operation. You should create a shared
resource to accommodate the largest bit width and to perform all operations.

If you use resource sharing in your designs, you may want to use multiplexers to transfer
values from different sources to a common resource input. In designs that have shared
operations with the same output target, the number of multiplexers is reduced as
illustrated in the following VHDL and Verilog examples. The HDL example is shown
implemented with gates in Figure 3-8.

Synthesis and Simulation Design Guide www.xilinx.com 77
8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

[c1[7:0] 0
[a117:0] 1 + D[7:0] Q[7:0]
. Z1[7:0]
UN1_CA[7:0] Z1.5(7:0]
[cLK

Iz —p
ST S—

UN1_D1[7:0] X9462
Figure 3-8: Implementation of Resource Sharing

VHDL Example

-- RES_SHARING.VHD

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity res_sharing is
port (
Al,B1,C1,Dl1 : in STD_LOGIC_VECTOR (7 downto O0);
COND_1 : in STD_LOGIC;
Z1 : out STD_LOGIC_VECTOR (7 downto 0));
end res_sharing;

architecture BEHAV of res_sharing is
begin
Pl: process (Al,B1,C1,D1,COND_1)
begin
if (COND_1='1') then
Z1l <= Al + B1;

else
Z1l <= Cl1 + D1;
end if;
end process; -- end P1
end BEHAV;

Verilog Example

/* Resource Sharing Example
* RES_SHARING.V
*/

module res_sharing (
input [7:0] Al, B1, Cl1, D1,
input COND_1,

78 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Coding for Synthesis

output reg [7:0] Z1);

always @(*)

begin
if (COND_1)
z1 <= Al + Bl;
else
Z1l <= Cl1l + D1;
end
endmodule

If you disable resource sharing or if you code the design with the adders in separate
processes, the design is implemented using two separate modules as shown in Figure 3-9

[cLk

UN4_Z1[7:0]
0
[conD 1 D[7:0] Q[7:0]
1 ZA[7:0]
Z1_5[7:0]
Z1_1[7:0] xotes

Figure 3-9: Implementation without Resource Sharing

For more information on resource sharing, see the appropriate reference guide.

Using Clock Enable Pin Instead of Gated Clocks

Xilinx generally recommends that you use the CLB clock enable pin instead of gated clocks
in your designs. Gated clocks can cause glitches, increased clock delay, clock skew, and
other undesirable effects. Using clock enable saves clock resources, and can improve
timing characteristic and analysis of the design. If you want to use a gated clock for power
reduction, most FPGA devices now have a clock enabled global buffer resource called
BUFGCE. However, a clock enable is still the preferred method to reduce or stop the clock
to portions of the design. The first two examples in this section (VHDL and Verilog)
illustrate a design that uses a gated clock. Following these examples are VHDL and Verilog
designs that show how to modify the gated clock design to use the clock enable pin of the
CLB.

VHDL Example

// The following code is for demonstration purposes only
// Xilinx does not suggest using the following coding style in FPGAs

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity gate_clock is
port (CLOCK_EN, DATA, CLK : in STD_LOGIC;

Synthesis and Simulation Design Guide www.xilinx.com 79

8.1i

http://www.xilinx.com

Chapter 3: General HDL Coding Styles 27 XILINX®

OUT1: out STD_LOGIC) ;
end gate_clock;

architecture BEHAVIORAL of gate_clock is
signal GATECLK: STD_LOGIC;

begin
GATECLK <= (CLOCK_EN and CLK) ;

GATE_PR: process (GATECLK)
begin
if (GATECLK'event and GATECLK='1l') then
OUT1 <= DATA;
end if;
end process; -- End GATE_PR

end BEHAVIORAL

Verilog Example

// The following code is for demonstration purposes only
// Xilinx does not suggest using the following coding style in FPGAs

module gate_clock(
input CLOCK_EN, DATA, CLK,
output reg OUTL

)i

wire GATECLK;
assign GATECLK = (CLOCK_EN & CLK);

always @ (posedge GATECLK)
OUT1 <= DATA;

endmodule
Converting the Gated Clock to a Clock Enable

VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity clock enable is
port (CLOCK_EN, DATA, CLOCK : in STD_LOGIC;
OUT1l: out STD_LOGIC) ;
end clock_enable;
architecture BEHAV of clock_enable is
begin

EN_PR: process (CLOCK)

begin
if (CLOCK'event and CLOCK='1l') then
if (CLOCK_EN = 'l1l') then

OUT1 <= DATA;

80 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Coding for Synthesis

end if;
end if;

end process; -- End EN_PR

end BEHAV;

Verilog Example

module clock_enable (
input CLOCK_EN, DATA, CLK,
output reg DOUT
)i
always @ (posedge CLK)
if (CLOCK_EN)
DOUT <= DATA;

endmodule

DATA [
INT [D>—

IN2 D__D_\ ENABLE

CLOCK | >

Figure 3-10:

DFF
D

CE
C

Q

—L > OuTH

X4976

Implementation of Clock Enable

Synthesis and Simulation Design Guide
8.1i

www.Xxilinx.com

81

http://www.xilinx.com

Chapter 3: General HDL Coding Styles

SXILINX®

82

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

$7 XILINX®
Chapter 4

Coding Styles for FPGA Devices

This chapter includes coding techniques to help you improve synthesis results. This
chapter includes the following sections.

e “Applicable Architectures”

e “FPGA HDL Coding Features”

e “Instantiating Components”

e “Using Boundary Scan”

e “Using Global Clock Buffers”

e “Using Advanced Clock Management”

e “Using Dedicated Global Set/Reset Resource”
e “Implementing Inputs and Outputs”

e “Encoding State Machines”

¢ “Implementing Operators and Generating Modules”
e “Implementing Memory”

e “Implementing Shift Registers”

e “Implementing Multiplexers”

e “Using Pipelining”

e “Design Hierarchy”

Applicable Architectures

This chapter highlights the features and synthesis techniques in designing with the
following Xilinx® FPGA devices:

e Virtex™

e Virtex-E

e Virtex-1II

e Virtex-II Pro

e Virtex-II Pro X
e Virtex-4

e Spartan™.-II

e Spartan-IIE

e Spartan-3

e Spartan-3E

Synthesis and Simulation Design Guide www.xilinx.com 83
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Unless otherwise stated, the features and examples in this chapter apply to all the FPGA
devices listed above.

Virtex-1I, Virtex-1I Pro, Virtex-1I Pro X, Spartan-3,and Spartan-3E provide an architecture
that is substantially different from Virtex, Virtex-E and Spartan-II. However, many of the
synthesis design techniques apply the same way to all these devices.

For information specific to Virtex-II Pro and Virtex-II Pro X, see the Virtex-II Pro Platform
FPGA User Guide. For information specific to Virtex-4, see the Virtex-4 User Guide.

FPGA HDL Coding Features

This chapter covers the following FPGA HDL coding features:

¢ Advanced clock management

¢ On-chip RAM and ROM

e IEEE 1149.1 — compatible boundary scan logic support

¢ Flexible I/O with Adjustable Slew-rate Control and Pull-up/Pull-down Resistors

e Various drive strength

e Various I/O standards

¢ Dedicated high-speed carry-propagation circuit

You can use these device characteristics to improve resource utilization and enhance the

speed of critical paths in your HDL designs. The examples in this chapter are provided to
help you incorporate these system features into your HDL designs.

Instantiating Components

Xilinx provides a set of libraries that your synthesis tool can infer from your HDL code
description. However, architecture specific and customized components must be explicitly
instantiated as components in your design.

Instantiating FPGA Primitives

Architecture specific components that are built into the implementation software's library
are available for instantiation without the need for specifying a definition. These
components are marked as primitive in the Xilinx Libraries Guides. Components marked as
macro in the Xilinx Libraries Guides are not built into the implementation software's library
so they cannot be instantiated. The macro components in the Xilinx Libraries Guides define
the schematic symbols. When macros are used, the schematic tool decomposes the macros
into their primitive elements when the schematic tool writes out the netlist.

FPGA primitives can be instantiated in VHDL and Verilog.

VHDL Example

The following example shows declaring component and port map.

library IEEE;

use IEEE.std_logic_1164.all;

-- Add the following two lines if using XST and Synplify:
-- library unisim;

-- use unisim.vcomponents.all;

entity flops is port(

84

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

ST XILINX®

Instantiating Components

di : in std_logic;

ce : in std_logic;

clk : in std_logic;

go : out std_logic;

rst : in std_logic);
end flops;

-- remove the following component declarations
-- if using XST or Synplify

architecture inst of flops is

component FDCE port (

D : in std_logic;
CE : in std_logic;
C : in std_logic;
CLR : in std_logic;
Q : out std_logic);

end component;

begin

U0 : FDCE port map (
D => di,
CE => ce,
C => clk,
CLR => rst,
Q => Qo) ;

end inst;

Verilog Example

[177707777770777
// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"
L1777 77777 707777777 7777707777777777777777777777777777777
module flops (

input dl, ce, clk, rst,

output qgl) ;

FDCE ul (
.D (d1),
.CE (ce),
.C (clk),
.CLR (rst),
.Q (ql));

endmodule

Passing Generics and Parameters

Some constraints are properties of primitives. These constraints can be added to the
primitive through a variety of methods:

User Constraints File (UCF)
VHDL attribute passing
Verilog attribute passing
VHDL generic passing

Verilog parameter passing

To determine which constraints are available to a particular primitive, see the ISE help:
Edit > Language Templates > VHDL/ Verilog > Device Primitive Instantiation. In each of

Synthesis and Simulation Design Guide www.xilinx.com 85

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

the primitive instantiation templates, the primitive constraints will be listed in the generics
or parameters. Below are some examples of passing constraints in generics and
parameters.

VHDL Example

library IEEE;

use IEEE.std_logic_1164.all;

library IEEE;

use IEEE.std_logic_1164.all;

-- Add the following two lines if using Synplify:
-- library unisim;

-- use unisim.vcomponents.all;

entity my_ram is port(

d : in std_logic;

clk : in std_logic;

we : in std_logic;

address : in std_logic_vector (3 downto 0);
readout : out std_logic);

end my_ram;
-- remove the following component declarations
-- 1f using XST or Synplify
architecture inst of my ram is
component RAM16X1S
generic (INIT : bit_vector

port (
D : in std_logic;
WE : in std_logic;
WCLK: in std_logic;
A0 : in std_logic;
Al : in std_logic;
A2 : in std_logic;
A3 : in std_logic;
o] : out std_logic);

end component;

begin
U0 : RAM16X1S
generic map (INIT => xX"FOFO")

port map (
D => d,
WE => we,
WCLK => clk,
AQ => address (0),
Al => address (1),
A2 => address (2),
A3 => address (3),
0 => readout) ;
end inst;

Verilog Example

L1770 77777 707777777 777777777777777777777777777777777777
// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"
[177707777770777
module my_ram (

output readout,

86 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Using Boundary Scan

input [3:0] address,
input d, clk, we);

RAM16X1S #(.INIT(16'hFOF0))

Ul (
.0 (readout),
.A0 (address [0]),
.Al (address [11),
.A2 (address [21),
.A3 (address [31),
.D (d),
.WCLK (clk),
WE (we));
endmodule

Instantiating CORE Generator Modules

CORE Generator™ allows you to generate complex ready-to-use functions such as:

FIFO
Filter
Divider
RAM
ROM

CORE Generator generates:

an EDIF netlist to describe the functionality

a component instantiation template for HDL instantiation

To instantiate a CORE Generator module in Project Navigator:

1.
2.
3.
4.

Select Project > New Source.
Select IP (CoreGen & Architecture Wizard).
Select the core that you wish to generate.

Click Generate.

Project Navigator creates an instantiation template of the core and places it in the Project
Navigator Language Templates.

Use the instantiation template to instantiate the core in your design:

1.
2.
3.
4.

Select Edit > Language Templates.

Expand the COREGEN folder.

Select the VHDL or Verilog instantiation templates for the core that you created.
Copy and paste the code into your design.

For more information on CORE Generator, see the CORE Generator help.

Using Boundary Scan

Xilinx FPGA devices contain boundary scan facilities that are compatible with IEEE
Standard 1149.1. You can access the built-in boundary scan logic between power-up and
the start of configuration.

Synthesis and Simulation Design Guide www.xilinx.com 87

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

In a configured device, basic boundary scan operations are always available, and, if
desired, can access internal logic. To do so, the proper BSCAN component for the desired
target device must be instantiated and connected in the code. This is necessary only if you
wish to connect internal logic to the FPGA. All other JTAG commands are still accessible
without the BSCAN component existing in the design.

For more information on boundary scan for an architecture, see the Xilinx Libraries Guides,
and the product data sheet and user guide.

Using Global Clock Buffers

For designs with global signals, use global clock buffers to take advantage of the low-skew,
high-drive capabilities of the dedicated global buffer tree of the target device. Your
synthesis tool automatically inserts a clock buffer whenever an input signal drives a clock
signal, or whenever an internal clock signal reaches a certain fanout.

Most synthesis tools also limit global buffer insertions to match the number of buffers
available on the device.

You can instantiate the clock buffers if your design requires a special architecture-specific
buffer, or if you want to specify the allocation of the clock buffer resources. Xilinx
recommends, however, that you generally let the synthesis tool infer such buffers.

Inserting Global Clock Buffers

Synthesis tools will automatically insert a global buffer (BUFG) when an input port drives
a register's clock pin or when an internal clock signal reaches a certain fanout. A BUFGP
(an IBUFG-BUFG connection) is inserted for the external clock whereas a BUFG is inserted
for an internal clock. Most synthesis tools also allow you to control BUFG insertions
manually if you have more clock pins than the available BUFGs resources

Synthesis tools currently insert simple clock buffers (BUFGs) for all FPGA devices. For
Virtex-1I, Virtex-II Pro, Virtex-II Pro X, Virtex-4, Spartan-3, and Spartan-3E, some tools
provide an attribute to use BUFGMUX as an enabled clock buffer. To use BUFGMUX as a
real clock multiplexer, it must be instantiated.

LeonardoSpectrum and Precision Synthesis

LeonardoSpectrum and Precision Synthesis force clock signals to global buffers when the
resources are available. The best way to control unnecessary BUFG insertions is to turn off
global buffer insertion, then use the BUFFER_SIG attribute to push BUFGs onto the desired
signals. By doing this you do not have to instantiate any BUFG components. As long as
you use chip options to optimize the IBUFs, they are auto-inserted for the input.

The following is a syntax example of the BUFFER_SIG attribute.

set_attribute -port clkl -name buffer_sig -value BUFG
set_attribute -port clk2 -name buffer_sig -value BUFG

Synplify

Synplify assigns a BUFG to any input signal that directly drives a clock. Auto-insertion of
the BUFG for internal clocks occurs with a fanout threshold of 16 loads. To turn off
automatic clock buffers insertion, use the syn_noclockbuf attribute. This attribute can
be applied to the entire module/architecture or a specific signal.

88

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

S XILINX® Using Global Clock Buffers

To change the maximum number of global buffer insertion, set an attribute in the SDC file
as follows.

define_global_attribute xc_global buffers (8)

XST

For information on inserting global clock buffers in XST, see the Xilinx XST User Guide.

Instantiating Global Clock Buffers

You can instantiate global buffers in your code as described in this section.

Instantiating Buffers Driven from a Port

You can instantiate global buffers and connect them to high-fanout ports in your code
rather than inferring them from a synthesis tool script. If you do instantiate global buffers,
verify that the Pad parameter is not specified for the buffer.

Synthesis tools insert BUFGP for clock signals which access a dedicated clock pin. To have
a regular input pin to a clock buffer connection, you must use an IBUF-BUFG connection.
This is done by instantiating BUFG after disabling global buffer insertion.

VHDL Example

-- IBUF_BUFG.VHD Version 1.0

-- This is an example of an instantiation of

-- a global buffer (BUFG)

-- Add the following two lines if using XST and Synplify:
-- library unisim;

-- use unisim.vcomponents.all;

library IEEE;
use IEEE.std_logic_1164.all;
entity IBUF_BUFG is
port (DATA, CLOCK : in STD_LOGIC;
DOUT : out STD_LOGIC) ;
end ibuf_bufg;
architecture XILINX of IBUF_BUFG is

signal CLOCK : STD_LOGIC;
signal CLOCK_GBUF : STD_LOGIC;
-- remove the following component declarations
-- if using XST or synplify
component BUFG
port (
I : in STD_LOGIC;
O : out STD_LOGIC
)i
end component;
begin
u0 : BUFG
begin
port map (I => CLOCK,
O => CLOCK_GBUF) ;
process (CLOCK_GBUF)

Synthesis and Simulation Design Guide www.xilinx.com 89

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

begin
if rising_ edge (CLOCK_GBUF) then
DOUT <= DATA;
end if;
end process;

end XILINX;

Verilog Example

[177707777770777
// IBUF_BUFG.V Version 1.0

// This is an example of an instantiation of

// global buffer (BUFG)

L1777 77777 707777777 7777707777777777777777777777777777777
// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"
[177707777770777

module ibuf_bufg(
input DATA, CLOCK,
output reg DOUT) ;

wire CLOCK_GBUF';

BUFG UO (.O(CLOCK_GBUF), .I(CLOCK)) ;
always @ (*) DOUT <= DATA;
endmodule

Instantiating Buffers Driven from Internal Logic

Some synthesis tools require you to instantiate a global buffer in your code to use the
dedicated routing resource if a high-fanout signal is sourced from internal flip-flops or
logic (such as a clock divider or multiplexed clock), or if a clock is driven from a non-
dedicated I/O pin. If using Virtex™ /E or Spartan-II™ devices, the following VHDL and
Verilog examples instantiate a BUFG for an internal multiplexed clock circuit.

Note: Synplify infers a global buffer for a signal that has 16 or greater fanouts.

VHDL Example

-- CLOCK_MUX_ BUFG.VHD Version 1.1

-- This is an example of an instantiation of

-- global buffer (BUFG) from an internally

-- driven signal, a multiplexed clock.

-- Add the following two lines if using XST and Synplify:
-- library unisim;

-- use unisim.vcomponents.all;

library IEEE;

use IEEE.std_logic_1164.all;

entity clock mux is

port (

DATA, SEL : in STD_LOGIC;
SLOW_CLOCK, FAST_CLOCK : in STD_LOGIC;
DOUT : out STD_LOGIC
)i

90

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Using Global Clock Buffers

end clock_mux;
architecture XILINX of clock _mux is

signal CLOCK : STD_LOGIC;
signal CLOCK_GBUF : STD_LOGIC;
-- remove the following component declarations
-- 1f using XST or Synplfy
component BUFG
port (
I : in STD_LOGIC;
O : out STD_LOGIC
)i
end component;
begin
Clock_MUX: process (SEL, FAST_CLOCK, SLOW_CLOCK)
begin
if (SEL = 'l') then
CLOCK <= FAST_CLOCK;
else
CLOCK <= SLOW_CLOCK;
end if;
end process;

GBUF_FOR_MUX_CLOCK: BUFG
port map (
I => CLOCK,
O => CLOCK_GBUF
)i

Data_Path: process (CLOCK_GBUF)
begin
if (CLOCK_GBUF'event and CLOCK_GBUF='1l"')then
DOUT <= DATA;
end if;
end process;
end XILINX;

Verilog Example

[177707777770777
// CLOCK_MUX_BUFG.V Version 1.1

// This is an example of an instantiation of

// global buffer (BUFG) from an internally

// driven signal, a multiplied clock.

[17777777777 777777777777 77777777777777777777777777777777
// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"
[177

module clock_mux (
input DATA, SEL, SLOW_CLOCK, FAST_CLOCK;
output reg DOUT) ;
reg CLOCK;
wire CLOCK_GBUF;

always @ (%)
begin
if (SEL == 1'bl)
CLOCK <= FAST_CLOCK;

Synthesis and Simulation Design Guide www.xilinx.com 91

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

else
CLOCK <= SLOW_CLOCK;
end

BUFG GBUF_FOR_MUX_CLOCK (.0 (CLOCK_GBUF), .I(CLOCK)) ;
always @ (posedge CLOCK_GBUF)
DOUT <= DATA;
endmodule

For Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex--4, Spartan-3, and Spartan-3E devices, a
BUFGMUX can be used to multiplex between clocks.

VHDL Example

-- CLOCK_MUX_BUFG.VHD Version 1.2

-- This is an example of an instantiation of

-- a multiplexing global buffer (BUFGMUX)

-- from an internally driven signal

-- Add the following two lines if using XST and Synplify:
-- library unisim;

-- use unisim.vcomponents.all;

library IEEE;
use IEEE.std_logic_1164.all;

entity clock mux is

port (DATA, SEL : in std_logic;
SLOW_CLOCK, FAST_CLOCK : in std_logic;
DOUT : out std_logic);

end clock_mux;

architecture XILINX of clock_mux is

signal CLOCK_GBUF : std_logic;
-- remove the following component declarations
-- if using XST or synplify

component BUFGMUX
port (
I0 : in std_logic;
I1 : in std_logic;
S : in std_logic;
O : out std_logic);
end component;
begin
GBUF_FOR_MUX_CLOCK : BUFGMUX
port map (
I0 => SLOW_CLOCK,
I1 => FAST CLOCK,
S => SEL,
O => CLOCK_GBUF) ;
Data_Path : process (CLOCK_GBUF)
begin
if (CLOCK_GBUF'event and CLOCK_GBUF='1l"')then
DOUT <= DATA;
end if;
end process;
end XILINX;

92 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Using Advanced Clock Management

Verilog Example

L1777 77777 707777777 777777777777777777777777777777777777
// CLOCK_MUX_BUFG.V Version 1.2

// This is an example of an instantiation of

// a multiplexing global buffer (BUFGMUX)

// from an internally driven signal

L1717 7077777 707777777 777777777777777777777777777777777777
// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"
[177707777770777

module clock_mux (
input DATA, SEL, SLOW_CLOCK, FAST_ CLOCK,
output reg DOUT) ;

reg CLOCK;
wire CLOCK_GBUF;

BUFGMUX GBUF_FOR_MUX_CLOCK
(.0 (CLOCK_GBUF) ,
.I0 (SLOW_CLOCK) ,
.I1(FAST_CLOCK)
.S(SEL)) ;

’

always @ (posedge CLOCK_GBUF)
DOUT <= DATA;

endmodule

Using Advanced Clock Management

Virtex, Virtex-E, and Spartan-II devices feature Clock Delay-Locked Loop (CLKDLL) for
advanced clock management. The CLKDLL can eliminate skew between the clock input
pad and internal clock-input pins throughout the device. CLKDLL also provides four
quadrature phases of the source clock. With CLKDLL you can eliminate clock-distribution
delay, double the clock, or divide the clock.

The CLKDLL also operates as a clock mirror. By driving the output from a DLL off-chip
and then back on again, the CLKDLL can be used to de-skew a board level clock among
multiple Virtex, Virtex-E, and Spartan-II devices.

For more information on CLKDLLs, see:

o the Xilinx Libraries Guides
e Xilinx Application Note XAPP132, “Using the Virtex Delay-Locked Loop”
e Xilinx Application Note XAPP174, “Using Delay-Locked Loops in Spartan-1I FPGAs”

Virtex-Il, Virtex-Il Pro, Virtex-1l Pro X, and Spartan-3 DCMs

In Virtex-1II, Virtex-II Pro, Virtex-1I Pro X, and Spartan-3 devices, the Digital Clock Manager
(DCM) is available for advanced clock management. The DCM contains the following
features.

e Delay Locked Loop (DLL) — The DLL feature is very similar to CLKDLL.

e Digital Phase Shifter (DPS) — The DPS provides a clock shifted by a fixed or variable
phase skew.

Synthesis and Simulation Design Guide www.xilinx.com 93
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp132.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp174.pdf
http://direct.xilinx.com/bvdocs/appnotes/xapp174.pdf

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

o Digital Frequency Synthesizer (DFS) — The DFS produces a wide range of possible
clock frequencies related to the input clock.

Virtex-4 DCMs

Virtex-4 has 3 different types of DCMs:

e DCM_ADV
e DCM_BASE
e DCM_PS

These new DCMs have the same features as the Virtex-II DCMs, with the addition of a
Dynamic Reconfiguration ability. The Dynamic Reconfiguration ability allows the DCM to
be reprogrammed without having to reprogram the Virtex-4. DCM_BASE and DCM_PS
access a subset of features of DCM_ADV. To access the Virtex-4 DCM, you can instantiate
one of the above listed primitives, as well as the Virtex-Il DCM.

For more information, see the Xilinx Libraries Guides and the product data sheet and user
guide.

Using CLKDLL in Virtex, Virtex-E and Spartan-Ii

There are four attributes available for the CLKDLL.:

e CLKDV_DIVIDE
e DUTY_CYCLE

e FACTORY_JF

e STARTUP_WAIT.

To modify these attributes, change the values in the generic map or parameter passing
within the instantiation component. For information on how to modify generics or
parameters, see “Passing Generics and Parameters” in this chapter.

For information on how to modify attributes on instantiated primitives, see “Passing
Generics and Parameters” in this chapter. Instantiation templates for the CLKDLLs are in
the Xilinx Libraries Guides. For examples on instantiating CLKDLLS, see the Xilinx Libraries
Guides.

94

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

S XILINX® Using Advanced Clock Management

Using the Additional CLKDLL in Virtex-E

There are eight CLKDLLs in each Virtex-E device, with four located at the top and four at
the bottom as shown in Figure 4-1. The basic operations of the DLLs in the Virtex-E devices
remain the same as in the Virtex and Spartan-II devices, but the connections may have
changed for some configurations.

r—— - — - — 7 r——— - — - —
| DLL-3S DLL-3P : | DLL-2P DLL-2S :
Ol. | | .*0
| | | |
! | | |
B B B B
R R R R
A A A A
M M M M
=117 1T 711 F—1 =1 1 71|
I I .
| | | || Bottom Right
I | I | Half Edge
| DLL-1S DLL-1P | | DLL-OP DLL-0S
X9239
Figure 4-1: DLLs in Virtex-E Devices
Synthesis and Simulation Design Guide www.xilinx.com 95

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Two DLLs located in the same half-edge (top-left, top-right, bottom-right, bottom-left) can
be connected together, without using a BUFG between the CLKDLLs, to generate a 4x
clock as shown in Figure 4-2.

IBUEG CLKDLL-S
ll> > CLKIN CLKO |—
CLK90 |—
> CLKFB CLK180 |—
CLK270 |—
CLK2X
CLKDV |— SRLi6 INV
J__ RST LOCKED D Q
= >WCLK
CLKDLL-P ﬁg’
Al
> CLKIN CLKO |— A0
CLK90 |—
CLK270 |—
BUFG
CLK2X >—
CLKDV |— OBUE
RST LOCKED >

X9240

Figure 4-2: DLL Generation of 4x Clock in Virtex-E™ Devices

Following are examples of coding a CLKDLL in both VHDL and Verilog.

VHDL Example

library IEEE;

use IEEE.std_logic_1164.all;

-- Add the following two lines if using XST and Synplify:
-- library unisim;

-- use unisim.vcomponents.all;

entity CLOCK_TEST is

port (
ACLK : in std_logic;
DIN : in std_logic_vector (1l downto 0);
RESET : in std_logic;
QOUT : out std_logic_vector (1 downto 0);

-- CLKDLL lock signal
BCLK_LOCK : out std_logic
)i

96 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Using Advanced Clock Management

end CLOCK_TEST;

architecture RTL of CLOCK_TEST is

-- remove the following component declarations
-- if using XST or synplify

component IBUFG

port (

I : in std_logic;
O : out std_logic);
end component;

component BUFG

port (

I : in std_logic;

O : out std_logic);
end component;
component CLKDLL

port (
CLKIN
CLKFB
RST
CLKO
CLK90
CLK180
CLK270
CLKDV
CLK2X
LOCKED

end component;
-- Clock signals
signal ACLK_ibufg
signal ACLK_2x, BCLK_4x
signal BCLK_4x_design
signal BCLK_lockin

begin

ACLK_ibufginst

port map (

in

in

in

out
out
out
out
out
out
out

std_logic;

std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic);

IBUFG

I => ACLK,
O => ACLK_ibufg

)

BCLK_bufg: BUFG

port map (

I => BCLK_4x,
O => BCLK_4x design) ;

ACLK_dl1l CLKDLL
port map (
CLKIN => ACLK_ibufg,
CLKFB => ACLK_2x,
RST = '0',
CLK2X => ACLK_2x,
CLKO => OPEN,
CLK90 => OPEN,
CLK180 => OPEN,
CLK270 => OPEN,
CLKD => OPEN,
LOCKED => OPEN
)
BCLK_dl11l CLKDLL
port map (

std_logic;
std_logic;
std_logic;
std_logic;

Synthesis and Simulation Design Guide

www.Xxilinx.com

97

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

CLKIN => ACLK_2x,

CLKFB => BCLK_4x_design,
RST = '0"',

CLK2X => BCLK_4x,

CLKO => OPEN,

CLK90 => OPEN,

CLK180 => OPEN,
CLK270 => OPEN,
CLKDV => OPEN,
LOCKED => BCLK_lockin
)
process (BCLK_4x_design, RESET)
begin
if RESET = '1l' then
QOUT <= "00";
elsif BCLK_4x_design'event and BCLK_4x_design =

if BCLK_lockin = 'l' then
QOUT <= DIN;
end if;
end if;

end process;
BCLK_lock <= BCLK_lockin;
END RTL;

Verilog Example

[1000700 7707777077777 7707777770777 7777 77777777777 777777

// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"
[177707777770777

module clock_test(
input ACLK, RESET,
input [1:0] DIN,
output reg [1:0] QOUT,
output BCLK_LOCK) ;

IBUFG CLK_ibufg_A
(.I (ACLK),
.0 (ACLK_ibufg)
)
BUFG BCLK_bufg
(.I (BCLK_4x),
.0 (BCLK_4x design)
)
CLKDLL ACLK_dll_2x // 2x clock
(.CLKIN(ACLK_ibufg),
.CLKFB (ACLK_2x),
.RST(1'b0O),
.CLK2X (ACLK_2x) ,
.CLKO (),
.CLK90 ()
.CLK180 (
.CLK270 (
)
(

),
)
.CLKDV (
.LOCKED
)

)

98

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Using Advanced Clock Management

CLKDLL BCLK_dll_4x // 4x clock
(.CLKIN(ACLK_2x),

.CLKFB (BCLK_4x_design), // BCLK_4x after bufg

.RST(1'b0),
.CLK2X (BCLK_4x) ,
.CLKO (),
.CLK90 (),
.CLK180¢(),
.CLK270¢(),
.CLKDV ()
.LOCKED (BCLK_LOCK)

)

’

always @ (posedge BCLK_4x design, posedge RESET)

begin
if (RESET)
QOUT <= 2'b00;
else if (BCLK_LOCK)
QOUT <= DINI[1:0];
end
endmodule

Using DCM_ADV in Virtex-4

DCM_ADV provides a wide range of clock management features such as phase shifting,
clock deskew, and dynamic reconfiguration. The synthesis tools do not infer any of the
DCM primitives in the Virtex-4 (DCM_ADV, DCM_BASE, DCM_PS and DCM).To be able
to use them, you must instantiate them. Below are two simple templates for instantiating
DCM_ADYV in Virtex-4. For more information on DCM_ADYV, see the Xilinx Libraries Guides

and theVirtex-4 User Guide.

VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;

-- Add the following two lines if using XST and Synplify:

-- library unisim;
-- use unisim.vcomponents.all;
entity clock_block is
port (
CLK_PAD : in std_logic;
RST_DLL : in std_logic;

DADDR_in : in std_logic_vector (6 downto 0);

DCLK_in : in std_logic;
DEN_in : in std_logic;

DI_in : in std_logic_vector (15 downto 0);

DWE_in : in std_logic;
CLK_out : out std_logic;
DRDY_out: out std_logic;

DO_out : out std_logic_vector (15 downto 0);

LOCKED : out std_logic
)i
end clock_block;

architecture STRUCT of clock_block is
signal CLK, CLK_int, CLK_dcm : std_logic;

-- remove the following component declarations

-- if using XST or synplify
component IBUFG_GTL

Synthesis and Simulation Design Guide www.xilinx.com

8.1i

99

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

Chapter 4:

Coding Styles for FPGA Devices

SXILINX®

port (

end

I : in std_logic;
O : out std_logic);
component;

component BUFG

port (
I : in std_logic; O out std_logic);
end component;

component DCM_ADV is

generic (CLKIN_PERIOD real) ;
port (

CLKFB in std_logic;

CLKIN in std_logic;

PSCLK in std_logic;

)

end

signal logic_0

begin

PSEN : in std_logic;

PSINCDEC in std_logic;

RST : in std_logic;

DADDR in std_logic_vector (6 downto 0);
DCLK : in std_logic;

DEN : in std_logic;

DI : in std_logic_vector (15 downto O0);
DWE : in std_logic;

CLKO : out std_logic;

CLK90 out std_logic;
CLK180 out std_logic;
CLK270 out std_logic;
CLK2X out std_logic;
CLK2X180 out std_logic;
CLKDV out std_logic;
CLKFX out std_logic;
CLKFX180 out std_logic;
LOCKED out std_logic;

DRDY : out std_logic;
DO : out std_logic_vector (15 downto 0);
PSDONE out std_logic

component ;

std_logic;

logic_0 <= '0';

Ul IBUFG_GTL port map (I => CLK_PAD, O => CLK_int);
U2 DCM_ADV generic map (CLKIN_PERIOD => 10.0)
port map (

CLKFB => CLK,
CLKIN => CLK_int,
PSCLK => logic_0,
PSEN => logic_0,
PSINCDEC => logic_0,
RST => RST_DLL,
CLKO => CLK_dcm,
DADDR => DADDR_in,
DCLK => DCLX_in,
DEN => DEN_in,

DI => DI_in,

100

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Using Advanced Clock Management

DWE => DWE_in,

DRDY => DRDY_out,

DO => DO_out,

LOCKED => LOCKED
)

U3 : BUFG port map (I => CLK_dcm, O => CLK);
CLK_out <= CLK;

end architecture STRUCT;

Verilog Example

// “include "c:\<path_to_synplify>\lib\xilinx\virtex4.v"
module clock_block (

input CLK_PAD, RST DLL, DCLK_in, DEN_in, DWE_in,

input [6:0] DADDR_in,

input [15:0] DI_in,

output CLK_out, DRDY_out, LOCKED,

output [15:0] DO_out) ;

wire CLK, CLK_int, CLK_dcm, logic_0;
assign logic_0 = 1'b0;

IBUFG_GTL Ul (.I(CLK_PAD), .O(CLK_int));
DCM_ADV # (.CLKIN_PERIOD(10.0))
U2 (.CLKFB(CLK),
.CLKIN(CLK_int),
.PSCLK(logic_0),
.PSEN(logic_0),
.PSINCDEC (logic_0),
.RST (RST_DLL) ,
.CLKO (CLK_dcm) ,
.DADDR (DADDR_in) ,
.DCLK (DCLK_in) ,
.DEN (DEN_in),
.DI(DI_in),
.DWE (DWE_in) ,
.DRDY (DRDY_out),
.DO (DO_out),
.LOCKED (LOCKED)) ;

BUFG U3 (.I(CLK_dcm), .O(CLK));

endmodule

Using DCM in Other Devices

Note: This section applies only to Virtex-II, Virtex-II Pro, Virtex-II Pro X and Spartan-3
devices.

Use the DCM in your Virtex-II, Virtex-II Pro, Virtex-II Pro X or Spartan-3 design to improve
routing between clock pads and global buffers. Since synthesis tools do not automatically
infer the DCM, you must instantiate the DCM in your VHDL and Verilog designs.

To more easily set up the DCM, use the Clocking Wizard. For more information on the
Clocking Wizard, see “Architecture Wizard” in Chapter 2 of this guide.

Synthesis and Simulation Design Guide www.xilinx.com 101
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

For more information on the various features in the DCM, see the “Design Considerations”
chapters of the Virtex-II Platform FPGA User Guide and the Virtex-1I Pro Platform FPGA User
Guide.

The following examples show how to instantiate DCM and apply a DCM attribute in
VHDL and Verilog.

For more information on passing attributes in the HDL code to different synthesis vendors,
see Chapter 3, “General HDL Coding Styles”in this guide.

VHDL Example

-- Using a DCM for Virtex-II (VHDL)

library IEEE;

use IEEE.std_logic_1164.all;

-- Add the following two lines if using XST and Synplify:
-- library unisim;

-- use unisim.vcomponents.all;

entity clock_block is

port (
CLK_PAD : in std_logic;
RST_DLL : in std_logic;
CLK_out : out std_logic;
LOCKED : out std_logic

)i
end clock_block;
architecture STRUCT of clock block is
signal CLK, CLK_int, CLK_dcm : std_logic;
-- remove the following component declarations
-- if using XST or synplify
component IBUFG
port (
I : in std_logic;
O : out std_logic);
end component;
component BUFG
port (
I : in std_logic;
O : out std_logic);
end component;

component DCM is
generic (CLKIN_PERIOD : real);

port (
CLKFB : in std_logic;
CLKIN : in std_logic;
DSSEN : in std_logic;
PSCLK : in std_logic;
PSEN : in std_logic;
PSINCDEC : in std_logic;
RST : in std_logic;
CLKO : out std_logic;
CLK90 : out std_logic;
CLK180 : out std_logic;
CLK270 : out std_logic;
CLK2X : out std_logic;

CLK2X180 : out std_logic;

102 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://direct.xilinx.com/bvdocs/userguides/ug002.pdf
http://direct.xilinx.com/bvdocs/userguides/ug002.pdf
http://direct.xilinx.com/bvdocs/userguides/ug012.pdf
http://www.xilinx.com

S XILINX® Using Advanced Clock Management

CLKDV : out std_logic;
CLKFX : out std_logic;
CLKFX180 : out std_logic;
LOCKED : out std_logic;
PSDONE : out std_logic;
STATUS : out std_logic_vector (7 downto 0)

)i
end component;
signal logic_0 : std_logic;

begin
logic_0 <= '0"';

Ul : IBUFG port map (I => CLK_PAD, O => CLK_int);
U2 : DCM generic map (CLKIN_PERIOD => 10.0)

port map (

CLKFB => CLK,
CLKIN => CLK_int,
DSSEN => logic_0,
PSCLK => logic_0,
PSEN => logic_0,
PSINCDEC => logic_0,
RST => RST_DLL,
CLKO => CLK_dcm,
LOCKED => LOCKED

)
U3 : BUFG port map (I => CLK_dcm, O => CLK);
CLK_out <= CLK;
end
end architecture STRUCT;

Verilog Example

[177707777770777
// Using a DCM for Virtex-II (Verilog)

// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"
L1777 77777 707777777077 7777777777777777777777777777777777

module clock_top (
input clk_pad, rst_dll,
output clk_out, locked);

wire clk, clk_int, clk_dcm;

IBUFG ul (.I (clk_pad), .0 (clk int));
DCM # (.CLKIN_PERIOD (10.0))
u2 (

.CLKIN (clk_int),

.DSSEN (1'0),

.PSCLK (1'b0),

.PSEN (1'b0),

.PSINCDEC (1'bO0),

.RST (rst_dll),

.CLKO (clk_dcm) ,

.LOCKED (locked)) ;
BUFG u3(.I (clk_dcm), .0 (clk));
assign clk_out = clk;

endmodule // clock_top

Synthesis and Simulation Design Guide www.xilinx.com 103
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Using Dedicated Global Set/Reset Resource

All Xilinx FPGA devices have a dedicated Global Set/Reset (GSR) resource which is routed
to the asnynchronous reset of every register in the device. This resource is automatically
activated when the FPGA configuration is complete, and can be accessed by the design
logic in a configured device.

The use of this resource, however, must be considered carefully. Synthesis tools do not
automatically infer GSRs. However, the STARTUP block can be instantiated in your HDL
code to access the GSR resources.

Recommendations

Xilinx recommends that you not code a global set/reset into the design unless it is
necessary for the design specification or operation. Many times is not.

If a global set/reset is necessary, Xilinx recommends that you:

e Write the high fanout set/reset signal explicitly in the HDL code as a synchronous
reset.

e Do not use the STARTUP blocks.

Coding a synchronous reset, as opposed to an asynchronous reset, will likely result in a
smaller, more efficient design that is easier to analyze for both timing and functionality.
More on the use of asynchronous resets is discussed in Chapter 2, “Understanding High-
Density Design Flow.”

Advantages to Implicitly Coding

Implicitly coding in the set/reset signal over using the dedicated GSR resource has the
following advantages:

e “Faster Speed with Less Skew”
e “TRCE Program Analyzes the Delays”

Faster Speed with Less Skew

Implicitly coding in the set/reset signal gives you a faster speed with less skew. The
set/reset signals are routed onto the secondary longlines in the device, which are global
lines with minimal skew and less overall delay. Therefore, the reset/set signals on the
secondary lines are much faster, and more well behaved in terms of skew than the GSR
nets of the STARTUP block. Since the FPGA is rich in routings, placing and routing this
signal on the global lines can be easily done by the ISE software.

TRCE Program Analyzes the Delays

By implicitly coding in the set/reset signal, the TRCE program analyzes the delays of the
explicitly written set/reset signals. You can read the report file of the TRCE program (the
TWR file) to ascertain the exact speed of your design. The TRCE program does not analyze
the delays on the GSR net of the STARTUP_architecture. Hence, using an explicit set/reset
signal improves your design accountability.

104 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Inputs and Outputs

Initial State of the Registers and Latches

The FPGA flip-flops are configured as either preset (asynchronous set) or clear
(asynchronous reset) during startup. This is known as the initialization state, or INIT. The
initial state of the register can be specified as follows:

o If the register is instantiated, it can be specified by setting the INIT attribute on the
instantiated register primitive to either a 1 or 0, depending on the desired state.

e If the register is inferred, the initial state can be specified by initializing the VHDL
signal declaration or the Verilog reg declaration as shown in the following examples.

VHDL Example

signal registerl : std_logic :
signal register2 : std_logic :

IOII.
lll;

Verilog Example

-- specifying registerl to start as a zero
-- specifying register2 to start as a one

reg registerl
reg register?2

1'b0; // specifying regsiterl to start as a zero
1'bl; // specifying register2 to start as a one

Not all synthesis tools support this initialization. To determine whether it is supported, see
your synthesis tool documentation. If this intialization is not supported, or if it is not
specified in the code, the initial value is determined by the presence or absence of an
asynchronous preset in the code. If an asynchronous preset is present, the register
initializes to a one. If an asynchronous preset is not present, the register initializes to a logic
zero.

Implementing Inputs and Outputs

FPGA devices have limited logic resources in the user-configurable input/output blocks
(IOB). You can move registers and some logic that is normally implemented with CLBs to
IOBs. By moving from CLBs to IOBs, additional logic can be implemented in the available
CLBs. Using IOBs can also improve design performance by increasing the number of
available routing resources, while decreasing the input setup times and clock-to-out times
to and from the FPGA.

All Xilinx FPGAs feature SelectlO™ inputs and outputs that support a wide variety of /O
signaling standards. In addition, each IOB provides three or more storage elements. The
following sections discuss IOB features in more detail.

I/O Standards

You can set an IOSTANDARD attribute to a specific I/O standard and attach it to a port, or
to an instantiated:

e IBUF

e IBUFG

e IBUFDS

e IBUFGDS
e [OBUF

e JOBUFDS
e OBUF

Synthesis and Simulation Design Guide

www.Xxilinx.com 105

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

e OBUFDS
e OBUFT
e OBUFTDS

You can set the IOSTANDARD attribute in the user constraint file (UCF), or it can be set in
the netlist by the synthesis tool. Where and how the IOSTANDARD attribute to set is is a
matter of user preference. The most common way is to set IOSTANDARD attributes within
either the UCF file or a synthesis constraint file.

Some users prefer to write this information into the code itself. They either specify an
associated attribute to each specified port in the top level, or instantiate an I/O BUFFER
and specify the IOSTANDARD constant on each instance.

For a complete table of /O standards, see the product data sheet and user guide.

Specifying I/0O Standards

This section gives examples of setting the IOSTANDARD attribute in various tools.

LeonardoSpectrum

In LeonardoSpectrum, insert appropriate buffers on selected ports in the constraints editor.
Alternatively, you can set the following attribute in TCL script after the read but before
the optimize options.

PAD [Ostandard portname
The following is an example of setting an I/O standard in LeonardoSpectrum.

PAD IBUF AGP data (7:0)

Synplify

In Synplify, you can set the syn_padtype attribute in SCOPE (the Synplify constraints
editor), or in HDL code as shown in the following examples.

VHDL Example

library ieee;
use ieee.std_logic_1164.all;

entity test_padtype is
port(A : in std_logic_vector (3 downto 0);
B : in std_logic_vector (3 downto 0);
CLK, RST, EN : in std_logic;
BIDIR : inout std_logic_vector (3 downto 0);
Q : out std_logic_vector (3 downto 0)

) ;
attribute syn_padtype of A : signal is "SSTL_3_CLASS_I";
attribute syn_padtype of BIDIR : signal is "HSTL_18_CLASS_TIII";
attribute syn_padtype of Q : signal is "LVTTL_33";

end entity;

106

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

S XILINX® Implementing Inputs and Outputs

Verilog Example

module test_padtype (A, B, CLK, RST, EN, BIDIR, Q);

input [3:0] A /* synthesis syn_padtype = "SSTL_3_CLASS_I" */;

input [3:0] B;

input CLK, RST, EN;

inout [3:0] BIDIR /* synthesis syn_padtype = "HSTL_18_ CLASS_III" */;
output [3:0] Q /* synthesis syn_padtype = "LVITL_33" */;

Precision Synthesis, Synplify and XST

In Precision Synthesis, Synplify and XST, IO standards can be passed by the use of a
generic constraint on an instantiated I/O buffer component. See the following examples.

VHDL Example

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Add the following two lines if using XST and Synplify:
-- library unisim;
-- use unisim.vcomponents.all;

entity ibuf_attribute is
port (DATA, CLOCK, RESET : in std_logic;
DOUT : out std_logic);
end entity;

architecture XILINX of ibuf_attribute is
signal data_ibuf, reset_ibuf, dout_obuf : std_logic;

-- remove the following component declarations
-- if using XST or synplify

component IBUF
port (I : in std_logic;

O : out std_logic);
end component;

component OBUF
port (I : in std_logic;

O : out std_logic);
end component;

begin

-- IBUF: Single-ended Input Buffer
-- All devices
-- Xilinx HDL Language Template

IBUF_PCIX_inst : IBUF
generic map (
TIOSTANDARD => "PCIX")

port map (
O => data_ibuf, -- Buffer output
I => DATA -- Buffer input (connect directly to top-level port)
)i
Synthesis and Simulation Design Guide www.xilinx.com 107

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

-- End of IBUF_PCIX inst instantiation

-- IBUF: Single-ended Input Buffer
- All devices
-- Xilinx HDL Language Template

IBUF_LVCMOS33 _inst : IBUF
generic map (
TIOSTANDARD => "LVCMOS33")

port map (
O => reset_ibuf, -- Buffer output
I => RESET -- Buffer input (connect directly to top-level port)

)

-- End of IBUF_LVCMOS33_inst instantiation

-- OBUF: Single-ended Output Buffer
-- All devices
-- Xilinx HDL Language Template

OBUF_LVTTL_inst : OBUF
generic map (
DRIVE => 12,
IOSTANDARD => "LVTTL",
SLEW => "SLOW")

port map (
O => DOUT, -—- Buffer output (connect directly to top-level port)
I => dout_obuf -- Buffer input

)
-- End of OBUF_LVTTL_inst instantiation

process (CLOCK)
begin
if rising_edge (CLOCK) then
if reset_ibuf= 'l' then
dout_obuf <= '0';
else
dout_obuf <= data_ibuf;
end if;
end if;
end process;

end XILINX;

Verilog Example

module ibuf_attribute(
input DATA, RESET, CLOCK,
output DOUT) ;

wire data_ibuf, reset_ibuf;
reg dout_obuf;

// IBUF: Single-ended Input Buffer
// All devices
// Xilinx HDL Language Template

108 www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Inputs and Outputs

IBUF #(

.IOSTANDARD ("PCIX") // Specify the input I/O standard
) IBUF_PCIX_inst (

.0(data_ibuf), // Buffer output

.I(DATA) // Buffer input (connect directly to top-level port)
)

// End of IBUF_PCIX_ inst instantiation
// IBUF: Single-ended Input Buffer

// All devices
// Xilinx HDL Language Template

IBUF #(
.IOSTANDARD ("LVCMOS33") // Specify the input I/O standard
) IBUF_LVCMOS33_inst (
.O(reset_ibuf), // Buffer output
.I(RESET) // Buffer input (connect directly to top-level port)

)
// End of IBUF_LVCMOS33_inst instantiation
// OBUF: Single-ended Output Buffer

// All devices
// Xilinx HDL Language Template

OBUF # (
.DRIVE(12), // Specify the output drive strength
.IOSTANDARD ("LVTTL"), // Specify the output I/O standard

.SLEW("SLOW") // Specify the output slew rate

) OBUF_LVTTL_inst (
.0 (DbouT) , // Buffer output (connect directly to top-level port)
. I (dout_obuf) // Buffer input

)

// End of OBUF_LVTTL_inst instantiation

always@ (posedge CLOCK)
if (reset_ibuf)
dout_obuf <= 1'b0;
else
dout_obuf <= data_ibuf;

endmodule
Outputs

FPGA outputs should have an associated IOSTANDARD specified for each output port in
the design. To control the slew rate and drive power, add a constraint to the UCF or
synthesis constraints file as follows:
e add the attribute to the output port in the design, or
e modify the generic map or parameter in the instance instantiation of the I/O buffer

Synthesis and Simulation Design Guide www.xilinx.com 109

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Using IOB Register and Latch

This section discusses using IOB Register and Latch with various devices and synthesis
tools.

Virtex, Virtex-E, and Spartan-Il IOBs

Note: This section applies only to Virtex, Virtex-E, and Spartan-II devices.

Virtex, Virtex-E, and Spartan-1I IOBs (Input Output Blocks) contain three storage elements.
The three IOB storage elements function either as edge-triggered D-type flip-flops, or as
level sensitive latches. Each IOB has a clock (CLK) signal shared by the three flip-flops, and
independent clock enable (CE) signals for each flip-flop.

In addition to the CLK and CE control signals, the three flip-flops share a Set/Reset (SR).
However, each flip-flop can be independently configured as any of the following:

e synchronous set
e synchronous reset
e asynchronous preset

e an asynchronous clear

FDCP (asynchronous reset and set) and FDRS (synchronous reset and set) register
configurations are not available in IOBs.

Virtex-1l and Newer IOBs

Note: This section applies only to Virtex-Il, Virtex-1l Pro, Virtex-Il Pro X, Virtex-4, Spartan-IIE, and
Spartan-3 devices.

Virtex-1I, Virtex-II Pro, Virtex-II Pro X, Virtex-4, Spartan-1IE, and Spartan-3 IOBs also
contain three storage elements with an option to configure them as FDCP, FDRS, and Dual-
Data Rate (DDR) registers. Each register has an independent CE signal. The OTCLK1 and
OTCLK?2 clock pins are shared between the output and 3-state enable register. A separate
clock (ICLK1 and ICLK?2) drives the input register. The set and reset signals (SR and REV)
are shared by the three registers.

Inferring Usage of Flip-Flops

There are a few ways to infer usage of these flip-flops if the rules for pulling them into the
IOB are followed. The following rules apply.

All Devices

All flip-flops that are to be pulled into the IOB must have a fanout of 1. This applies to
output and 3-state enable registers. For example, if there is a 32 bit bidirectional bus, the 3-
state enable signal must be replicated in the original design so that it has a fanout of 1.

Virtex, Virtex-E, and Spartan-Il Devices

In Virtex, Virtex-E, and Spartan-II devices, all flip-flops must share the same clock and
reset signal. They can have independent clock enables.

Virtex-Il and Newer Devices

In Virtex-1l, Virtex-II Pro, Virtex-II Pro X, Virtex-4, Spartan-IIE, and Spartan-3 devices,
output and 3-state enable registers must share the same clock. All flip-flops must share the
same set and reset signals.

110

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Inputs and Outputs

Virtex-4 Devices

In Virtex-4 devices, the output and 3-state registers share the same clock and set / reset
lines. The input registers share the same clock, set / reset and clock enable lines.

Pulling Flip-Flops into the IOB

One way you can pull flip-flops into the IOB is to use the IOB=TRUE setting. Another way
is to pull flip-flops into the IOB using themap —pr command, which is discussed in a later
section. Some synthesis tools apply the IOB=TRUE attribute and allow you to merge a flip-
flop to an IOB by setting an attribute. For more information about the correct attribute and
settings, see your synthesis tool documentation.

LeonardoSpectrum
LeonardoSpectrum, through ISE, can push registers into IOBs:

1. Right click the Synthesize process.

2. Click Properties.

3. Click the Architecture Options tab.

4. Enable the Map to IOB Registers setting

In standalone LeonardoSpectrum, you can select Map 10B Registers from the Technology
tab in the application or set the following attribute in your TCL script:

set virtex map iob_registers TRUE

Synplify

In Synplify, attach the SYN_USEIOFF attribute to the module or architecture of the

top-level in one of these ways:

® Add the attribute in SCOPE. The constraint file syntax looks like this:
define_global_attribute syn_useioff 1

e Add the attribute in the VHDL or Verilog top-level source code as follows:
VHDL Example

architecture rtl of test is
attribute syn_useioff : boolean;
attribute syn_useioff of rtl : architecture is true;

Verilog Example

module test(d, clk, g) /* synthesis syn_useioff = 1 */;

Using Dual Data Rate 0B Registers

The following VHDL and Verilog examples demostrate how to infer dual data rate
registers for inputs only. For an attribute to enable I/O register inference in your synthesis
tool, see “Using IOB Register and Latch” in this chapter. The dual data rate register
primitives (the synchronous set/reset with clock enable FDDRRSE, and asynchronous
set/reset with clock enable FDDRCPE) must be instantiated in order to utilize the dual
data rate registers in the outputs. For information on instantiating primitive, see
“Instantiating Components” in this chapter.

Synthesis and Simulation Design Guide www.xilinx.com 111
8.1i

http://www.xilinx.com

SXILINX®

Chapter 4: Coding Styles for FPGA Devices
VHDL Example
library ieee;
use ieee.std_logic_1164.all;
entity ddr_input is
port (
clk in std_logic;
d : in std_logic;
rst in std_logic;
gl : out std_logic;
g2 : out std_logic
)i
end ddr_input;
architecture behavioral of ddr_input is
begin
glreg process (clk, rst)
begin
if rst = '1’ then
gl <= '0";
elsif clk’event and clk=’'1’ then
gl <= d;
end if;
end process;
g2reg process (clk, rst)
begin
if rst = 1’ then
g2 <= '0’;
elsif clk’event and clk=’'0’ then
gz <= d;
end if;
end process;
end behavioral;
Verilog Example
module ddr_input (
input data_in, clk, rst,
output data_out) ;
reg ql, q2;
always @ (posedge clk, posedge rst)
begin
if (rst)
gl <=1'b0;
else
gl <= data_in;
end
always @ (negedge clk, posedge rst)
begin
if (rst)
g2 <=1'b0;
else
g2 <= data_in;
end
assign data_out = gl & g2;
end module
112 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

S XILINX® Implementing Inputs and Outputs

Using Output Enable IOB Register

The following VHDL and Verilog examples illustrate how to infer an output enable
register. For an attribute to turn on I/O register inference in synthesis tools, see the above
section.

VHDL Example

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity tri_state is

port (
DATA_IN_P : in std_logic_vector (7 downto 0);
CLK : in std_logic;
TRI_STATE_A : in std_logic;
DATA_OUT : out std_logic_vector (7 downto 0)
)i

end tri_state;

architecture behavioral of tri_state is
signal data_in_reg : std_logic_vector (7 downto 0);
signal data_out_reg : std_logic_vector (7 downto 0);
signal tri_state_bus : std_logic_vector (7 downto 0);

begin

process (tri_state_bus, data_out_reg)

begin
G2: for J in 0 to 7 loop
if (tri_state_bus(J) = '0') then -- 3-state data_out
DATA_OUT (J) <= data_out_reg(Jd);
else
DATA_OQOUT(J) <= 'Z';
end if;
end loop;

end process;

process (CLK)

begin
if CLK'event and CLK='1l' then
data_in_reg <= DATA_IN_P; -- register for input
data_out_reg <= data_in_reg; -- register for output
if (TRI_STATE_A = '0') then -- register and replicate 3state signal
tri_state_bus <= "00000000";
else
tri_state_bus <= "11111111";
end if;
end if;

end process;

end behavioral;

Synthesis and Simulation Design Guide www.xilinx.com 113
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Verilog Example

module tri_state (
input [7:0] DATA_IN_P,
input CLK, TRI_STATE A,
output reg [7:0] DATA_OUT) ;

reg[7:0] data_in_reg;
reg[7:0] data_out_reg;
reg[7:0] tri_state_bus;

integer J;

always @(*)
for (J =0; J<=7; J=J+ 1)
begin : G2
if (!tri_state_bus[J])
DATA_OUT[J] <= data_out_regl[Jd];
else
DATA_OUT[J] <= 1'bz;
end

always @ (posedge clk) begin

data_in_reg <= DATA_IN_P; // register for input
data_out_reg <= data_in_reg; // register for output
tri_state_bus <= {8{TRI_STATE_A}}; // register and replicate 3state signal
end
endmodule

Using the Pack Registers Option with Map

Use the pack registers (-pr) option when running Map. This option tells the Map program
to move registers into IOBs when possible. Use the following syntax.

map -pr {i|o|b} input_file name |output_file_name
Example:
map -pr b design name.ngd

Within Project Navigator, this option is called “Pack I/O Registers/Latches into IOB." It is
defaulted to "For Inputs and Outputs” ormap -pr b.

Virtex-E and Spartan-1IE I0Bs

Note: This section applies only to Virtex-E and Spartan-IIE devices.

Virtex-E and Spartan-IIE devices have the same IOB structure and features as Virtex and
Spartan-1I devices except for the available 1/O standards.

Additional I/O Standards for Virtex-E Devices

Virtex-E devices have two additional I/O standards: LVPECL and LVDS.

Because LVDS and LVPECL require two signal lines to transmit one data bit, it is handled
differently from any other I/O standards. A UCF or an NGC file with complete pin LOC
information must be created to ensure that the I/O banking rules are not violated. If a UCF
or NGC file is not used, PAR issues errors.

114 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Inputs and Outputs

library IEEE;

The input buffer of these two I/O standards may be placed in a wide number of IOB
locations. The exact locations are dependent on the package that is used. The Virtex-E™
package information lists the possible locations as IO_L#P for the P-side and IO_L#N for
the N-side where # is the pair number. Only one input buffer is required to be instantiated
in the design and placed on the correct IO_L#P location. The N-side of the buffer is
reserved and no other IOB is allowed on this location.

The output buffer may be placed in a wide number of IOB locations. The exact locations are
dependent on the package that is used. The Virtex-E package information lists the possible
locations as IO_L#P for the P-side and IO_L#N for the N-side where # is the pair number.
However, both output buffers are required to be instantiated in the design and placed on
the correct IO_L#P and IO_L#N locations. In addition, the output (O) pins must be
inverted with respect to each other. (one HIGH and one LOW). Failure to follow these rules
leads to DRC errors in the software.

Coding Examples for LVDS I/O Standards

The following examples show VHDL and Verilog coding for LVDS 1/0 standards
targeting a VS0ECS144 device. An AUCF example is also provided.

VHDL Example

use IEEE.std_logic_1164.all;
-- Add the following two lines if using XST and Synplify:

-- library unisim;
-- use unisim.vcomponents.all;
entity LVDSIO is
port (
CLK, DATA, Tin : in STD_LOGIC;
IODATA _p, IODATA n : inout STD_LOGIC;
Q_p, Q9 n : out STD_LOGIC
)
end LVDSIO;
architecture BEHAV of LVDSIO is
-- remove the following component declarations
-- 1if using XST or synplify
component IBUF_LVDS is port (
I : in STD_LOGIC;
O : out STD_LOGIC
)i
end component;
component OBUF_LVDS is port (
I : in STD_LOGIC;
O : out STD_LOGIC
)i
end component;
component IOBUF_LVDS is port (
I : in STD_LOGIC;
T : in STD_LOGIC;
IO : inout STD_LOGIC;
O : out STD_LOGIC
)
end component;
component INV is port (
I : in STD_LOGIC;
O : out STD_LOGIC
)i

Synthesis and Simulation Design Guide www.xilinx.com

115

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

end component;
component IBUFG_LVDS is port(
I : in STD_LOGIC;
O : out STD_LOGIC
)i
end component;
component BUFG is port (
I : in STD_LOGIC;
O : out STD_LOGIC
)i

end component;

signal iodata_in : std_logic;
signal iodata_n_out : std_logic;
signal iodata_out : std_logic;
signal DATA_int : std_logic;
signal Q_p_int : std_logic;
signal Q_n_int : std_logic;
signal CLK_int : std_logic;
signal CLK_ibufgout : std_logic;
signal Tin_int : std_logic;
begin
UIl: IBUF_LVDS port map (
I => DATA,

O => DATA_int

UI2: IBUF_LVDS port map (
I => Tin,
O => Tin_int

UO_p: OBUF_LVDS port map (
=> Q_p_int ,
=> Q_p

=> Q n_int,
=> Q n
)i
UIO_p: IOBUF_LVDS port map (
I => iodata_out,
T => Tin_int,IO0 => iodata_p,
0O => iodata_in
)i
UIO_n: IOBUF_LVDS port map (
I => iodata_n_out,
T => Tin_int,
IO => iodata_n,
O => open
)i
UINV: INV port map (
I => iodata_out,
O => iodata_n_out
)
UIBUFG: IBUFG_LVDS port map (
I => CLK,
0 => CLK_ibufgout
)i

I
(0]
)i
UO_n: OBUF_LVDS port map (
I
0]

116 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Inputs and Outputs

UBUFG: BUFG port map (
I => CLK_ibufgout,
O => CLK_int
)i

My_D_Reg: process (CLK_int, DATA_int)
begin
if (CLK_int'event and CLK_int='1') then
Q_p_int <= DATA_int;
end if;
end process; -- End My_D_Reg
iodata_out <= DATA_int and iodata_in;
Q n_int <= not Q_p_int;
end BEHAV;

Verilog Example

L1177 707777770777
// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"

L1177 707777770 777777777 77777777777777777777777777777777777

module LVDSIOinst (
input CLK, DATA, Tin,
inout IODATA_p, IODATA_n,
output Q p, Q. n);

wire iodata_in;
wire iodata_n_out;
wire iodata_out;
wire DATA_int;

reg Q_p_int;

wire Q_n_int;

wire CLK_int;

wire CLK_ibufgout;
wire Tin_int;

IBUF_LVDS UIl (.I(DATA), .O(DATA_int));
IBUF_LVDS UI2 (.I(Tin), .0 (Tin_int));
OBUF_LVDS UO_p (.I(Q_p_int), .0(Q_p));
OBUF_LVDS UO_n (.I(Q_n_int), .0(Q_n));

IOBUF_LVDS UIO_p(
.I(iodata_out),
.T(Tin_int)
.IO(IODATA_p),
.O(iodata_in)

)i

IOBUF_LVDS UIO_n (

.I (iodata_n_out),

.T(Tin_int),

.IO(IODATA_n), .0 ()

)
INV UINV (.I(iodata_out), .O(iodata_n_out));
IBUFG_LVDS UIBUFG (.I(CLK), .O(CLK_ibufgout));
BUFG UBUFG (.I(CLK_ibufgout), .O(CLK_int));

always @ (posedge CLK_int)
begin
Q_p_int <= DATA_int;

Synthesis and Simulation Design Guide www.xilinx.com 117
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

end
assign iodata_out = DATA_int && iodata_in;
assign Q n_int = ~Q_p_int;

endmodule

UCF Example Targeting V50ECS144

NET CLK LOC = A6b6;
NET DATA LOC = A4;
NET Q_p LOC = A5;
NET Q n LOC = B5;
NET iodata_p LOC =
NET iodata_n LOC =
NET Tin LOC = F13;

DS§;
C8;

#GCLK3
#IO0_LOP_YY
#I0_L1P_YY
#I0_LIN_YY
#I0_L3P_vyy
#IO0_L3N_vyy
#I0_L10P

Coding Examples Using the IOSTANDARD Generic or Parameter

The following examples use the IOSTANDARD generic (VHDL) or parameter (Verilog) on
I/0O buffers as a work around for LVDS buffers. This example can also be used with other
synthesis tools to configure I/O standards with the IOSTANDARD generic (VHDL) or

parameter (Verilog).

VHDL Example

library IEEE;
use IEEE.std_logic_1164.all;

-- Add the following two lines if using XST and Synplify:

-- library unisim;
-- use unisim.vcomponents.all;

entity flip_flop is
port (
d : in std_logic;
clk : in std_logic;
g : out std_logic;
a_n out std_logic
)i
end flip_flop;

architecture flip_flop_arch of flip flop is

-- remove the following component declarations

-- if using XST or synplify

component IBUF
generic (IOSTANDARD
port (
I: in std_logic;
O: out std_logic);
end component;

string) ;

component OBUF
generic (IOSTANDARD
port (
I: in std_logic;
O: out std_logic);
end component;

string) ;

118 www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Inputs and Outputs

'positive' LVDS pin.
Pin location D8 represents the
'positive' LVDS pin.
Pin location C8 represents the
'negative' LVDS pin.
attribute LOC of ul : label is "A5";
attribute LOC of u2 : label is "D8";
attribute LOC of u3 : label is "C8";
signal d_1lvds, g lvds, g lvds_n std_logic;
begin
ul : IBUF generic map("LVDS") port map (d,d_1vds);
u2 : OBUF generic map("LVDS") port map (g _lvds,q);
u3 : OBUF generic map("LVDS") port map (g_lvds_n,qg n);
process (clk) begin
if clk'event and clk = '1' then

end flip_flop_arch;

[I000770 7700770077707 770 770777707777 7777 77777777 77777777

Pin location A5

on the csl144

package represents the

g_lvds <= d_1vds;

end if;
end process;

g _lvds_n <= not(g_lvds);

Verilog Example

// add the following line if using Synplify:

//

“include "<path_to_synplify>\lib\xilinx\unisim.v"
[177771777
module flip_flop

(d, clk, q,

an);

’

[1777077777770777777777777777777777777
Pin location A5 on the Virtex-E
csl44d package represents the

//
//
//
//
//
//
//

'positive' LVDS
Pin location D8
'positive' LVDS
Pin location C8
'negative' LVDS

pin.
represents the
pin.
represents the
pin.

L1700 7 70000777 7777077777777777

input clk;
(*LOC = "A5" *) input d;
(*LOC = "D8" *) output g;
(*LOC = "C8" *) output g n;
wire d, clk, d_1lvds, g;
reg g _lvds;
IBUF #(.IOSTANDARD("LVDS")) ul
OBUF # (.IOSTANDARD ("LVDS")) u2

(.I(d),.0(d_1vds));
(.I(g_1lvds),.O(qQ));

Synthesis and Simulation Design Guide

8.1i

www.Xxilinx.com

119

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

OBUF # (.IOSTANDARD("LVDS")) u3 (.I(g_lvds_n),.O(g_.n));

always @ (posedge clk) g lvds <= d_1lvds;
assign g _lvds_n=~g lvds;

endmodule

Virtex-1l and Newer IOBs

Note: This section applies only to Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Spartan-3 devices.

Virtex-1I, Virtex-1I Pro, Virtex-II Pro X, Virtex-4, and Spartan-3 devices offer more SelectlO
configuration than Virtex, Virtex-E, and Spartan-II devices. IOSTANDARD and synthesis
tools’ specific attributes can be used to configure the SelectlO.

Additionally, Virtex-1I, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Spartan-3 provide
digitally controlled impedance (DCI) I/Os which are useful in improving signal integrity
and avoiding the use of external resistors. This option is only available for most of the
single ended I/0O standards. To access this option, instantiate the 'DCI' suffixed 1/Os from
the library such as HSTL_IV_DCL

For low-voltage differential signaling, additional IBUFDS, OBUFDS, OBUFTDS, and
IOBUFDS components are available. These components simplify the task of instantiating
the differential signaling standard.

Differential Signaling

Differential signaling in Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Spartan-3
devices can be configured using IBUFDS, OBUFDS, and OBUFTDS. The IBUFDS is a two-
input one-output buffer. The OBUFDS is a one-input two-output buffer. For the
component diagram and description, see the Xilinx Libraries Guides. For information on the
supported differential I/O standards for the target FPGA architecture, see the product data
sheet and user guide.

Note: Virtex-E treats differential signals differently than later architectures. For more information,
see Xilinx Answer Record 9174, “Virtex-E - How do | use LVDS, LVPECL macros (such as
IBUFDS_FD_LVDS, OBUFDS_FD_LVDS) in designs?’

Differential Signaling Coding Examples

The following VHDL and Verilog examples show how to instantiate differential signaling
buffers.

VHDL Example

-- LVDS_33_I0.VHD Version 1.0

-- Example of a behavioral description of

-- differential signal I/O standard using

-- LeonardoSpectrum attribute.

-- HDL Synthesis Design Guide for FPGA devices

library IEEE;

use IEEE.std_logic_1164.all;

-- Add the following two lines if using XST and Synplify:
-- library unisim;

-- use unisim.vcomponents.all;

entity LVDS_33_IO0 is

120

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=9174
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

ST XILINX®

Implementing Inputs and Outputs

port (

CLK_p,CLK_n,DATA_p,DATA n, Tin_p,Tin_n
in STD_LOGIC;
out STD_LOGIC;

datain2_p, datain2_n
ODATA_p, ODATA_n
Q_p, Q.n out STD_LOGIC
)i

end LVDS_33_TI0;

architecture BEHAV of LVDS_33_I0 is

in

-- remove the following component declarations

-- if using XST or synplify

component IBUFDS is
port (
I : in STD_LOGIC;
IB in STD_LOGIC;
O : out STD_LOGIC
)i
end component;
component OBUFDS is
port (
I : in STD_LOGIC;
O : out STD_LOGIC;
OB out STD_LOGIC
)i
end component;
component OBUFTDS is
port (
I : in STD_LOGIC;
T : in STD_LOGIC;
O : out STD_LOGIC;
OB out STD_LOGIC
)i
end component;
component IBUFGDS is
port (
I : in STD_LOGIC;
IB in STD_LOGIC;
O : out STD_LOGIC
)i
end component;
component BUFG is
port (
I : in STD_LOGIC;
O :out STD_LOGIC
)i

end component;

datain?
odata_out
DATA_int
Q_int std_logic;
CLK_int std_logic;
CLK_ibufgout std_logic;
Tin_int std_logic;

signal
signal
signal
signal
signal
signal
signal
begin
UIl
UI2
UI3

std_logic;
std_logic;
std_logic;

IBUFDS port map
IBUFDS port map
IBUFDS port map

(I => DATA_p,

IB => DATA_n,

STD_LOGIC;

O => DATA_int);

(I => datain2_p,IB => datain2_n,0 => datain2);
(I => Tin_p,IB => Tin_n,0 => Tin_int);

Synthesis and Simulation Design Guide
8.1i

www.Xxilinx.com

121

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

UOl : OBUFDS port map (I => Q_int,0 => Q p,0B => Q_n);

UO2 : OBUFTDS port map (
I => odata_out,
T => Tin_int,
O => odata_p,
OB => odata_n
)i
UIBUFG :

My_D_Reg: process (CLK_int, DATA_int)

begin

if (CLK_int'event and CLK_int='1l') then

Q_int <= DATA_int;
end if;
end process;

end BEHAV;

Verilog Example

-- End My_D_Reg
odata_out <= DATA_int and datain2;

L1070 70 0700770077707 7077 770777777777 77777777

// LVDS_33_I0.v Version 1.0

// Example of a behavioral description of

// differential signal I/O standard

// HDL Synthesis Design Guide for FPGA devices
[17777777777777777077777777777777777777777777

L1770 7 7700077777707 777770777777777777777777777

// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"
[11770177777771777

module LVDS_33_IO (

input CLK_p, CLK_n, DATA_p, DATA_n, DATAIN2_p,
output ODATA_p, ODATA_n, Q p, Q_n);

wire datain2;
wire odata_in;
wire odata_out;
wire DATA_int;
reg Q_int;
wire CLK_int;
wire CLK_ibufgout;
wire Tin_int;
IBUFDS UI1l (
.I (DATA_p),
.IB(DATA n),
.0 (DATA_int)
)i
IBUFDS UI2 (
. I (Tin_p),
.IB(Tin_n),
.0 (Tin_int)
)
IBUFDS UI3 (I
OBUFDS UO1 (.I
OBUFTDS UO2 (.
IBUFGDS UIBUFG

Q_int), .0(Q_p),

DATAIN2_p), .IB(DATAIN2_n),
.OB(Q_n)) ;
.0 (ODATA_p) ,

.0 (CLK_ibufgout)) ;

(
(
I(odata_out), .T(Tin_int),
(.I(CLK_p), .IB(CLK_n),
(

BUFG UBUFG (.I(CLK_ibufgout), .O(CLK_int));

DATAIN2_n,

.0(datain2)) ;

IBUFGDS port map (I => CLK_p,IB => CLK_n,0O => CLK_ibufgout) ;
UBUFG : BUFG port map (I => CLK_ibufgout,0 => CLK_int);

Tin_p, Tin_n,

.OB(ODATA_n)) ;

122

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Encoding State Machines

always @ (posedge CLK_int)

begin
Q_int <= DATA_int;
end
assign odata_out = DATA_int && datain2;
endmodule

Encoding State Machines

The traditional methods used to generate state machine logic result in highly-encoded
states. State machines with highly-encoded state variables typically have a minimum
number of flip-flops and wide combinatorial functions. These characteristics were
acceptable for ASIC, PAL and gate array architectures. However, because FPGA devices
have many flip-flops and 4-input function generators, highly-encoded state variables can
result in inefficient implementation in terms of speed and density.

One-hot encoding allows you to create state machine implementations that are more
efficient for FPGA architectures. You can create state machines with one flip-flop per state
and decreased width of combinatorial logic for both state-encoding and output encoding.
One-hot encoding is usually the preferred method for large FPGA based state machine
implementation. For small state machines (fewer than 8 states), binary encoding may be
more efficient. To improve design performance, you can divide large (greater than 32
states) state machines into several small state machines and use the appropriate encoding
style for each

Three design examples are provided in this section to illustrate the three coding methods
(binary, enumerated type, and one-hot) you can use to create state machines. All three
examples contain the same Case statement. To conserve space, the complete Case
statement is only included in the binary encoded state machine example; refer to this
example when reviewing the enumerated type and one-hot examples.

Some synthesis tools allow you to add an attribute, such as TYPE_ENCODING_STYLE, to
your VHDL code to set the encoding style. This is a synthesis vendor attribute (not a
Xilinx® attribute). For more information on attribute-driven state machine synthesis, see
your synthesis tool documentation.

Using Binary Encoding

The state machine bubble diagram in the following figure shows the operation of a seven-
state machine that reacts to inputs A through E as well as previous-state conditions. The
binary encoded method of coding this state machine is shown in the VHDL and Verilog
examples that follow. These design examples show you how to take a design that has been
previously encoded (for example, binary encoded) and synthesize it to the appropriate
decoding logic and registers. These designs use three flip-flops to implement seven states.

Synthesis and Simulation Design Guide www.xilinx.com 123
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

State3

)

A*B*C State2 D

State1

Multi Contig

State6

State4

Multi, Contig Multi Contig,Single

AeBeC @

X6102

Figure 4-3: State Machine Bubble Diagram

Binary Encoded State Machine VHDL Example

The following is a binary encoded state machine VHDL example.

-- BINARY.VHD Version 1.0

-- Example of a binary encoded state machine
Library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity binary is
port (
CLOCK, RESET : in STD_LOGIC;
A, B, C, D, E : in BOOLEAN;
SINGLE, MULTI, CONTIG : out STD_LOGIC
)i

end binary;
architecture BEHV of binary is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);

attribute ENUM_ENCODING: STRING;

attribute ENUM_ENCODING of STATE_TYPE:type is
"001 010 011 100 101 110 111";

signal CS, NS: STATE_TYPE;

begin
SYNC_PROC: process (CLOCK, RESET)
begin
if (RESET='1l') then
CS <= S1;
elsif (CLOCK'event and CLOCK = 'l') then
CS <= NS;
end if;
end process; --End REG_PROC
124 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

Encoding State Machines

COMB_PROC: process
begin

case CS is
when S1 =>

MULTI <= '0';
CONTIG <= '0';
SINGLE <= '0';

if (A and not B and C)

NS <= S2;

elsif (A and B and not C)
NS <= S4;

else
NS <= S1;

end if;

when S2 =>

MULTI <= '1"';
CONTIG <= '0';
SINGLE <= '0';
if (not D) then

NS <= S3;
else

NS <= S4;
end if;

when S3 =>

MULTI <= '0';
CONTIG <= '1°';
SINGLE <= '0';
if (A or D) then

NS <= S4;
else

NS <= S3;
end if;

when S4 =>

MULTI <= '1';
CONTIG <= '1';
SINGLE <= '0';

if (A and B and not C)

NS <= S5;
else
NS <= S4;
end if;
when S5 =>

MULTI <= '1"';

CONTIG <= '0';
SINGLE <= '0';
NS <= S6;

when S6 =>

MULTI <= '0';
CONTIG <= '1"';
SINGLE <= '1';
if (not E) then

NS <= S7;
else

(Cs, A, B, C, D,

then

Synthesis and Simulation Design Guide
8.1i

www.Xxilinx.com

125

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

NS <= S6;
end if;

when S7 =>
MULTI <= '0';
CONTIG <= '1"';
SINGLE <= '0';
if (E) then

NS <= S1;
else
NS <= S7;
end if;
end case;
end process; -- End COMB_PROC
end BEHV;

Binary Encoded State Machine Verilog Example

module binary (
input CLOCK, RESET, A, B, C, D, E;
output reg SINGLE, MULTI, CONTIG) ;

// Declare the symbolic names for states
parameter

S1 = 3'b001,

S2 = 3'b010,

S3 = 3'b011,

S4 = 3'bl00,

S5 = 3'bl101,

S6 = 3'bll0,

S7 = 3'bl1l1;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS
always @ (posedge CLOCK, posedge RESET)

begin
if (RESET == 1'bl)
CS <= S1;
else
CS <= NS;
end
always @ (*)
begin
case (CS)
Sl
begin
MULTI = 1'bO0;
CONTIG = 1'b0;
SINGLE = 1'b0;
if (A && ~B && C)
NS = S2;
else if (A && B && ~C)
NS = S4;
else
NS = S1;
end
126 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

Encoding State Machines

S2
begin
MULTI = 1'bl;
CONTIG = 1'b0;
SINGLE = 1'b0;

if (!D)
NS = S3;
else
NS = S4;
end
S3
begin

MULTI = 1'bO0;
CONTIG = 1'bl;
SINGLE = 1'b0;

if (A || D)
NS = S4;
else
NS = S3;
end
S4
begin
MULTI = 1'bl;
CONTIG = 1'bl;
SINGLE = 1'b0;
if (A && B && ~C)
NS = S5;
else
NS = S4;
end
S5
begin
MULTI = 1'bl;
CONTIG = 1'b0;
SINGLE = 1'b0;
NS = S6;
end
S6
begin

MULTI = 1'bO;
CONTIG = 1'bl;
SINGLE = 1'bl;

if (!E)
NS = S7;
else
NS = S6;
end
S7
begin

MULTI = 1'bO0;
CONTIG = 1'bl;
SINGLE = 1'b0;
if (E)

NS = S1;

Synthesis and Simulation Design Guide www.xilinx.com

8.1i

127

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

else
NS = S7;
end
endcase
end
endmodule

Using Enumerated Type Encoding

The recommended encoding style for state machines depends on which synthesis tool you
are using. Some synthesis tools encode better than others depending on the device
architecture and the size of the decode logic. You can explicitly declare state vectors or you
can allow your synthesis tool to determine the vectors. Xilinx® recommends that you use
enumerated type encoding to specify the states and use the Finite State Machine (FSM)
extraction commands to extract and encode the state machine as well as to perform state
minimization and optimization algorithms. The enumerated type method of encoding the
seven-state machine is shown in the following VHDL and Verilog examples. The encoding
style is not defined in the code, but can be specified later with the FSM extraction
commands. Alternatively, you can allow your compiler to select the encoding style that
results in the lowest gate count when the design is synthesized. Some synthesis tools
automatically find finite state machines and compile without the need for specification.

For the complete case statement portion of the code, see the previous VHDL and Verilog
Binary Encoded State Machine examples.

Enumerated Type Encoded State Machine VHDL Example

Library IEEE;

use IEEE.std_logic_1164.all;

entity enum is

port (

CLOCK, RESET : in STD_LOGIC;
A, B, C, D, E : in BOOLEAN;
SINGLE, MULTI, CONTIG : out STD_LOGIC
)

end enum;
architecture BEHV of enum is

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
signal CS, NS: STATE_TYPE;

begin
SYNC_PROC: process (CLOCK, RESET)
begin
if (RESET='1') then
CS <= S1;
elsif (CLOCK'event and CLOCK = 'l') then
CS <= NS;
end if;
end process; --End SYNC_PROC
COMB_PROC: process (CS, A, B, C, D, E)
begin

case CS is
when S1 =>
MULTI <= '0';
CONTIG <= '0';

128 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Encoding State Machines

SINGLE <= '0';

Enumerated Type Encoded State Machine Verilog Example

[1777
// ENUM.V Version 1.0

// Example of an enumerated encoded state machine
[1777

module enum (
input CLOCK, RESET, A, B, C, D, E,
output reg SINGLE, MULTI, CONTIG) ;

// Declare the symbolic names for states
parameter

s1 3'b000,

S2 = 3'b001,

S3 = 3'b010,

S4 = 3'b011,

S5 = 3'bl100,

S6 = 3'bl01,

S7 = 3'b110;

// Declare current state and next state variables
reg [2:0] CS;
reg [2:0] NS;

// state_vector CS
always @ (posedge CLOCK, posedge RESET)

begin
if (RESET == 1'bl)
CS <= S1;
else
CS <= NS;
end

always @ (*)
begin
case (CS)
S1
begin
MULTI = 1'b0;
CONTIG = 1'b0;
SINGLE = 1'b0;
if (A && ~B && C)

8.1i

NS = S2;
else if (A && B && ~C)
NS = S4;
else
NS = S1;
end
Synthesis and Simulation Design Guide www.xilinx.com 129

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Using One-Hot Encoding

One-hot encoding allows you to create state machine implementations that are more
efficient for FPGA architectures. One-hot encoding is usually the preferred method for
large FPGA-based state machine implementation.

The following examples show a one-hot encoded state machine. Use this method to control
the state vector specification or when you want to specify the names of the state registers.
These examples use one flip-flop for each of the seven states.

For the complete case statement portion of the code, see the previous VHDL and Verilog
Binary Encoded State Machine examples.

One-Hot Encoded State Machine VHDL Example

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity one_hot is
port (
CLOCK, RESET : in STD_LOGIC;
A, B, C, D, E : in BOOLEAN;
SINGLE, MULTI, CONTIG : out STD_LOGIC
)

end one_hot;

architecture BEHV of one_hot is
type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
attribute ENUM_ENCODING: STRING;
attribute ENUM_ENCODING of STATE_TYPE: type is
"0000001 0000010 0000100 0001000 0010000 0100000 1000000 ";
signal CS, NS: STATE_TYPE;

begin
SYNC_PROC: process (CLOCK, RESET)
begin
if (RESET='1l') then

CS <= S1;

elsif (CLOCK'event and CLOCK = '1l') then
CS <= NS;

end if;

end process; --End SYNC_PROC

COMB_PROC: process (CS, A, B, C, D, E)
begin
case CS is
when S1 =>
MULTI <= '0';
CONTIG <= '0"';
SINGLE <= '0';
if (A and not B and C) then

NS <= S2;
elsif (A and B and not C) then
NS <= S4;
else
NS <= S1;
end if;
130 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

Encoding State Machines

One-Hot Encoded State Machine Verilog Example

L17707707 7707777077777 7777777777777777777777777777777777

// ONE_HOT.V Version 1.0

// Example of a one-hot encoded state machine

// Xilinx HDL Synthesis Design Guide for FPGA devices
[11777177

module one_hot (
input CLOCK, RESET, A, B, C, D, E,
output reg SINGLE, MULTI, CONTIG) ;

// Declare the symbolic names for states
parameter

S1 = 7'b0000001,

S2 = 7'b0000010,

S3 = 7'b0000100,

S4 = 7'b0001000,

S5 = 7'b0010000,

S6 = 7'b0100000,

S7 = 7'b1000000;

// Declare current state and next state variables

(* signal_encoding = "user" *) // directive for XST
(* fsm_encoding = "user" *) // directive for XST
reg [2:0] CS /* synthesis syn_encoding="original" */;
//directive for Synplify Pro

(* signal_encoding = "user" *) // directive for XST
reg [2:0] NS;

// state_vector CS

always @ (posedge CLOCK, posedge RESET)

begin
if (RESET == 1'bl)
CS <= S81;
else
CS <= NS;
end

always @ (%)
begin
case (CS)
S1
begin
MULTI = 1'b0;
CONTIG = 1'b0;
SINGLE = 1'b0;
if (A && ~B && C)

NS = S2;
else if (A && B && ~C)
NS = S4;
else
NS = S1;
end
Synthesis and Simulation Design Guide www.xilinx.com 131

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Accelerating FPGA Macros with One-Hot Approach

Most synthesis tools provide a setting for finite state machine (FSM) encoding. This setting
prompts synthestools to automatically extract state machines in your design and perform
special optimizations to achieve better performance. The default option for FSM encoding
is "One-Hot" for most synthesis tools. However, this setting can be changed to other
encoding such as binary, gray, or sequential.

In LeonardoSpectrum, FSM encoding is set to "Auto" by default, which differs depending
on the Bit Width of your state machine. To change this setting to a specific value, select the
Input tab. Available options are: Binary, One-Hot, Random, Gray, and Auto.

In Synplify Pro, the Symbolic FSM Compiler option can be accessed from the main
application. When set, the FSM Compiler extracts the state machines as symbolic graphs,
and then optimizes them by re-encoding the state representations and generating a better
logic optimization starting point for the state machines. This usually results in one-hot
encoding. However, you may override the default on a register by register basis with the
SYN_ENCODING directive/attribute. Available options are: default, onehot, gray,
sequential, safe and original.

In XST, FSM encoding is set to Auto by default. Available options are: Auto, One-Hot,
Compact, Gray, Johnson, Sequential, and User. The related directives are fsm_encoding
and signal_encoding.

Note: XST recognizes enumerated encoding only if the encoding option is set to User.

Summary of Encoding Styles

In the previous examples, the state machine’s possible states are defined by an
enumeration type. Use the following syntax to define an enumeration type.

type type_name is (enumeration_literal {, enumeration_literal});

After you have defined an enumeration type, declare the signal representing the states as
the enumeration type as follows.

type STATE_TYPE is (S1, S2, S3, S4, S5, S6, S7);
signal CS, NS: STATE_TYPE;

The state machine described in the previous examples has seven states. The possible values
of the signals CS (Current_State) and NS (Next_State) are S1, S2, ..., S6, S7.

To select an encoding style for a state machine, specify the state vectors. Alternatively, you
can specify the encoding style when the state machine is compiled. Xilinx® recommends
that you specify an encoding style. If you do not specify a style, your compiler selects a
style that minimizes the gate count. For the state machine shown in the three previous
examples, the compiler selected the binary encoded style: S1=000", 52="001", S3="010",
S4="011", S5="100", S6="101", and S7="110".

You can use the FSM extraction tool to change the encoding style of a state machine. For
example, use this tool to convert a binary-encoded state machine to a one-hot encoded
state machine.

For instructions on how to extract the state machine and change the encoding style, see
your synthesis tool documentation.

132 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Operators and Generating Modules

Initializing the State Machine

When creating a state machine, especially when you use one-hot encoding, add the
following lines of code to your design to ensure that the FPGA is initialized to a Set state.

Initializing the State Machine VHDL Example

SYNC_PROC: process (CLOCK, RESET)
begin
if (RESET='1’) then
CS <= sl;

Initializing the State Machine Verilog Example

always @ (posedge CLOCK, posedge RESET)
begin
if (RESET == 1'bl)
CS <= 81;

Alternatively, you can assign an INIT=S attribute to the initial state register to specify the
initial state. For information on assigning this attribute, see your synthesis tool
documentation.

In the Binary Encode State Machine example, the RESET signal forces the S1 flip-flop to be
preset (initialized to 1) while the other flip-flops are cleared (initialized to 0).

Implementing Operators and Generating Modules

Xilinx FPGA devices feature carry logic elements that can be used for optimal
implementation of operators and to generate modules. Synthesis tools infer the carry logic
automatically when a specific coding style or operator is used.

Using the DSP48 Block

With the release of the Virtex-4 architecture, Xilinx introduced a new primitive called the
DSP48. This element allows you to create numerous functions, including multipliers,
adders, counters, barrel shifters, comparators, accumulators, multiply accumulate,
complex multipliers, and others. For more information about the DSP48 slice, see the
XtremeDSP Design Considerations User Guide. Currently tools can map multipliers, adders,
multiply adds, multiply accumulates and some form of FIR filters. The synthesis tools also
take advantage of the internal registers available in the DSP48 as well as the dynamic
OPMODE port. Future enhancements to the synthesis tools will improve retiming and
cascading of DSP48 resources.

Resources

The following application notes and white papers provide information on DSP48 support
from Mentor Graphics Precision Synthesis and Synplicity’s Synplify and Synplify Pro.

Synplicity

Using Virtex4 DSP48 Components with the Synplify Pro Software at
http:/ /www.synplicity.com/literature /pdf/dsp48.pdf

Synthesis and Simulation Design Guide www.xilinx.com 133
8.1i

http://www.xilinx.com
http://www.synplicity.com/literature/pdf/dsp48.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Mentor Graphics

Using Precision Synthesis to Design with the XtremeDSP Slice in Virtex-4, available from
http:/ /www.mentor.com /products/fpga_pld/techpubs/index.cfm

To obtain this paper:
1. Go to the Mentor Graphics website.

2. Follow the steps specified on the website.

3. Select Using Precision Synthesis to Design with the XtremeDSP Slice in Virtex-4.

4. Fill out the provided form to request the document from Mentor Graphics.

For a list of known synthesis issues, see Xilinx Answer Record 21493, “Where can I find a list
of synthesis Known Issues for the DSP48/XtremeDSP Slice?”

VHDL Code Examples

Following are examples for inferring the DSP48 slice in VHDL:

e “VHDL Code Example 1: 16x16 Multiplier Input and Output Registers”
e “VHDL Code Example 2: 18x18 Multiplier Fully Pipelined”

e “VHDL Code Example 3: Multiply Add”

e “VHDL Code Example 4: 16 Bit Adder”

e “VHDL Code Example 5: 16 Bit Adder, One Input Added Twice”

e “VHDL Code Example 6: Loadable Multiply Accumulate”

e “VHDL Code Example 7: MACC FIR Inferred”

VHDL Code Example 1: 16x16 Multiplier Input and Output Registers
Precision Synthesis, Synplify, and XST infer the DSP48 slice.

-- Example 1: 16x16 Multiplier, inputs and outputs registered once
-— Matches 1 DSP48 slice

-- OpMode (Z,Y,X) : Subtract

-- (000,01,01):0"

-- Expected register mapping:

-= AREG: yes
-= BREG: ves
-- CREG: no
-- MREG: yes
-— PREG: no

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity multlé_2reg is

port (
a : in std_logic_vector (15 downto 0);
b : in std_logic_vector (15 downto 0);
clk : in std_logic;
rst : in std_logic;
ce : in std_logic;
D : out std_logic_vector (31 downto 0)

)
end entity;

134 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=21493
http://www.mentor.com/products/fpga_pld/techpubs/index.cfm
http://www.mentor.com/products/fpga_pld/techpubs/index.cfm

ST XILINX®

Implementing Operators and Generating Modules

architecture multl6_2reg arch of multlé6_2reg is

signal al

signal bl

signal pl
begin

pl <= al*bl;

std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);
std_logic_vector (31 downto 0);

process (clk) is
begin
if clk'event and clk = 'l' then
if rst = '1' then
al <= (others => '0');
bl <= (others => '0');
p <= (others => '0');
elsif ce = '1l' then
al <= a;
bl <= b;
p <= pl;
end if;
end if;

end process;

end architecture;

VHDL Code Example 2: 18x18 Multiplier Fully Pipelined

XST infers the DSP48 slice.

-- Example 2: 1

8x18 Multiplier, fully piplelined

-— Matches 1 DSP48 slice
-- OpMode (Z,Y,X) : Subtract

-- (

000,01,01):0"

-- Expected register mapping:

-= AREG: yes
-= BREG: vyes
-- CREG: no
-- MREG: yes
-- PREG: yes

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity pipelined _mult is

generic (
data_width integer := 18);
port (

a : in std_logic_vector (data_width-1 downto 0);
b : in std_logic_vector (data_width-1 downto 0);
clk : in std_logic;

rst : in std_logic;

ce : in std_logic;

P : out std_logic_vector (2*data_width-1 downto 0)

)
end entity;

architecture pipelined_mult_arch of pipelined mult is

Synthesis and Simulation Design Guide
8.1i

www.Xxilinx.com

135

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

signal a_reg
signal b_reg
signal m_reg
signal p_reg

std_logic_vector
std_logic_vector
std_logic_vector
std_logic_vector

(data_width-1 downto 0);
(data_width-1 downto 0);
(2*data_width-1 downto 0);
(2*data_width-1 downto 0);

begin
p <= p_reg;
process (clk) is
begin
if clk'event and clk = 'l' then
if rst = '1l' then
a_reg <= (others => '0');
b_reg <= (others => '0');
m_reg <= (others => '0"');
p_reg <= (others => '0');
elsif ce = '1l' then
a_reg <= a;
b_reg <= b;
m_reg <= a_reg*b_reg;
p_reg <= m_reg;
end if;
end if;

end process;

end architecture;

VHDL Code Example 3: Multiply Add
Precision Synthesis, Synplify, and XST infer the DSP48 slice.

-- Example 3: Multiply add function, single level of register
-— Matches 1 DSP48 slice

- OpMode (Z,Y,X) : Subtract

-- (011,01,01):0
-- Expected register mapping:

-= AREG:
-= BREG:
-= CREG:
-= MREG:
-- PREG:

no
no
no

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity mult_add_lreg is

port (
a in std_logic_vector
b : in std_logic_vector
c : in std_logic_vector
clk : in std_logic;
rst : in std_logic;
ce : in std_logic;
P : out std_logic_vector

)
end entity;

(15 downto 0);
(15 downto 0);
(31 downto 0);

(31 downto 0)

136

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Operators and Generating Modules

architecture mult_add_lreg arch of mult_add_lreg is
signal pl : std_logic_vector (31 downto 0);

begin
pl <= a*b + c;

process (clk) is

begin
if clk'event and clk = 'l' then
if rst = '1l' then
p <= (others => '0');
elsif ce = '1l' then
p <= pl;
end if;
end if;

end process;

end architecture;

VHDL Code Example 4: 16 Bit Adder
XST infers the DSP48 slice if the --use_dsp48 switch is used

-- Example 4: 16 bit adder 2 inputs, input and output registered once
-- Mapping to DSP48 should be driven by timing as DSP48 are limited
- resources. The -use_dsp48 XST switch must be set to YES

-- Matches 1 DSP48 slice

- OpMode (Z,Y,X) :Subtract

-— (000,11,11):0 or

-- (011,00,11):0

-- Expected register mapping:

-= AREG: vyes
-- BREG: yes
-- CREG: no
-- MREG: no
-= PREG: vyes

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity addlé_2reg is

port (
a in std_logic_vector (15 downto 0);
b : in std_logic_vector (15 downto 0);
clk : in std_logic;
rst : in std_logic;
ce : in std_logic;
P : out std_logic_vector (15 downto 0)

)
end entity;

architecture addl6_2reg _arch of addlé_2reg is
signal al : std_logic_vector (15 downto 0);
signal bl : std_logic_vector (15 downto 0);
signal pl : std_logic_vector (15 downto 0);

Synthesis and Simulation Design Guide www.xilinx.com 137
8.1i

http://www.xilinx.com

Chapter 4:

Coding Styles for FPGA Devices

SXILINX®

begin

pl <= al + bl;

process (clk) is

begin

if clk'event and clk = 'l' then

if rst =

p <=
al <=
bl <=

'1l' then
(others => '0"');
(others => '0');
(others => '0');

elsif ce = '1l' then
al <= a;
bl <= b;
p <= pl;

end if;
end if;
end process;

end architecture;

VHDL Code Example 5: 16 Bit Adder, One Input Added Twice
XST infers the DSP48 slice if the --use_dsp48 switch is used.

-- Example 5:

16 bit adder 2 inputs,

one input added twice

-— input and output registered once
-- Mapping to DSP48 should be driven by timing as DSP48 are limited

-= resources.

- Matches

1 DSP48 slice

-- OpMode (Z,Y,X) : Subtract

(000,11,11):0 or
(011,00,11):0

-- Expected register mapping:
-- AREG: vyes
-- BREG: yes
-- CREG: no
-= MREG: no
-= PREG: yes

library ieee;

use ieee.std_
use leee.std_

logic_1164.all;
logic_signed.all;

entity addl6é_multx2_ 2reg is

port (

a : in std_logic_vecto
b : in std_logic_vecto
clk : in std_logic;
rst : in std_logic;
ce : in std_logic;
s} : out std_logic_vector (15 downto 0)

)
end entity;

architecture addlé_multx2_2reg_arch of addl6é_multx2_2reg is

signal al
signal bl

std_logic_vector
std_logic_vector

r (15 downto 0);
r (15 downto 0);

(15 downto 0);
(15 downto 0);

The -use_dsp48 XST switch must be set to YES

138

www.Xxilinx.com

Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

Implementing Operators and Generating Modules

signal pl : std_logic_vector (15 downto 0);
begin
pl <= al + al + bl;

process (clk) is

begin
if clk'event and clk = '1l' then
if rst = '1' then
p <= (others => '0');
al <= (others => '0');
bl <= (others => '0');
elsif ce = '1l' then
al <= a;
bl <= b;
p <= pl;
end if;
end if;

end process;

end architecture;

VHDL Code Example 6: Loadable Multiply Accumulate
Precision Synthesis, Synplify, and XST infer the DSP48 resources.

-- Example 6: Loadable Multiply Accumulate with one level of registers
-- Map into 1 DSP48 slice

- Function: OpMode(Z,Y,X) :Subtract

-- - load (011,00,00):0

- - mult_acc (010,01,01):0

-- Restriction: Since C input of DSP48 slice is used, then adjacent

-— DSP cannot use a different ¢ input (¢ input are shared between 2
- adjacent DSP48 slices)

-- Expected mapping:

-= AREG: no
-= BREG: no
-- CREG: no
-- MREG: no
-- PREG: yes

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity load _mult_accum_lreg is

port (
a : in std_logic_vector (15 downto 0);
b : in std_logic_vector (15 downto 0);
c : in std_logic_vector (31 downto 0);
p_rst : in std_logic;
p_ce : in std_logic;
clk : in std_logic;
load : in std_logic;
s} : out std_logic_vector (31 downto 0)
)

Synthesis and Simulation Design Guide www.xilinx.com 139

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

end entity;

architecture load_mult_accum_lreg_arch of load_mult_accum_lreg is

signal al : signed (15 downto
signal bl : signed (15 downto
signal p_tmp : signed (31 downto
signal p_reg : signed (31 downto

o O O o

begin

with load select p_tmp <= signed(c) when '1'

p_reg + al*bl when others;

process (clk)
begin
if clk'event and clk = 'l' then
if p_rst = '1l' then
p_reg <= (others => '0');
al <= (others => '0');
bl <= (others => '0');
elsif p_ce = '1l' then
p_reg <= p_tmp;
al <= signed(a);
bl <= signed(b);
end if;
end if;
end process;

p <= std_logic_vector (p_reg) ;

end architecture;

VHDL Code Example 7: MACC FIR Inferred
Precision Synthesis, Synplify, and XST infer the DSP48 resources.

-- Example 7: Fully pipelined resetable Multiply Accumulate FIR Filter
-- modeled after Figure 3-1 in the XtremeDSP Design

-— Considerations User Guide. This example does not contain
-— the control block listed in the figure.

-— Maps into 1 DSP48 slice

- Function: OpMode(Z,Y,X) :Subtract

- - mult_acc (000,01,01):0

-— Pipelined dual port write first on 'a' port no change on
-— 'b' port block RAM inferred.

-- Expected register mapping:

-= AREG: ves
-= BREG: yes
-- CREG: no
-- MREG: yes
-- PREG: yes

library ieee;
use ieee.std_logic_1164.all;

140

www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

Implementing Operators and Generating Modules

use ieee.numeric_std.all;

entity macc_fir is

generic (
data_width integer := 18;
address_width integer := 8;
mem_depth integer := 256);
port (
clka in std_logic;
clkb in std_logic;
we in std_logic;
en in std_logic;
out_en in std_logic;
macc_rst in std_logic;
address_a in std_logic_vector

(address_width - 1 downto 0);

address_b in std_logic_vector (address_width - 1 downto 0);
di in std_logic_vector (data_width - 1 downto 0);
p_out out std_logic_vector (2*data_width-1 downto 0));

end entity;
architecture macc_fir_arch of macc_fir is

type ram_arry is array (mem_depth-1 downto 0)

of std_logic_vector (data_width-1 downto 0);

(data_width-1 downto 0);
(data_width-1 downto 0);

signal ram ram_arry;
signal doa_aux std_logic_vector
signal dob_aux std_logic_vector
signal m_reg, p_reg signed (2*data_width-1 downto 0);
signal a_in, a_reg signed (data_width-1 downto 0);
signal b_in, b_reg signed (data_width-1 downto 0);
signal we_del std_logic_vector (3 downto 0);
signal macc_load std_logic;
begin
process (clka) is
begin
if clka'event and clka = 'l' then
if en = '1' then
if we = '1' then
ram(to_integer (unsigned(address_a))) <= di;
else
doa_aux <= ram(to_integer (unsigned(address_a)));
end if;
end if;
end if;

end process;

process (clkb) is
begin
if clkb'event and clkb = '1' then
if en = '1' then
dob_aux <= ram(to_integer (unsigned(address_Db)));
end if;
end if;

end process;

-- The following process blocks will infer the
-- optional output register that exists in

Synthesis and Simulation Design Guide
8.1i

www.Xxilinx.com

141

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

-- the Virtex-4 block RAM

process (clka) is
begin

-- the output clock is the same as the input clock
-- the output clock may also be inverted with respect

-- to the input clock
-- if clk'event and clk = '0'
if clka'event and clka = 'l' then
if out_en = 'l' then
-- independent output register clock enable

a_in <= signed(doa_aux) ;
end if;
end if;
end process;

process (clkb) is
begin

-- the output clock is the same as the input clock
-- the output clock may also be inverted with respect

-- to the input clock
-- if clk'event and clk = '0'
if clkb'event and clkb = '1l' then
if out_en = '1l' then
-- independent output register clock enable

b_in <= signed(dob_aux) ;
end if;
end if;
end process;

-- infer the 4 delay SRL
process (clka) is
begin
if clka'event and clka = 'l' then
we_del <= we_del (2 downto 0) & we;
macc_load <= we_del(3);
end if;
end process;

process (clka)

begin
if clka'event and clka = 'l' then

if macc_rst = 'l' then
a_reg <= (others => '0'");
b_reg <= (others => '0');
m_reg <= (others => '0'");
p_reg <= (others => '0"');
p_out <= (others => '0');

else

a_reg <= a_in;
b_reg <= b_in;
m_reg <= a_reg * b_reg;

if macc_load = 'l' then
p_reg <= p_reg + m_reg;
else
p_reg <= m_reg;
end if;

142

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Operators and Generating Modules

p_out <= std_logic_vector (p_reg);

end if;
end if;
end process;

end architecture;

Verilog Code Examples

Following are examples for inferring the DSP48 slice in Verilog.

7

“Verilog Code Example 1: 16x16 Multiplier Input and Output Registers”
“Verilog Code Example 2: 18x18 Multiplier Fully Pipelined”

“Verilog Code Example 3: Multiply Add”

“Verilog Code Example 4: 16 Bit Adder”

“Verilog Code Example 5: 16 Bit Adder, One Input Added Twice”
“Verilog Code Example 6: Loadable Multiply Accumulate”

“Verilog Code Example 7: MACC FIR Inferred”

Verilog Code Example 1: 16x16 Multiplier Input and Output Registers

L1770 7777707 770777707777 777

//
//
//
//
//
//
//
//
//
//

Example 1: 16x16 Multiplier, inputs and outputs registered once
Matches 1 DSP48 slice
OpMode (Z,Y,X) : Subtract
(000,01,01):0
Expected register mapping:
AREG: yes
BREG: ves
CREG: no
MREG: yes
PREG: no

L1770 7777700077777 7 7700 077777777777777707777777777777777777

module multl6_2reg (a, b, p, rst, ce, clk);

input signed [15:
input signed [15:

input clk;
input rst;
input ce;
output [31:0] p;

reg [31:0] p;

reg [15:0] al;
reg [15:0] bil;
wire [31:0] pl;

0] a;
0] b;

assign pl = al*bl;

always @ (posedge clk)
if (rst == 1'bl)

begin
al <= 0;
bl <= 0;
p <= 0;
end
else if (ce == 1'bl)
Synthesis and Simulation Design Guide www.xilinx.com 143

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

begin
al <= a;
bl <= b;
p <= pl;
end
endmodule

Verilog Code Example 2: 18x18 Multiplier Fully Pipelined

[1177
// Example 2: 18x18 Multiplier, fully pipelined

// Matches 1 DSP48 slice
// OpMode (Z,Y,X) : Subtract
// (000,01,01):0

// Expected register mapping:

// AREG: yes

// BREG: yes

// CREG: no

// MREG: ves

// PREG: ves

[I700770 0700770077777 7 0077077007777 7 7077777770777 77777777777

module pipelined_mult (a, b, p, rst,

parameter data_width = 18;

input signed [data_width-1:0] a;
input signed [data_width-1:0] b;
input clk;
input rst;
input ce;

output signed [2*data_width-1:0] p;

//reg [2*data_width-1:0] p;

ce, clk);

reg signed
reg signed

[data_width-1:0]
data_width-1:0]

a_reqg;
b_reg;

reg signed
reg signed

[
[2*data_width-1:0] m_reg;
[2*data_width-1:0] p_reg;

assign p = p_reg;

always @ (posedge clk)
if (rst == 1'bl)
begin
a_reg <=
b_reg <
m_reg <=
p_reg <=
end
else if (ce == 1'bl)
begin
a_reg <= a;
b_reg <= b;
m_reg <= a_reg*b_reg;
p_reg <= m_reg;
end
endmodule

o O O o

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Operators and Generating Modules

Verilog Code Example 3: Multiply Add

[177707 7777777777777 77
// Example 3: Multiply add function, single level of register

// Matches 1 DSP48 slice
// OpMode (Z,Y,X) : Subtract
// (011,01,01):0

// Expected register mapping:

// AREG: no

// BREG: no

// CREG: no

// MREG: no

// PREG: yes

LI170770 7700777077077 770 7770777707777 777777777777 77777777777777

module mult_add_lreg (a, b, c, p, rst, ce, clk);
input signed [15:0] a;
input signed [15:0] b;
input signed [31:0] c;
input clk;
input rst;
input ce;
output [31:0] p;
reg [31:0] p;
wire [31:0] pl;

assign pl = a*b + c¢;

always @ (negedge clk)
if (rst == 1'bl)
p <= 0;
else if (ce == 1'bl) begin
p <= pl;
end
endmodule

Verilog Code Example 4: 16 Bit Adder

L1177 0077777770777
// Example 4: 16 bit adder 2 inputs, input and output registered once
// Mapping to DSP48 should be driven by timing as DSP48 are limited
// resources. The -use_dsp48 XST switch must be set to YES

// Matches 1 DSP48 slice

// OpMode (Z, Y, X) : Subtract
// (000,11,11):0 or

// (011,00,11):0

// Expected register mapping:

// AREG: yes

// BREG: yes

// CREG: no

// MREG: no

// PREG: yes

L1770 700 0700770077707 7 0077707707777 7077707707707 777777707 77777777

module addlé_2reg (a, b, p, rst, ce, clk);
input signed [15:0] a;
input signed [15:0] b;

Synthesis and Simulation Design Guide www.xilinx.com 145
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

input clk;
input rst;
input ce;

output [15:0] p;
reg [15:0] al;
reg [15:0] bl;
reg [15:0] p;
wire [15:0] pl;

assign pl = al + bl;

always @ (posedge clk)

if (rst == 1'bl)
begin
p <= 0;
al <= 0;
bl <= 0;
end
else if (ce == 1'bl)
begin
al <= a;
bl <= b;
p <= pl;
end
endmodule

Verilog Code Example 5: 16 Bit Adder, One Input Added Twice

L1770 707 777777077777 777

// Example 5: 16 bit adder 2 inputs,
// input and output registered once

one input added twice

// Mapping to DSP48 should be driven by timing as DSP48 are limited
// resources. The -use_dsp48 XST switch must be set to YES

// Matches 1 DSP48 slice

// OpMode (Z,Y,X) : Subtract
// (000,11,11):0 or

// (011,00,11):0

// Expected register mapping:

// AREG: yes

// BREG: yes

// CREG: no

// MREG: no

// PREG: yes

L1770 700 0707770077707 7 0077707777777 7707770777777 7777777777777777

module addlé_multx2_2reg (a, b, p,
input signed [15:0] a;
input signed [15:0] b;
input clk;
input rst;
input ce;

output
reg
reg
reg
wire

assign

[15:

pl

1 p;
1 al;
1 bl;
1 p;
1 pl;

o O O o o

= al + al + bl;

rst, ce, clk);

146

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Operators and Generating Modules

always @ (posedge clk)
if (rst == 1'bl)

begin
p <= 0;
al <= 0;
bl <= 0;
end
else if (ce == 1'bl)
begin
al <= a;
bl <= b;
p <= pl;
end
endmodule

Verilog Code Example 6: Loadable Multiply Accumulate

[177701777177
// Example 6: Loadable Multiply Accumulate with one level of registers

// Map into 1 DSP48 slice

// Function: OpMode(Z,Y,X) :Subtract
// - load (011,00,00):0

// - mult_acc (010,01,01):0

// Restriction: Since C input of DSP48 slice is used, then adjacent
// DSP cannot use a different ¢ input (¢ input are shared between 2
// adjacent DSP48 slices)

//

// Expected mapping:

// AREG: no

// BREG: no

// CREG: no

// MREG: no

// PREG: yes

L1770 70 0777777077777 77777777777 77777777777777777777777777777777777777

module load mult_accum_lreg (a, b, c, p, p_rst, p_ce, clk, load);

input signed [15:0] a;

input signed [15:0] b;

input signed [31:0] c;

input p_rst;

input p_ce;

input clk;

input load;

output [31:0] p;

reg [31:0] p;

reg [15:0] al;
reg [15:0] bl;
wire [31:0] p_tmp;

assign p_tmp = load ? c:p + al*bl;
always @ (posedge clk)
if (p_rst == 1'bl) begin
p <= 0;
al <=0;
bl <=0;
end
else if (p_ce == 1'bl) begin

Synthesis and Simulation Design Guide www.xilinx.com 147
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

P <= p_tmp;

al <=a;

bl <= b;
end

endmodule

Verilog Code Example 7: MACC FIR Inferred

[177707 777777077777 77
Example 7: Fully pipelined resetable Multiply Accumulate FIR Filter
modeled after Figure 3-1 in the XtremeDSP Design

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Considerations User Guide.
the control block.

Maps into 1 DSP48 slice
Function: OpMode (Z,Y,X) :Subtract
- mult_acc (000,01,01):0

This example does not contain

Pipelined dual port write first on 'a' port no change on

'b' port block RAM inferred.

Expected register mapping:

AREG: yes
BREG: yes
CREG: no

MREG: yes
PREG: yes

LI770770 7707777077707 777 77777777 77777777777777777777777777777777777777

module macc_fir (clka, clkb, we, en, out_en, macc_rst,

parameter data_width = 18;
parameter address_width = 8;
parameter mem_depth = 256; // 2**address_width
input clka, clkb, we, en, out_en, macc_rst;
input [data_width - 1:0] di;

input [address_width-1 : 0] address_a;

input [address_width-1 : 0] address_b;

output reg signed [2*data_width-1:0] p_out;

reg [data_width-1:0] ram [mem_depth-1:0];
reg [data_width-1 : 0] doa_aux;

reg [data_width-1 : 0] dob_aux;

reg signed [2*data_width-1:0] m_reg, p_reg;
reg signed [17:0] a_in, a_reg, b_in, b_reg;
reg [3:0] we_del;

reg macc_load;

always @ (posedge clka)
begin
if (en) begin
if (we) ram[address_al] <= di;
else doa_aux <= ram[address_a];
end //if (en)
end //always

always @ (posedge clkb)
begin

if (en) dob_aux <= ram[address_Db];
end //always

address_a, address_b, p_out);

148

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Operators and Generating Modules

// The following always blocks will infer the
// optional output register that exists in
// the Virtex-4 block RAM

always @ (posedge clka)

// the output clock is the same as the input clock

// the output clock may also be inverted with respect
// to the input clock

// always @(negedge clk)

begin
if (out_en) begin
// independent output register clock enable

a_in <= doa_aux;
end //if out_en
end //always

always @ (posedge clkb)

// the output clock is the same as the input clock

// the output clock may also be inverted with respect
// to the input clock

// always @ (negedge clk)

begin
if (out_en) begin
// independent output register clock enable

b_in <= dob_aux;
end //if out_en
end //always

// infer the 4 delay SRL
always @ (posedge clka)
begin
we_del <= {we_del[2:0],we};
macc_load <= we_del[3];
end //always

always @ (posedge clka)

begin

if (macc_rst == 1'bl) begin
a_reg <= 0;
b_reg <= 0;
m_reg <= 0;
p_reg <= 0;
p_out <= 0;

end // if macc_rst == 1

else begin
a_reg <= a_in;
b_reg <= b_in;
m_reg <= a_reg * b_reg;
p_reg <= macc_load ? (p_reg + m_reg) : m_reg;
p_out <= p_reg;

end // else

end // always

endmodule

Synthesis and Simulation Design Guide www.xilinx.com 149
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

Adder and Subtractor

Synthesis tools infer carry logic in Virtex, Virtex-E, Virtex-1I, Virtex-1I Pro, Virtex-1I Pro X,
Spartan-1I, and Spartan-3 devices when an adder (+ operator) or subtractor (- operator) is

described.

Multiplier

Synthesis tools utilize carry logic by inferring XORCY, MUXCY, and MULT_AND for
Virtex, Virtex-E, and Spartan-II when a multiplier is described.

When a Virtex-1I or Virtex-II Pro part is targeted, an embedded 18x18 two’s complement
multiplier primitive called a MULT18X18 is inferred by the synthesis tools. For
synchronous multiplications, LeonardoSpectrum, Synplify and XST infer a MULT18X18S

primitive.

LeonardoSpectrum also features a pipeline multiplier that involves putting levels of
registers in the logic to introduce parallelism and, as a result, improve speed. A certain
construct in the input RTL source code description is required to allow the pipelined

multiplier feature to take effect.

This construct infers XORCY, MUXCY, and MULT_AND primitives for Virtex, Virtex-E,
Spartan-II, Spartan-3, Virtex-II, Virtex-1I Pro and Virtex-1I Pro X. The following example

shows this construct.

VHDL Example One: Pipelined Multiplier

Following is a VHDL example of LeonardoSpectrum and Precision Synthesis Pipelined

Multiplier.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity multiply is
generic (size : integer := 16;
port (
clk : in std_logic;
Ain : in std_logic_vector (size-1 downto 0);
Bin : in std_logic_vector (size-1 downto 0);
Qout out std_logic_vector (2*size-1 downto 0)
)i
end multiply;
architecture RTL of multiply is
type levels_of_ registers is array (level-1 downto 0)
of unsigned (2*size-1 downto 0);
signal reg_bank :levels_of_registers;
signal a, b : unsigned (size-1 downto 0);

level integer := 4);

begin
Qout <= std_logic_vector (reg_bank (level-1));
process
begin
wait until clk’event and clk = '1’;

a <= unsigned(Ain) ;

b <= unsigned(Bin) ;

reg_bank (0) <= a * b;

for i in 1 to level-1 loop
reg_bank (i) <= reg_ bank (i-1);

150

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Operators and Generating Modules

end loop;
end process;
end architecture RTL;

VHDL Example Two: Synchronous Multiplier

Following is a synchronous multiplier VHDL example coded for LeonardoSpectrum,
Precision Synthesis, Synplify, and XST

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity xcv2_multl8x18s is
Port (

a : in std_logic_vector (7 downto 0);
b : in std_logic_vector (7 downto 0);
clk : in std_logic;
prod : out std_logic_vector(l5 downto 0)
)i

end xcv2_multl8x18s;

architecture arch_xcv2_multl8x18s of xcv2_multl8x1l8s is

begin
process(clk) is begin
if clk'event and clk = '1l' then
prod <= a*b;
end if;
end process;
end arch_xcv2_multl8x18s;

Verilog Example One: Pipelined Multiplier

Following is a pipelined multiplier Verilog example coded for LeonardoSpectrum,
Precision Synthesis, Synplify, and XST

module multiply (clk, ain, bin, q);

parameter size = 16;
parameter level = 4;
input clk;

input [size-1:0] ain, bin;

output [2*size-1:0] qg;

reg [size-1:0] a, b;

reg [2*size-1:0] reg_bank [level-1:0];
integer 1i;

always @ (posedge clk)

begin
a <= ain;
b <= bin;
end

always @ (posedge clk)
reg_bank[0] <= a * Db;
always @ (posedge clk)
for (1 = 1;1 < level; i=i+1)
reg_bank[i] <= reg_bank[i-1];
assign g = reg_bank[level-1];
endmodule // multiply

Synthesis and Simulation Design Guide www.xilinx.com 151
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Verilog Example Two: Synchronous Multiplier

Following is a synchronous multiplier Verilog example coded for LeonardoSpectrum,
Precision Synthesis, Synplify, and XST.

module mult_sync (
input [7:0] a, b,
input clk,
output reg [15:0] prod);

always @ (posedge clk)
prod <= a*b;
endmodule

Counters
When describing a counter in HDL, the arithmetic operator '+' infers the carry chain. The
synthesis tools then infers the dedicated carry components for the counter.

count <= count + 1; -- This infers MUXCY

This implementation provides a very effective solution, especially for all purpose counters.

VHDL Example: Loadable Binary Counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is

port (
D : in std_logic_vector (7 downto 0);

LD, CE, CLK, RST : in std_logic;
Q : out std_logic_vector (7 downto 0)
)i

end counter;
architecture behave of counter is

signal count std_logic_vector (7 downto 0);

begin
process (CLK) begin
if rising edge (CLK) then

if RST = '1l' then
count <= (others => '0');
elsif CE = '1l' then
if LD = '1l' then
count <= D;
else
count <= count + '1';
end if;
end if;
end if;

end process;
Q <= count;

end behave;

152 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Operators and Generating Modules

Verilog Example: Loadable Binary Counter

Following is a Verilog example of a loadable binary counter.

module counter (
input [7:0] dD,
input 1dLD, ceCE, clkCLK, rstRST,
output reg [7:0] qQ

)i

reg [7:0] count;
always @ (posedge clkCLK, posedge rst)

begin
if (rstRST)
count Q <= 08'h00;
else if (1dCE)
if (LD)
count Q <= dD;
else if (ce)
count Q <= count Q + 1;
end

assign g = count;

endmodule

For applications that require faster counters, LFSR can implement high performance and
area efficient counters. LFSR requires very minimal logic (only an XOR or XNOR
feedback). For more information, see “Implementing LFSR” in this chapter.

For smaller counters it is also effective to use the Johnson encoded counters. This type of
counter does not use the carry chain but provides a fast performance.

The following is an example of a sequence for a 3 bit Johnson counter.
000
001
011
111
110
100

Comparator

Magnitude comparators and equality comparators can infer LUTs for smaller comparators,
or use carry chain logic for larger bit-width comparators. This results in fast and efficient
implementations in Xilinx devices. For each architecture, synthesis tools choose the best
underlying resource for a given comparator description in RTL.

Table 4-1: Comparator Symbols

Magnitude Comparators Equality Comparators

> ==

<

Synthesis and Simulation Design Guide www.xilinx.com 153
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Table 4-1: Comparator Symbols

Magnitude Comparators Equality Comparators

>=

<=

VHDL Example: Unsigned 16-Bit Greater or Equal Comparator

-- Unsigned 16-bit greater or equal comparator.
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity compar is
port(A, B : in std_logic_vector (7 downto 0);
CMP : out std_logic);
end compar;

architecture archi of compar is
begin

CMP <= 'l' when (A >= B) else '0';
end archi

Verilog Example: Unsigned 8-Bit Greater Or Equal Comparator

// Unsigned 8-bit greater or equal comparator.
module compar (

input [7:0] A, B,

output CMP) ;

assign CMP = (A >= B);

endmodule

Encoder and Decoders

library IEEE;

Synthesis tools might infer the MUXF5 and MUXF6 resources for encoder and decoder in
Xilinx FPGA devices. Virtex-1I, Virtex-1I Pro, Virtex-1I Pro X, and Spartan-3 devices feature
additional components, MUXF7 and MUXEFS, to use with the encoder and decoder.

LeonardoSpectrum infers MUXCY when an if-then-else priority encoder is described in
the code. This results in a faster encoder.

Following are VHDL and Verilog examples of LeonardoSpectrum Priority Encoding.

VHDL Example: LeonardoSpectrum Priority Encoding

use IEEE.std_logic_1164.all;

entity prior is
generic (size:

port (
CLK:

COND1 :

COND2
DATA

integer := 8);

in std_logic;

in std_logic_vector(size-1 downto 0);
: in std_logic_vector(size-1 downto 0);
: in std_logic_vector(size-1 downto 0);

154

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Operators and Generating Modules

Q : out std_logic);
end prior;

architecture RTL of prior is

signal data_ff, condl_ff, cond2_ff:

begin
process (CLK)
begin
if CLK'event and CLK = 'l' then
data_ff <= DATA;
condl_ff <= CONDL;
cond2_ff <= COND2;
end if;
end process;

process (CLK)

std_logic_vector(size-1 downto 0);

begin
if (CLK'event and CLK = 'l') then

if (condl_ff(1l) = 'l' and cond2_ff(1l) = '1l') then
Q <= data_ff(1);

elsif (condl_ff(2) = 'l' and cond2_ff(2) = '1l') then
Q <= data_ff(2);

elsif (condl_ff(3) = 'l' and cond2_ff(3) = '1l') then
Q <= data_ff(3);

elsif (condl_ff(4) = 'l' and cond2_ff(4) = '1') then
Q <= data_ff(4);

elsif (condl_ff(5)= 'l' and cond2_ff(5) = '1l') then
Q <= data_ff(5);

elsif (condl_ff(6) = '1l' and cond2_ff(6) = '1l') then
Q <= data_ff(6);

elsif (condl_ff(7) = 'l' and cond2_ff(7) = '1') then
Q <= data_f£f(7);

elsif (condl_ff(8) = 'l' and cond2_ff(8) = '1l') then
Q <= data_ff(8);

else
Q <= '0";

end if;

end if;

end process;

end RTL;

Verilog Example: LeonardoSpectrum Priority Encoding

module prior (CLK, COND1l, COND2, DATA, Q);

parameter size = 8;

input CLK;

input [size-1:0] DATA, COND1l, COND2;
output reg Q;

reg [size-1:0] data_ff, condl_ff, cond2_ ff;

always @ (posedge CLK)
begin
data_ff <= DATA;
condl_ff <= COND1;

Synthesis and Simulation Design Guide
8.1i

www.Xxilinx.com 155

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

cond2_ff <= COND2;

end

always @ (posedge CLK)
if (condl_ff[1l] && cond2_ff[1])

Q
else

Q

else

Q

else

Q
else

Q

else

Q

else

Q
else

Q

else

Q

endmodule

<=
if
<=
if
<=
if
<=
if
<=
if
<=
if
<=
if
<=

<=

data_ff[1];
(condl_ff[2
data_ff[2];
(condl_ff[3
data_ff[3];
(condl_ff[4
data_ff[4];
(condl_ff[5
data_ff[5];
(condl_ff[6
data_ff[6];
(condl_ff[7
data_ff[7];
(condl_ff[8
data_ff[8];

1'b0;

]

]

]

]

]

]

]

&&

&&

&&

&&

&&

&&

&&

Implementing Memory
Xilinx FPGA devices provide:

cond2_ff[2])

cond2_ff[3])

cond2_ff[4])

cond2_ff[5])

cond2_ff[6])

cond2_f£f[7])

cond2_ff[8])

o distributed on-chip RAM (SelectRAM)
e dedicated block memory (Block SelectRAM)

Both memories offer synchronous write capabilities. However, the distributed RAM can be
configured for either asynchronous or synchronous reads.

The edge-triggered write capability simplifies system timing, and provides better
performance for RAM-based designs. In general, synchronous read capability is also
desired. However, distributed RAM offers asynchronous write capability. This can provide
more flexibility when latency is not tolerable, or if you are using the RAM as a look-up
table or other logical type of operation.

In general, the selection of distributed RAM versus block RAM depends on the size of the
RAM. If the RAM is not very deep (16 to 32 bits deep), it is generally advantageous to use
the distributed RAM. If you requre a deeper RAM, it is generally more advantageous to
use the block memory.

Since all Xilinx RAMs have the ability to be initialized, the RAMs may also be configured
either as a ROM (Read Only Memory), or as a RAM with pre-defined contents. The Virtex-
4 device adds even more capabilities to the block memory, including;:

e asynchronous FIFO logic
e error correction circuitry

e more flexible configurations

156

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Memory

Implementing Block RAM

FPGA devices incorporate several large Block SelectRAM memories. These complement
the distributed SelectRAM that provide shallow RAM structures implemented in CLBs.
The Block SelectRAM is a True Dual-Port RAM which allows for large, discrete blocks of
memory.

RAMs may be incorporated into the design in three primary ways:
e inference

e CORE Generator creation

e direct instantiation

Each of these methods has its advantages and disadvantages. Which method is best for
you depends on your own goals and objectives. For a side-by-side comparison of the
advantages and disadvatages of the three methods of incorporating RAMs into the design.
see the following table.

Table 4-2: Advantages and Disadvantages of the Three Methods of Incorporating RAMs into the Design

Inference Coregen Instantiation
Most generic means of Allows good control over | Offers the most control
Advantages incorporating RAMs the creation process of the
RAM

Simulates the fastest

Leaves the user with the Can complicate portability | Can limit the portability of

Disadvantages leastamount of control over | to different device the design
the underlying RAM architectures
created by the tools
Requires specific coding Can require running a Can require multiple
styles to ensure proper separate tool to generate instantiations to properly
inferrence and regenerate the RAM create the right size RAM®

a. for data paths that require more than one RAM

Instantiating Block SelectRAM

Below are VHDL and Verilog coding examples for instantiating a BlockRAM for the
following architectures:

e Virtex-II

e Virtex-II Pro
e Spartan-3

e Spartan-3E

You can modify the generic maps or inline parameters to change the initialization or other
characteristics of the RAM. For more information on instantiating and using this
component or other BlockRAM components, see the Xilinx Libraries Guides.

The following coding examples provide VHDL and Verilog coding styles for
LeonardoSpectrum, Synplify, and XST.

Synthesis and Simulation Design Guide www.xilinx.com 157

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

Instantiating Block SelectRAM VHDL Example

LeonardoSpectrum, and XST

With LeonardoSpectrum and XST you can instantiate a RAMB* cell as a blackbox. The
INIT_** attribute can be passed as a string in the HDL file as well as the script file. The
following VHDL code example shows how to pass INIT in the VHDL file.

LeonardoSpectrum and Precision Synthesis

With LeonardoSpectrum and Precision Synthesis, in addition to passing the INIT
string in HDL, you can pass an INIT string in a LeonardoSpectrum and Precision
Synthesis command script. The following code sample illustrates this method.

set_attribute -instance "inst_ramb4_s4" -name

INIT 00 -type string -value

"1F1E1DIC1B1A191817161514131211100FOEODOCOBOAOY

80706050403020100"

library IEEE;
use IEEE.std_logic_1164.all;

entity spblkrams is

port (

CLK : in std_logic;
EN : in std_logic;
RST : in std_logic;
WE : in std_logic;
ADDR : in std_logic_vector (1l downto 0);
DI : in std_logic_vector (15 downto 0);
DORAMB4_S4 out std_logic_vector (3 downto
DORAMB4_S8 out std_logic_vector (7 downto 0)
)i

end;

architecture struct of spblkrams is

component RAMB4_S4
port (

DI : in STD_LOGIC_VECTOR (3 downto 0);

EN : in STD_ULOGIC;
WE : in STD_ULOGIC;
RST : in STD_ULOGIC;
CLK : in STD_ULOGIC;

ADDR : in STD_LOGIC_VECTOR (9 downto 0);
DO : out STD_LOGIC_VECTOR (3 downto 0)

)i
end component;
component RAMB4_S8
port (

DI : in STD_LOGIC_VECTOR (7 downto 0);

EN : in STD_ULOGIC;
WE : in STD_ULOGIC;
RST : in STD_ULOGIC;
CLK : in STD_ULOGIC;
ADDR : in STD_LOGIC_VECTOR

(8 downto 0);

DO : out STD_LOGIC_VECTOR (7 downto 0)

)
end component;
attribute INIT_00: string;

attribute INIT 00 of INST_RAMB4_S4:

label is

158

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Memory

"1F1E1D1IC1B1A191817161514131211100F0EODOCOBOAO980706050403020100";

attribute INIT_ 00 of INST_RAMB4_S8:

label is

"1F1E1D1C1B1A191817161514131211100F0OEODOCOB0OA0980706050403020100";

begin

INST_RAMB4_S4 RAMB4_S4 port map
DI => DI(3 downto 0),
EN => EN,
WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR(9 downto
DO => DORAMB4_S4
)i

INST_RAMB4_S8 RAMB4_S8
DI => DI(7 downto 0),
EN => EN,
WE => WE,
RST => RST,
CLK => CLK,
ADDR => ADDR (8 downto
DO => DORAMB4_S8
)

end struct;

0),

port map

XST and Synplify

library IEEE;

use IEEE.std_logic_1164.all;

entity spblkrams is

port (

CLK in std_logic;
EN : in std_logic;
RST in std_logic;
WE : in std_logic;
ADDR

(

(

in std_logic_vector (11l downto 0);

DI : in std_logic_vector (15 downto 0);

DORAMB4_S4
DORAMB4_S8
)i

end;

architecture struct of spblkrams is
component RAMB4_S4

generic(INIT_00 bit_vector :=

x"00") ;

port (
DI : in STD_LOGIC_VECTOR
EN : in STD_ULOGIC;
WE : in STD_ULOGIC;

RST : in STD_ULOGIC;
CLK : in STD_ULOGIC;
ADDR : in STD_LOGIC_VECTOR

DO : out STD_LOGIC_VECTOR
)i

end component;

component RAMB4_S8

generic(INIT_00 bit_vector :=

x"00") ;

out std_logic_vector (3 downto
out std_logic_vector (7 downto 0)

0);

(3 downto 0);

(9 downto 0);
(3 downto 0)

Synthesis and Simulation Design Guide
8.1i

www.Xxilinx.com

159

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

port (
DI : in STD_LOGIC_VECTOR (7 downto 0);
EN : in STD_ULOGIC;
WE : in STD_ULOGIC;
RST : in STD_ULOGIC;
CLK : in STD_ULOGIC;
ADDR : in STD_LOGIC_VECTOR (8 downto 0);
DO : out STD_LOGIC_VECTOR (7 downto 0)
)

end component;

begin
INST_RAMB4_S4 : RAMB4_S4

generic map (INIT_00 =>
x"1F1E1D1C1B1A191817161514131211100FOEODOCOB0OA0980706050403020100")

port map (
DI => DI(3 downto 0),
EN => EN,
WE => WE,

RST => RST,

CLK => CLK,

ADDR => ADDR(9 downto 0),
DO => DORAMB4_S4

)i

INST_RAMB4_S8 : RAMB4_S8
generic map (INIT_00 =>
x"1F1E1IDIC1B1A191817161514131211100FOEODOCOB0OA0980706050403020100")

port map (
DI => DI (7 downto 0),
EN => EN,
WE => WE,
RST => RST,
CLK => CLK,

ADDR => ADDR (8 downto 0),
DO => DORAMB4_S8
)i

end struct;

Instantiating Block SelectRAM Verilog Examples

The following Verilog examples show Block SelectRAM™ instantiation.

LeonardoSpectrum

With LeonardoSpectrum the INIT attribute can be set in the HDL code or in the
command line. See the following example.

set_attribute -instance "inst_ramb4_s4" -name
INIT 00 -type string value
"1F1E1D1C1B1A191817161514131211100F0OEODOCOBOAO908006050403020100"

LeonardoSpectrum and Precision Synthesis block_ram_ex Verilog Example

module block_ram ex (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;

160 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Memory

RAMB4_S8 U0 (
.WE (WE) ,
EN(17Db1),
.RST(1'b0),
.CLK (CLK) ,

.ADDR (ADDR) ,

.DI (DIN),

.DO (DOUT)) ;

//exemplar attribute U0 INIT_00
1F1E1D1C1B1A191817161514131211100FO0EODOCOB0OA09080706050403020100

//pragma attribute U0 INIT_ 00
1F1E1D1C1B1A191817161514131211100FOEODOCOBOAO9080706050403020100

endmodule

Synplicity and XST block_ram_ex Verilog Example

[177707777770777
// BLOCK_RAM_EX.V Version 2.0

// This is an example of an instantiation of

// a Block RAM with an INIT value passed via

// a local parameter

[177707777770777
// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"”
[177777777 7777777777777 777777777777777777777777777777777

module spblkrams

input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;

output [7:0] DOUT;

(CLK, WE, ADDR, DIN, DOUT) ;

RAMB4_S8
#(.INIT_00(256'hl1F1E1D1C1B1A191817161514131211100F0EODOCOB0A09080706050403020100))
U0 (.WE(WE), .EN(l1'bl), .RST(1'b0O), .CLK(CLK), .ADDR(ADDR), .DI(DIN), .DO(DOUT)) ;
endmodule

Inferring Block SelectRAM VHDL Examples

The following coding examples provide VHDL coding styles for inferring BlockRAMs for
most supported synthesis tools. Most also support the initialization of block RAM via
signal initialization. This is supported in VHDL only.

The basic syntax for this feature is:

type mem_array is array (255 downto 0) of
std_logic_vector (7 downto 0);
signal mem : mem_array :=
(X"0A", X"00", X"01", xX"00", X"01", X"3A",
X"0o0", xX"08", X"02", X"02", X"00", X"02",
X"o8", X"00", X"01", X"02", X"40", X"41",

For more RAM inference examples, see your synthesis tool documentation.

Synthesis and Simulation Design Guide www.xilinx.com

8.1i

161

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Block SelectRAM can be inferred by some synthesis tools. Inferred RAM must be
initialized in the UCF file. Not all Block SelectRAM features can be inferred. Those features
are pointed out in this section.

LeonardoSpectrum

LeonardoSpectrum can map your memory statements in Verilog or VHDL to the Block
SelectRAM on all Virtex devices. The following is a list of the details for Block SelectRAM
in LeonardoSpectrum.

Virtex Block SelectRAM is completely synchronous — both read and write operations
are synchronous.

LeonardoSpectrum infers single port RAMs (RAMs with both read and write on the
same address), and dual port RAMs (RAMs with separate read and write addresses).

Virtex Block SelectRAM supports RST (reset) and ENA (enable) pins. Currently,
LeonardoSpectrum does not infer RAMs which use the functionality of the RST and
ENA pins.

By default, RAMs are mapped to Block SelectRAM if possible. To disable mapping to
Block SelectRAM, set the attribute BLOCK_RAM to false.

VHDL Example One

Following is a LeonardoSpectrum and Precision Synthesis VHDL example.

library ieee, exemplar;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity ram_examplel is
generic (data_width : integer := 8;
address_width : integer := 8;
mem_depth : integer : = 256);
port (
data : in std_logic_vector (data_width-1 downto 0);
address : in unsigned(address_width-1 downto 0);
we, clk : in std_logic;
g : out std_logic_vector (data_width-1 downto 0)
)i
end ram_examplel;

architecture exl of ram_ examplel is

type mem_type is array (mem_depth-1 downto 0)

of std_logic_vector (data_width-1 downto 0);
signal mem : mem_type;
signal raddress : unsigned(address_width-1 downto 0);

begin
10: process (clk, we, address)
begin
if (clk = '1’ and clk’event) then
raddress <= address;
if (we = ’1’) then
mem (to_integer (raddress)) <= data;
end if;
end if;

end process;

162

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Memory

11: process (clk, address)

begin
if (clk = '1’ and clk’event) then
g <= mem(to_integer (address)) ;
end if;
end process;
end exl;

VHDL ExampleTwo

Following is a LeonardoSpectrum and Precision Synthesis VHDL example (Dual Port
Block SelectRAM).

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity dualport_ram is
port (

clka : in std_logic;
clkb : in std_logic;
wea : in std_logic;
addra : in std_logic_vector (4 downto 0);
addrb : in std_logic_vector (4 downto 0);
dia : in std_logic_vector (3 downto 0);
dob : out std_logic_vector (3 downto 0));

end dualport_ram;

architecture dualport_ram_arch of dualport_ram is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal ram : ram_type;

attribute block_ram : boolean;
attribute block_ram of RAM : signal is TRUE;

begin
write: process (clka)
begin
if (clka'event and clka = 'l') then
if (wea = '1l') then
ram(conv_integer (addra)) <= dia;
end if;
end if;

end process write;

read: process (clkb)

begin
if (clkb'event and clkb = 'l') then
dob <= ram(conv_integer (addrb)) ;
end if;

end process read;
end dualport_ram_arch;

Synplify

To enable the usage of Block SelectRAM, set the attribute syn_ramstyle to block_ram.
Place the attribute on the output signal driven by the inferred RAM. Remember to include
the range of the output signal (bus) as part of the name.

Synthesis and Simulation Design Guide www.xilinx.com 163
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

For example,

define_attribute {a|dout[3:0]} syn_ramstyle "block_ram"

The following are limitations of inferring Block SelectRAM:

e ENA/ENB pins currently are inaccessible. They are always tied to “1.”

e RSTA/RSTB pins currently are inaccessible. They are always inactive.

¢ Automatic inference is not yet supported. The syn_ramstyle attribute is required for
inferring Block SelectRAM.

e Initialization of RAMs is not supported.

¢ Dual port with Read-Write on a port is not supported.

VHDL Example

Following is a Synplify VHDL example.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ram_examplel is

generic (
data_width : integer := 8;
address_width : integer := 8;

mem_depth : integer:= 256
)
port (

data : in std_logic_vector (data_width-1 downto 0);

address : in std_logic_vector (address_width-1 downto 0);

we, clk : in std_logic;

g : out std_logic_vector (data_width-1 downto 0)

)

end ram_examplel;

architecture rtl of ram examplel is type mem_array is array
(mem_depth-1 downto 0) of std_logic_vector (data_width-1 downto 0);

signal mem : mem_array;
attribute syn_ramstyle : string;

attribute syn_ramstyle of mem : signal is

"block_ram";

signal raddress : std_logic_vector (address_width-1 downto 0);
begin
10: process (clk)
begin
if (clk = ’'1’ and clk’event) then
raddress <= address;
if (we = ’1’) then
mem (CONV_INTEGER (address)) <= data;
end if;
end if;

end process;

g <= mem (CONV_INTEGER (raddress)) ;

end rtl;
library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity ram_examplel is

164

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Memory

generic (
data_width : integer := 8;
address_width : integer := 8;
mem_depth : integer := 256);
port (

data : in std_logic_vector (data_width-1 downto 0);
address : in std_logic_vector (address_width-1 downto 0);
en, we, clk : in std_logic;
g : out std_logic_vector (data_width-1 downto 0));

end ram_examplel;

architecture rtl of ram examplel is

type mem_array is array (mem_depth-1 downto 0) of
std_logic_vector (data_width-1 downto 0);

signal mem : mem_array;

attribute syn_ramstyle : string;

attribute syn_ramstyle of mem : signal is "block_ram";

signal raddress : std_logic_vector (address_width-1 downto 0);

begin
10: process (clk)
begin
if (clk = 'l' and clk'event) then
if (we = '1l') then
mem (CONV_INTEGER (address)) <= data;
g <= mem (CONV_INTEGER (address)) ;
end if;
end if;
end process;
end rtl;
XST

For information about inferring Block SelectRAM using XST, see the Xilinx XST User Guide.

Inferring Block SelectRAM Verilog Examples

The following coding examples provide VHDL coding styles for inferring BlockRAMs for
LeonardoSpectrum, Synplify, and XST.

LeonardoSpectrum

The following coding examples provide VHDL coding styles for inferring BlockRAMs for
LeonardoSpectrum.

VHDL Example

For restrictions in inferring Block SelectRAM, see the VHDL example in the section above.

Verilog Example

module dualport_ram (clka, clkb, wea, addra, addrb, dia, dob);
input clka, clkb, wea;
input [4:0] addra, addrb;
input [3:0] dia;
output [3:0] dob /* synthesis syn_ramstyle="block_ram" */;
reg [3:0] ram [31:0];

Synthesis and Simulation Design Guide www.xilinx.com 165

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

reg [4:0] read_dpra;
reg [3:0] dob;
// exemplar attribute ram block_ram TRUE
always @ (posedge clka)
begin
if (wea) ram[addral = dia;
end
always @ (posedge clkb)
begin
dob = ram[addrb];
end
endmodule // dualport_ram

Synplify
The following coding examples show VHDL coding styles for inferring BlockRAMs for
Synplify.

Synplify Verilog Example One

module sp_ram(din, addr, we, clk, dout);
parameter data_width=16, address_width=10, mem_elements=600;
input [data_width-1:0] din;
input [address_width-1:0] addr;
input we, clk;
output [data_width-1:0] dout;
reg [data_width-1:0] mem[mem_elements-1:0]
/*synthesis syn_ramstyle = "block_ram" */;
reg [address_width - 1:0] addr_reg;
always @ (posedge clk)
begin
addr_reg <= addr;
if (we)
mem[addr] <= din;
end
assign dout = mem[addr_reg];
endmodule

Synplify Verilog Example Two

module sp_ram(din, addr, we, clk, dout);
parameter data_width=16, address_width=10, mem_elements=600;
input [data_width-1:0] din;
input [address_width-1:0] addr;
input rst, we, clk;
output [data_width-1:0] dout;

reg [data_width-1:0] mem[mem_ elements-1:0]
/*synthesis syn_ramstyle = "block_ram" */;
reg [data_width-1:0] dout;

always @ (posedge clk)
begin
if (we)
mem[addr] <= din;
dout <= mem[addr];
end
endmodule

166 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Memory

XST

For information about inferring Block SelectRAM using XST, see the Xilinx XST User Guide.

Block SelectRAM in Virtex-4

VHD

The Block SelectRAM in Virtex-4 has been enhanced from the Virtex and Virtex-II Block
SelectRAM. Similar to the Virtex-II and Spartan-3 Block SelectRAM, each Virtex-4 Block
SelectRAM can:

e store 18 Kb
¢ read and write are synchronous operations
e true dual port in that only the stored data is shared

e data available on the outputs is determined by three Block SelectRAM operation
modes of read first, write first, and no change.

Some of the enhancements to the Virtex-4 Block SelectRAM are:
e Cascadable Block SelectRAMs creating a fast 32Kb x 1 block memory

e Pipelined output registers

To infer cascaded Block SelectRAM, create a 32K x 1 Block SelectRAM as shown in the
following examples.

L Example

-- cascade_bram.vhd

-- version 1.0

-- Inference of Virtex-4 cascaded Block SelectRAM

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity cascade_bram is

generic(data_width: integer:= 1;
address_width:integer := 15;
mem_depth: integer:= 32768); -- 2**address_width

port (data: in std_logic_vector (data_width-1 downto 0);
address: in std_logic_vector (address_width-1 downto 0);
we, en, clk: in std_logic;
do: out std_logic_vector (data_width-1 downto 0));

end cascade_bram;

architecture rtl

type mem_array

of cascade_bram is

is array (mem_depth-1 downto 0) of

std_logic_vector (data_width-1 downto 0);

signal mem: mem_array;

signal raddress : std_logic_vector (address_width-1 downto 0);
begin
Synthesis and Simulation Design Guide www.xilinx.com 167

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

process (clk)

begin
if (c¢clk = 'l' and clk'event) then
if (en = '1l') then
raddress <= address;
if (we = '1l') then
mem (conv_integer (address)) <= data;
end if;
end if;
end if;

end process;
do <= mem(conv_integer (raddress)) ;

end architecture;

Verilog Example

[177771777
// cascade_bram.vhd

// version 1.0

//

// Inference of Virtex-4 cascaded Block SelectRAM
[177771777

module cascade_bram (data, address, we, en, clk, do);

parameter data_width = 1;
parameter [3:0] address_width = 15;

parameter [15:0] mem_depth = 32768; //2**address_width

input [data_width-1:0] data;
input [address_width-1:0] address;
input we, en, clk;

output [data_width-1:0] do;

reg [data_width-1:0] mem [mem_depth-1:0];
reg [address_width-1:0] raddress;

always @ (posedge clk)
begin
if (en) begin
raddress <= address;
if (we)
mem|[address] <= data;
end //if (en)
end //always

assign do = mem[raddress];
endmodule

168 www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Memory

Single Port VHDL Examples

The following examples show how to infer the Block SelectRAM with the pipelined output

registers.

In order to automatically infer Block SelectRAM in Synplify and Synplify-Pro, the address
of the RAM has to be greater that 2K. Otherwise, the synthesis directive "syn_ramstyle" set

"to block_ram" will have to be set.

VHDL Example One

-- pipeline_bram_exl.vhd
-- version 1.0

-- Inference of Virtex-4 'read after write' block
-- RAM with optional output register inferred

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity pipeline_bram_exl is
generic (
data_width: integer:= 8;

address_width:integer 8;

mem_depth: integer:= 256); -- 2**address_width

port (

data: in std_logic_vector (data_width-1 downto O0);
address: in std_logic_vector (address_width-1 downto 0);

we, en, out_en, clk: in std_logic;

do: out std_logic_vector (data_width-1 downto 0));

end pipeline_bram_exl;

architecture rtl of pipeline_bram_exl is

type mem_array 1is array (mem_depth-1 downto 0) of

std_logic_vector (data_width-1 downto 0);

signal mem: mem_array;

signal do_aux : std_logic_vector (data_width-1 downto 0);

begin

process (clk)

begin
if (c¢clk = 'l' and clk'event) then
if (en = '1l') then
if (we = '1l') then
mem (conv_integer (address)) <= data;
do_aux <= data;
else
do_aux <= mem(conv_integer (address)) ;
end if;
end if;
end if;

end process;

Synthesis and Simulation Design Guide www.xilinx.com
8.1i

169

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

-- The following process block will infer the
-- optional output register that exists in
-- the Virtex-4 Block SelectRAM

process (clk)
begin
if clk'event and clk = '1' then

-- the output clock is the same as the input clock

-- the output clock may also be inverted with respect
-- to the input clock

-- if clk'event and clk = '0' then

if out_en = 'l' then
-- independent output register clock enable

do <= do_aux;
end if;
end if;
end process;
end architecture;

VHDL Example Two
-- pipeline_bram_ex2.vhd
-- version 1.0

-- Inference of Virtex-4 'read first' block
-- RAM with optional output register inferred

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity pipeline_bram ex2 is
generic (
data_width: integer:= 8;
address_width:integer := 8;
mem_depth: integer:= 256); -- 2**address_width
port (
data: in std_logic_vector (data_width-1 downto O0);
address: in std_logic_vector (address_width-1 downto 0);
we, en, out_en, clk: in std_logic;
do: out std_logic_vector(data_width-1 downto 0));
end pipeline_bram_ex2;

architecture rtl of pipeline_bram_ex2 is

type mem_array is array (mem_depth-1 downto 0) of
std_logic_vector (data_width-1 downto 0);

signal mem: mem_array;
signal do_aux : std_logic_vector (data_width-1 downto 0);

begin

process (clk)
begin

170 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Memory

if (clk = 'l' and clk'event) then
if (en = '1l') then
if (we = '1l') then
mem (conv_integer (address)) <= data;
end if;
do_aux <= mem(conv_integer (address)) ;
end if;
end if;

end process;

-- The following process block will infer the
-- optional output register that exists in
-- the Virtex-4 Block SelectRAM

process (clk)
begin
if clk'event and clk = '1l' then

-- the output clock is the same as the input clock
-- the output clock may also be inverted with respect

-- to the input clock
-- if clk'event and clk = '0' then

if out_en = 'l' then

-- independent output register clock enable

do <= do_aux;
end if;
end if;
end process;
end architecture;

VHDL Example Three

-- pipeline_bram_ex3.vhd
-- version 1.0

-- Inference of Virtex-4 'nmo change' block
-- RAM with optional output register inferred

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity pipeline_bram_ex3 is
generic (
data_width: integer:= 8;

address_width:integer 8;

mem_depth: integer:= 256); -- 2**address_width

port (

data: in std_logic_vector (data_width-1 downto 0);
address: in std_logic_vector (address_width-1 downto 0);

we, en, out_en, clk: in std_logic;

do: out std_logic_vector (data_width-1 downto 0));

end pipeline_bram_ex3;

architecture rtl of pipeline_bram_ex3 is

Synthesis and Simulation Design Guide www.xilinx.com

8.1i

171

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

type mem_array is array (mem_depth-1 downto 0) of
std_logic_vector (data_width-1 downto 0);

signal mem: mem_array;
signal do_aux : std_logic_vector (data_width-1 downto 0);

begin

process (clk)

begin
if (clk = 'l' and clk'event) then
if (en = '1l') then
if (we = '1l') then
mem (conv_integer (address)) <= data;
else
do_aux <= mem(conv_integer (address)) ;
end if;
end if;
end if;

end process;

-- The following process block will infer the
-- optional output register that exists in
-- the Virtex-4 Block SelectRAM

process (clk)
begin
if clk'event and clk = '1l' then

-- the output clock is the same as the input clock

-- the output clock may also be inverted with respect
-- to the input clock

-- if clk'event and clk = '0' then

if out_en = 'l' then
-- independent output register clock enable

do <= do_aux;
end if;
end if;
end process;
end architecture;

Single Port Verilog Examples

Following are single port Verilog examples.

Verilog Example One

[17770777
// pipeline_bram_exl.v

// version 1.0

//

// Inference of Virtex-4 'read after write' block
// RAM with optional output register inferred
[177707777 7777777777777 7777777777777777777777777777

module pipeline_bram_exl (data, address, we, en,

172 www.Xxilinx.com

Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

S XILINX® Implementing Memory

out_en, clk, do);

parameter [3:0] data_width = 8;
parameter [3:0] address_width = 8;
parameter [8:0] mem_depth = 256; // 2**address_width

input [data_width-1 : 0] data;
input [address_width-1 : 0] address;
input we, en, out_en, clk;

output reg [data_width-1 : 0] do;

reg [data_width-1:0] mem [mem_depth-1:0];
reg [data_width-1:0] do_aux;

always @ (posedge clk)
begin
if (en) begin
if (we) begin
mem|[address] <= data;
do_aux <= mem[address];
end // if (we)
else do_aux <= mem[address];
end // if (en)
end //always

// The following always block will infer the
// optional output register that exists in
// the Virtex-4 Block SelectRAM

always @ (posedge clk)

// the output clock is the same as the input clock

// the output clock may also be inverted with respect
// to the input clock

// always @ (negedge clk)

begin
if (out_en) do <= do_aux;
// independent output register clock enable

end //always

endmodule

Verilog Example Two

[177707777 77777777777 777777777777777777777777777777
// pipeline_bram_ex2.v

// version 1.0

//

// Inference of Virtex-4 'read first' block

// RAM with optional output register inferred
[177771777

module pipeline_bram_ex2 (data, address, we, en,
out_en, clk, do);

Synthesis and Simulation Design Guide www.xilinx.com 173
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

parameter [3:0] data_width = §;
parameter [3:0] address_width = 8;
parameter [8:0] mem_depth = 256; // 2**address_width

input [data_width-1 : 0] data;
input [address_width-1 : 0] address;
input we, en, out_en, clk;

output reg [data_width-1 : 0] do;

reg [data_width-1:0] mem [mem_depth-1:01];
reg [address_width-1:0] raddress;
reg [data_width-1:0] do_aux;

always @ (posedge clk)
begin
if (en) begin
if (we) mem[address] <= data;
do_aux <= mem[raddress];
end // if (en)
end //always

// The following always block will infer the
// optional output register that exists in
// the Virtex-4 Block SelectRAM

always @ (posedge clk)

// the output clock is the same as the input clock

// the output clock may also be inverted with respect
// to the input clock

// always @(negedge clk)

begin
if (out_en) do <= do_aux;
// independent output register clock enable

end //always

endmodule

Verilog Example Three

[1777017777 777777777777 77777777777777777777777777777
// pipeline_bram_ex3.v

// version 1.0

//

// Inference of Virtex-4 'nmo change' block

// RAM with optional output register inferred
[1777017777 7777777777 7777777777777777777777777777777

module pipeline_bram ex3 (data, address, we, en,
out_en, clk, do);

parameter [3:0] data_width = 8;
parameter [3:0] address_width = 8;
parameter [8:0] mem_depth = 256; // 2**address_width

174 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Memory

input [data_width-1 : 0] data;
input [address_width-1 : 0] address;
input we, en, out_en, clk;

output reg [data_width-1 : 0] do;

reg [data_width-1:0] do_aux;
reg [data_width-1:0] mem [mem_depth-1:0];
reg [address_width-1:0] raddress;

always @ (posedge clk)
begin
if (en) begin
if (we) mem[address] <= data;
else do_aux <= mem[address];
end // if (en)
end //always

// The following always block will infer the
// optional output register that exists in
// the Virtex-4 Block SelectRAM

always @ (posedge clk)
// the output clock is the same as the input clock
// the output clock may also be inverted with respect
// to the input clock
// always @(negedge clk)
begin
if (out_en) do <= do_aux;
// independent output register clock enable

end //always
endmodule
Dual Port Block SelectRAM VHDL Examples
Following are dual port Block SelectRAM VHDL examples.

VHDL Example One

Following is the first dual port Block SelectRAM VHDL example.

-- dpbram_exl.vhd
-- version 1.0

-- Inference of Virtex-4 'read after write' dual
-- port Block SelectRAM with optional output

-- registers inferred

-- Synplify will infer distributed RAM along with
-- Block SelectRAM in this example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

Synthesis and Simulation Design Guide www.xilinx.com
8.1i

175

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

entity dpram_exl is
generic (
data_width: integer:= 8;
address_width:integer := 8;
mem_depth: integer:= 256); -- 2**address_width
port (
clk : in std_logic;
we, en, out_en : in std_logic;

address_a : in std_logic_vector (address_width - 1 downto 0);
address_b : in std_logic_vector (address_width - 1 downto 0);

di : in std_logic_vector (data_width - 1 downto 0);

doa : out std_logic_vector (data_width - 1 downto 0);

dob : out std_logic_vector (data_width - 1 downto 0)
)

end dpram_exl1;
architecture syn of dpram_exl is
type ram_type is array (mem_depth - 1 downto 0) of

std_logic_vector (data_width - 1 downto 0);
signal RAM : ram_type;

signal doa_aux : std_logic_vector (data_width - 1 downto 0);
signal dob_aux : std_logic_vector (data_width - 1 downto 0);

-- attribute syn_ramstyle : string;

-- attribute syn_ramstyle of ram : signal is "block_ram";

begin
process (clk)
begin
if (clk'event and clk = '1l') then
if (en = '1l') then
if (we = '1') then
RAM (conv_integer (address_a)) <= di;
doa_aux <= di;
dob_aux <= di;
else
doa_aux <= RAM(conv_integer (address_a));
dob_aux <= RAM(conv_integer (address_Db));
end if;
end if;
end if;

end process;

process (clk)
begin
if clk'event and clk = '1' then

-- the output clock is the same as the input clock

-- the output clock may also be inverted with respect
-- to the input clock

-- if clk'event and clk = '0' then

if out_en = '1l' then
-- independent output register clock enable

doa <= doa_aux;

176 www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Memory

dob <= dob_aux;
end if;
end if;
end process;
end syn;

VHDL Example Two

Following is the second dual port Block SelectRAM VHDL example.
-- dpbram_ex2.vhd
-- version 1.0

-- Inference of Virtex-4 'read first' dual port
-- Block SelectRAM with optional output registers
-- inferred

-- Synplify - 'write first' port 'a’

-— 'read first' port 'b’

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity dpram_ex2 is
generic (
data_width: integer:= 8;
address_width:integer := 8;
mem_depth: integer:= 256); -- 2**address_width
port (
clk : in std_logic;
we, en, out_en : in std_logic;
address_a : in std_logic_vector (address_width - 1 downto 0);
address_b : in std_logic_vector (address_width - 1 downto 0);
di : in std_logic_vector(data_width - 1 downto 0);
doa : out std_logic_vector (data_width - 1 downto 0);
dob : out std_logic_vector (data_width - 1 downto 0)
)
end dpram_ex2;

architecture syn of dpram_ex2 is

type ram_type is array (mem_depth - 1 downto 0) of
std_logic_vector (data_width - 1 downto 0);

signal RAM : ram_type;

signal doa_aux : std_logic_vector (data_width - 1 downto 0);

signal dob_aux : std_logic_vector (data_width - 1 downto O0);

begin
process (clk)
begin
if (clk'event and clk = '1l') then
if (en = '1l') then
if (we = '1l') then
RAM (conv_integer (address_a)) <= di;
end if;
doa_aux <= RAM(conv_integer (address_a)) ;
dob_aux <= RAM(conv_integer (address_b));
end if;
Synthesis and Simulation Design Guide www.xilinx.com 177

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

end if;
end process;

process (clk)
begin
if clk'event and clk = '1' then

-- the output clock is the same as the input clock

-- the output clock may also be inverted with respect
-- to the input clock

-- if clk'event and clk = '0' then

if out_en = '1l' then
-- independent output register clock enable

doa <= doa_aux;
dob <= dob_aux;
end if;
end if;
end process;
end syn;

VHDL Example Three
Following is the third dual port Block SelectRAM VHDL example.

-- dpbram_ex3.vhd
-- version 1.0

-- Inference of Virtex-4 'nmo change' on port 'a'
-- and 'read first' on port 'b' dual port Block
-- SelectRAM with two clocks and optional output
-- registers inferred

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity dpram_ex3 is
generic (
data_width: integer:= 8;
address_width:integer := 11;
mem_depth: integer:= 2048); -- 2**address_width
port (
clka, clkb : in std_logic;
we, en, out_en : in std_logic;
address_a : in std_logic_vector (address_width - 1 downto 0);
address_b : in std_logic_vector (address_width - 1 downto 0);
di : in std_logic_vector (data_width - 1 downto 0);
doa : out std_logic_vector (data_width - 1 downto 0);
dob : out std_logic_vector (data_width - 1 downto 0)
)i
end dpram_ex3;

architecture syn of dpram_ex3 is

type ram_type is array (mem_depth - 1 downto 0) of

178 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

S XILINX® Implementing Memory

std_logic_vector (data_width - 1 downto 0);
signal RAM : ram_type;
signal doa_aux : std_logic_vector(data_width - 1 downto 0);
signal dob_aux : std_logic_vector(data_width - 1 downto 0);

begin
process (clka)
begin
if (clka'event and clka = 'l') then
if (en = '1l') then
if (we = '1') then
RAM (conv_integer (address_a)) <= di;
else
doa_aux <= RAM(conv_integer (address_a)) ;
end if;
end if;
end if;

end process;

process (clkb)

begin
if (clkb'event and clkb = '1l') then
if (en = '1l') then
dob_aux <= RAM(conv_integer (address_Db));
end if;
end if;

end process;

process (clka)
begin
if clka'event and clka = '1l' then

-- the output clock is the same as the input clock

-- the output clock may also be inverted with respect
-- to the input clock

-- if clk'event and clk = '0' then

if out_en = 'l' then
-- independent output register clock enable

doa <= doa_aux;
end if;
end if;
end process;

process (clkb)
begin
if clkb'event and clkb = 'l' then

-- the output clock is the same as the input clock

-- the output clock may also be inverted with respect
-- to the input clock

-- if clk'event and clk = '0' then

if out_en = '1l' then
-- independent output register clock enable
dob <= dob_aux;
end if;
end if;

Synthesis and Simulation Design Guide www.xilinx.com 179
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

end syn;

end process;

Dual Port Verilog Examples

Following are dual port Verilog examples.

Verilog Example One

Following is the first dual port Verilog example.

[177777777 77707777777 7777777777777777777777777777777
dpbram_exl1.vhd
version 1.0

//
//
//
//
//
//
//
//

module dpram_exl

Inference of Virtex-4

port

'read after write' dual

Block SelectRAM with optional output

registers inferred

Synplify will infer distributed RAM along with
Block SelectRAM in this example
[177707777777771777777777777777777777777777777777777

(clk, we, en, out_en, address_a,
address_b, di, doa, dob);

parameter [3:0] data_width = 8;

parameter [3:0] address_width = 8;

parameter [8:0] mem_depth = 256; // 2**address_width
input clk, we, en, out_en;

input [address_width-1 : 0] address_a;

input [address_width-1 : 0] address_b;

input [data_width-1 : 0] di;

output reg [data_width-1 : 0] doa;

output reg [data_width-1 : 0] dob;

reg [data_width-1:0] ram [mem_depth-1:017;
reg [data_width-1 : 0] doa_aux;
reg [data_width-1 : 0] dob_aux;
always @ (posedge clk)
begin
if (en) begin
if (we) begin
ram[address_a] <= di;
doa_aux <= di;
dob_aux <= di;
end //1if (we)

else begin

end //else

end

doa_aux <= ram[address_al;
dob_aux <= ram[address_Db];
(we)

//1f (en)

end //always

// The following always block will infer the

180

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Implementing Memory

// optional output register that exists in
// the Virtex-4 Block SelectRAM

always @ (posedge clk)

// the output clock is the same as the input clock
// the output clock may also be inverted with respect

// to the input clock
// always @(negedge clk)

begin
if (out_en) begin
// independent output register clock enable

doa <= doa_aux;
dob <= dob_aux;
end //if out_en

end //always

endmodule

Verilog Example Two

Following is the second dual port Verilog example.

L1770 7 70770077707 7777 777 7770777777777777777777777777

// dpbram_ex2.vhd

// version 1.0

//

// Inference of Virtex-4 'read first' dual port
// Block SelectRAM with optional output registers
// inferred

// Synplify - 'write first' port 'a‘’

// 'read first' port 'b'

LITT770000 7777000077777 7777770777777777777777777

module dpram_ex2 (clk, we, en, out_en, address_a,
address_b, di, doa, dob);

parameter [3:0] data_width = §;
parameter [3:0] address_width = 8;

parameter [8:0] mem_depth = 256; // 2**address_width

input clk, we, en, out_en;

input [address_width-1 : 0] address_a;
input [address_width-1 : 0] address_b;
input [data_width-1 : 0] di;

output reg [data_width-1 : 0] doa;
output reg [data_width-1 : 0] dob;

reg [data_width-1:0] ram [mem_depth-1:0];
reg [data_width-1 : 0] doa_aux;
reg [data_width-1 : 0] dob_aux;

always @ (posedge clk)
begin
if (en) begin

Synthesis and Simulation Design Guide www.xilinx.com
8.1i

181

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

if (we) begin
ram[address_a] <= di;
end //if (we)
doa_aux <= ram[address_al;
dob_aux <= ram[address_Db];
end //if (en)
end //always

// The following always block will infer the
// optional output register that exists in
// the Virtex-4 Block SelectRAM

always @ (posedge clk)

// the output clock is the same as the input clock

// the output clock may also be inverted with respect
// to the input clock

// always @(negedge clk)

begin
if (out_en) begin
// independent output register clock enable

doa <= doa_aux;
dob <= dob_aux;
end //if out_en
end //always

endmodule

//
//
//
//
//
//
//
//
//

Verilog Example Three

Following is the third dual port Verilog example.

[177707777770777777777777777777777777777777777777
dpbram_ex3.v
version 1.0

Inference of Virtex-4 'no change' on port 'a'
and 'read first' on port 'b' dual port Block
SelectRAM with two clocks and optional output
registers inferred
[1777

module dpram_ex3 (clka, clkb, we, en, out_en,

address_a, address_b, di, doa, dob);

parameter [3:0] data_width = 8;
parameter [3:0] address_width = 8;
parameter [8:0] mem_depth = 256; // 2**address_width

input clka, clkb, we, en, out_en;
input [address_width-1 : 0] address_a;
input [address_width-1 : 0] address_b;
input [data_width-1 : 0] di;

output reg [data_width-1 : 0] doa;
output reg [data_width-1 : 0] dob;

182

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Memory

reg [data_width-1:0] ram [mem_depth-1:0];
reg [data_width-1 : 0] doa_aux;
reg [data_width-1 : 0] dob_aux;

always @ (posedge clka)
begin
if (en) begin
if (we) ram[address_a] <= di;
else doa_aux <= ram[address_a];
end //if (en)
end //always

always @ (posedge clkb)
begin

if (en) dob_aux <= ram[address_Db];
end //always

// The following always blocks will infer the
// optional output register that exists in
// the Virtex-4 Block SelectRAM

always @ (posedge clka)

// the output clock is the same as the input clock

// the output clock may also be inverted with respect
// to the input clock

// always @(negedge clk)

begin
if (out_en) begin
// independent output register clock enable

doa <= doa_aux;
end //if out_en
end //always

always @ (posedge clkb)

// the output clock is the same as the input clock

// the output clock may also be inverted with respect
// to the input clock

// always @(negedge clk)

begin
if (out_en) begin
// independent output register clock enable

dob <= dob_aux;
end //if out_en
end //always

endmodule

Implementing Distributed SelectRAM

Distributed SelectRAM can be either instantiated or inferred. The following sections
describe and give examples of both instantiating and inferring distributed SelectRAM.

The following RAM Primitives are available for instantiation.

e Static synchronous single-port RAM (RAM16x1S, RAM32x1S)

Synthesis and Simulation Design Guide www.xilinx.com 183
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

Additional single-port RAM available for Virtex-II,. Virtex-1I Pro, Virtex-1I Pro X. and
Spartan-3 devices only: RAM16X2S, RAM16X4S, RAM16X8S, RAM32X1S,
RAMB32X2S, RAM32X4S, RAM32X8S, RAM64X1S, RAM64X2S, and RAM128X1S.

e Static synchronous dual-port RAM (RAM16x1D, RAM32x1D)

Additional dual-port RAM is available for Virtex-1I, Virtex-II Pro, Virtex-II Pro X, or
Spartan-3 devices only: RAM64X1D.

For more information on distributed SelectRAM, see the Xilinx Libraries Guides.

Instantiating Distributed SelectRAM in VHDL

The following examples provide VHDL coding hints for LeonardoSpectrum, Synplify and
XST.

-- This example shows how to create a

-- 16x4s RAM using xilinx RAM16x1S component.
library IEEE;

use IEEE.std_logic_1164.all;

-- Add the following two lines if using XST and Synplify:
-- library unisim;

-- use unisim.vcomponents.all;

entity ram_16x4s is

port (
o) : out std_logic_vector (3 downto 0);
we : in std_logic;
clk : in std_logic;
d : in std_logic_vector (3 downto 0);
a : in std_logic_vector (3 downto 0)

end ram_16x4s;
architecture xilinx of ram_16x4s is

-- remove the following component declarations
-- if using XST or Synplify

component RAM16x1S is
generic (INIT : bit_vector :=x"0000");
port (
O : out std_logic;
D : in std_logic;
A3, A2, Al, A0 : in std_logic;
WE, WCLK : in std_logic
)i
end component;

begin
U0 : RAMI16x1S
generic map (INIT =>xX"FFFF")
port map (O => o(0), WE => we, WCLK => clk, D => d(0),
A0 => a(0), Al => a(l), A2 => a(2), A3 => al(3));

Ul : RAMI16x1S
generic map (INIT =>x"ABCD")
port map (O => o(l), WE => we, WCLK => clk, D => d(1),
A0 => a(0), Al => a(l), A2 => a(2), A3 => a(3));

184 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Memory

U2 : RAMI16x1S
generic map (INIT =>x"BCDE")
port map (O => o(2), WE => we, WCLK => clk, D => d(2),
A0 => a(0), Al => a(l), A2 => a(2), A3 => a(3));

U3 : RAM16x1S
generic map (INIT =>x"CDEF")
port map (O => o(3), WE => we, WCLK => clk, D => d(3),
A0 => a(0), Al => a(l), A2 => a(2), A3 => al(3));
end xilinx;

Instantiating Distributed SelectRAM in Verilog

The following coding provides Verilog coding hints for LeonardoSpectrum, Synplify, and
XST.

LeonardoSpectrum

// This example shows how to create a
// 16x4 RAM using Xilinx RAM16X1S component.
module RAM INIT_EX1 (DATA_BUS, ADDR, WE, CLK);
input [3:0] ADDR;
inout [3:0] DATA_BUS;
input WE, CLK;
wire [3:0] DATA_OUT;
// Only for Simulation
// -- the defparam will not synthesize
// Use the defparam for RTL simulation.
// There is no defparam needed for
// Post P&R simulation.
// exemplar translate_off
defparam RAMO.INIT="0101", RAM1.INIT="AAAA", RAM2.INIT="FFFF",
RAM3.INIT="5555";
// exemplar translate_on
assign DATA_BUS = !WE ? DATA_OUT : 4'hz;
// Instantiation of 4 16X1 Synchronous RAMs
RAM16X1S RAM3 (
.0 (DATA_OUTI[3]),.D (DATA_BUS[3]),.A3 (ADDRI[3]),.A2 (ADDRI[2]),
.A1 (ADDRI[1]), .AQO (ADDRI[O]), .WE (WE), .WCLK (CLK))
/* exemplar attribute RAM3 INIT 5555 */;
RAM16X1S RAM2 (
.0 (DATA_OUTI[2]), .D (DATA_BUS[2]), .A3 (ADDR[3]) ,.A2 (ADDR[2]),
.Al1 (ADDRI[1]), .AO0 (ADDR[O]), .WE (WE), .WCLK (CLK))
/* exemplar attribute RAM2 INIT FFFF */;
RAM16X1S RAM1 (
.0 (DbATA_OUT[1]), .D (DATA_BUSI[1]), .A3 (ADDR[3]), .A2 (ADDRI[2]),
.Al (ADDRI[1]), .AO0 (ADDR[O]), .WE (WE), .WCLK (CLK))
/* exemplar attribute RAM1 INIT AAAA */;
RAM16X1S RAMO (
.0 (DATA_OUTI[O]), .D (DATA_BUS[O]), .A3 (ADDR[3]), .A2 (ADDR[2]),
.A1 (ADDRI[1]), .AO0 (ADDR[O]), .WE (WE), .WCLK (CLK))
/* exemplar attribute RAMO INIT 0101 */;
endmodule
module RAM16X1S (O,D,A3, A2, Al, A0, WE, WCLK);
output O;
input D;
input A3;
input A2;

Synthesis and Simulation Design Guide www.xilinx.com 185
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

input Al;
input AQ;
input WE;
input WCLK;
endmodule

Synplify and XST

L1717 707777770 7777707777 777077777777777777777777777777777777
// RAM_INIT EX.V Version 2.0

// This is an example of an instantiation of

// a RAM16X1S with an INIT passed through a

// local parameter
[177707777777077
// add the following line if using Synplify:

// “include "<path_to_synplify> \lib\xilinx\unisim.v"
[177707777777077

module RAM INIT_EX1 (DATA_BUS, ADDR, WE, CLK);

input [3:0] ADDR;

inout [3:0] DATA_BUS;

input WE, CLK;

wire [3:0] DATA_OUT;

assign DATA_BUS = !WE ? DATA_OUT : 4'hz;

RAM16X1S

#(.INIT(16'hFFFF)) RAM3

(.0 (DATA_OUT[3]), .D (DATA_BUSI[3]), .A3 (ADDR[3]), .A2 (ADDR[2]),
.A1 (ADDRI[1]), .AO (ADDRI[O]), .WE (WE), .WCLK (CLK));

RAM16X1S

#(.INIT(16'hAAAA)) RAM2

(.0 (DATA_OUT[2]), .D (DATA_BUS[2]), .A3 (ADDR[3]), .A2 (ADDR[2]),
.A1 (ADDR[1]), .AO (ADDRI[O]), .WE (WE), .WCLK (CLK));

RAM16X1S

#(.INIT(16'h7777)) RAM1

(.0 (DATA_OUT[1]), .D (DATA_BUSI[11), A3 (ADDR[3]), .A2 (ADDRI[Z2]),
.A1l (ADDR[1]), .AO (ADDRI[O]), .WE (WE), .WCLK (CLK));

RAM16X1S

#(.INIT(16'h0101)) RAMO

(.0 (bATA_OUTI[O0]), .D (DATA_BUSI[O]), .A3 (ADDR[3]), .A2 (ADDRI[2]),
.A1 (ADDR[1]), .AO (ADDR[O0]), .WE (WE), .WCLK (CLK)) ;

endmodule

Inferring Distributed SelectRAM in VHDL

Precision Synthesis and Synplify Pro support the initialization of block RAM via signal
initialization. This is supported in VHDL only. The basic syntax for this feature is:

type mem_array is array (31 downto 0) of
std_logic_vector (7 downto 0);
signal mem : mem_array :=
(X"0A", X"00", X"01", X"00", X"01", X"3A",
X"o0", X"08", X"02", X"02", X"00", X"02",
X"Q8", X"00", X"01", X"02", X"40", X"41",

186

www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

S XILINX® Implementing Memory

LeonardoSpectrum, Precision Synthesis, Synplify, and XST

The following coding examples provide VHDL and Verilog coding styles for
LeonardoSpectrum, Precision Synthesis, Synplify, and XST.

e VHDL Example One

The following is a 32x8 (32 words by 8 bits per word) synchronous, dual-port RAM
example.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity ram_32x8d_infer is

generic (
d_width : integer := 8;
addr_width : integer := 5;
mem_depth : integer := 32
)i

port (

o : out STD_LOGIC_VECTOR(d_width - 1 downto 0);

we, clk : in STD_LOGIC;

d : in STD_LOGIC_VECTOR(d_width - 1 downto 0);

raddr, waddr : in STD_LOGIC_VECTOR (addr_width - 1 downto 0));

end ram_32x8d_infer;

architecture xilinx of ram_32x8d_infer is
type mem_type is array (

mem_depth - 1 downto 0) of
STD_LOGIC_VECTOR (d_width - 1 downto 0);

signal mem : mem_type;

begin

process(clk, we, waddr)
begin
if (rising_edge(clk)) then

if (we = ’'1’) then
mem (conv_integer (waddr)) <= d;
end if;
end if;

end process;
process (raddr)
begin
o0 <= mem(conv_integer (raddr)) ;
end process;
end xilinx;

e VHDL Example Two

The following is a 32x8 (32 words by 8 bits per word) synchronous, single-port RAM
example.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity ram_32x8s_infer is

generic (
d_width : integer := 8;
Synthesis and Simulation Design Guide www.xilinx.com 187

8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

addr_width : integer := 5;
mem_depth : integer := 32
)i
port (
o : out STD_LOGIC_VECTOR(d_width - 1 downto 0);
we, wclk : in STD_LOGIC;
d : in STD_LOGIC_VECTOR(d_width - 1 downto 0);
addr : in STD_LOGIC_VECTOR (addr_width - 1 downto 0));
end ram_32x8s_infer;

architecture xilinx of ram_32x8s_infer is
type mem_type is array (mem_depth - 1 downto 0)
of STD_LOGIC_VECTOR (d_width - 1 downto 0);
signal mem : mem_type;

begin
process (wclk, we, addr)
begin
if (rising_edge(wclk)) then
if (we = ’1’) then
mem (conv_integer (addr)) <= d;
end if;
end if;

end process;
o0 <= mem(conv_integer (addr)) ;
end xilinx;

Inferring Distributed SelectRAM in Verilog

The following coding examples provide Verilog coding hints for Synplify,
LeonardoSpectrum, Precision Synthesis, and XST.

LeonardoSpectrum, Precision Synthesis, Synplify, and XST

The following is a 32x8 (32 words by 8 bits per word) synchronous, dual-port RAM
example.

module ram_32x8d_infer (o, we, d, raddr, waddr, clk);
parameter d_width = 8, addr_width = 5;
output [d_width - 1:0] o;
input we, clk;
input [d_width - 1:0] d;
input [addr_width - 1:0] raddr, waddr;

reg [d_width - 1:0] o;
reg [d_width - 1:0] mem [(2 ** addr_width) - 1:0];

always @ (posedge clk)
if (we)
mem[waddr] = d;

always @ (raddr)
o = mem[raddr];
endmodule

The following is a 32x8 (32 words by 8 bits per word) synchronous, single-port RAM
example.

module ram_32x8s_infer (o, we, d, addr, wclk);
parameter d_width = 8, addr_width = 5;
output [d_width - 1:0] o;

188 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Memory

input we, wclk;
input [d_width - 1:0] 4;
input [addr_width - 1:0] addr;

reg [d_width - 1:0] mem [(2 ** addr_width) - 1:0];
always @ (posedge wclk)
if (we)
mem[addr] = d;
assign o = mem[addr];
endmodule

Implementing ROMs
ROMs can be implemented as follows.

e Use RTL descriptions of ROMs
¢ Instantiate 16x1 and 32x1 ROM primitives

Following are RTL VHDL and Verilog ROM coding examples.

RTL Description of a Distributed ROM VHDL Example

Use the following coding example for LeonardoSpectrum, Precision Synthesis, Synplify
and XST.

-- Behavioral 16x4 ROM Example
- rom_rtl.vhd
library IEEE;

use IEEE.std_logic_1164.all;

entity rom_rtl is
port (
ADDR : in INTEGER range 0 to 15;
DATA : out STD_LOGIC_VECTOR (3 downto 0)
)i
end rom_rtl;

architecture XILINX of rom_rtl is
subtype ROM_WORD is STD_LOGIC_VECTOR (3 downto 0);
type ROM_TABLE is array (0 to 15) of ROM_WORD;
constant ROM : ROM_TABLE := ROM_TABLE' (
ROM_WORD"' ("0000") ,
ROM_WORD' ("0001")
ROM_WORD' ("0010")
ROM_WORD' ("0100")
ROM_WORD"' ("1000")
ROM_WORD' ("1100")
ROM_WORD"' ("1010")
ROM_WORD' ("1001"),
ROM_WORD' ("1001"),
)
)
)
)
)
)
)

’
’
’
’
’

’

ROM_WORD"' ("1010"
ROM_WORD' ("1100"
ROM_WORD' ("1001"
ROM_WORD' ("1001"
ROM_WORD"' ("1101"
ROM_WORD"' ("1011"
ROM_WORD"' ("1111"

’

’

’

’

’

’

Synthesis and Simulation Design Guide www.xilinx.com 189
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

)i
begin
DATA <= ROM(ADDR) ; -- Read from the ROM
end XILINX;

RTL Description of a Distributed ROM Verilog Example

Use the following coding example for LeonardoSpectrum, Precision Synthesis, Synplify,
and XST.

/ *
* ROM_RTL.V
* Behavioral Example of 16x4 ROM
*/

module rom_rtl (ADDR, DATA) ;
input [3:0] ADDR;
output [3:0] DATA;
reg [3:0] DATA;

// A memory is implemented
// using a case statement

always @ (ADDR)
begin
case (ADDR)
4'b0000 : DATA = 4'b0000 ;
4'b0001 : DATA = 4'b0001 ;
4'b0010 : DATA = 4'b0010 ;
4'b0011 : DATA = 4'b0100 ;
4'b0100 : DATA = 4'b1000 ;
4'b0101 : DATA = 4'b1000 ;
4'b0110 : DATA = 4'b1100 ;
4'b0111 : DATA = 4'b1010 ;
4'b1000 : DATA = 4'b1001 ;
4'1001 : DATA = 4'b1001 ;
4'1010 : DATA = 4'b1010 ;
4'b1011 : DATA = 4'b1100 ;
4'b1100 : DATA = 4'b1001 ;
4'b1101 : DATA = 4'b1001 ;
4'b1110 : DATA = 4'b1101 ;
4'b1111 : DATA = 4'bl111 ;
endcase
end
endmodule

With the VHDL and Verilog examples above, synthesis tools create ROMs using function
generators (LUTs and MUXFs) or the ROM primitives.

Another method for implementing ROMs is to instantiate the 16x1 or 32x1 ROM
primitives. To define the ROM value, use the Set Attribute or equivalent command to set
the INIT property on the ROM component.

For more information on the correct syntax, see your synthesis tool documentation.

This type of command writes the ROM contents to the netlist file so the Xilinx tools can
initialize the ROM. The INIT value should be specified in hexadecimal values. For
examples of this property using a RAM primitive, see the VHDL and Verilog RAM
examples in the following section.

190 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Memory

Implementing ROMs Using Block SelectRAM
LeonardoSpectrum and Synplify can infer ROM using Block SelectRAM.

LeonardoSpectrum

¢ In LeonardoSpectrum, synchronous ROMs with address widths greater than eight
bits are automatically mapped to Block SelectRAM.

e Asynchronous ROMs and synchronous ROMs (with address widths less than eight
bits) are automatically mapped to distributed SelectRAM.

Synplify

Synplify can infer ROMs using Block SelectRAM instead of LUTs for Virtex,
Virtex-E, Virtex-II, Virtex-1I Pro, Virtex-II Pro X, Virtex-4 and Spartan-3 in the following
cases:

e For Virtex and Virtex-E, the address line must be between 8 and 12 bits.

e For Virtex-II, Virtex-II Pro, Virtex-1I Pro X, Virtex-4, or Spartan-3, the address line
must be between 9 and 14 bits.

e The address lines must be registered with a simple flip-flop (no resets or enables) or
the ROM output can be registered with enables or sets/resets. However, you cannot
use both sets/resets and enables. The flip-flops' sets/resets can be either synchronous
or asynchronous. In the case where asynchronous sets/resets are used, Synplify
creates registers with the sets/resets and then either AND or OR these registers with
the output of the block RAM.

RTL Description of a ROM VHDL Example Using Block SelectRAM

Following is some incomplete VHDL that demonstrates the above inference rules.

library IEEE;

use IEEE.std_logic_1164.all;

entity rom_rtl is

port (

ADDR : in INTEGER range 0 to 1023;
CLK : in std_logic;
DATA : out STD_LOGIC_VECTOR (3 downto 0)
)i

end rom_rtl;

architecture XILINX of rom_rtl is

subtype ROM_WORD is STD_LOGIC_VECTOR (3 downto 0);
type ROM_TABLE is array (0 to 1023) of ROM_WORD;
constant ROM : ROM_TABLE := ROM_TABLE' (
ROM_WORD' ("0000"),
ROM_WORD' ("0001")
ROM_WORD' ("0010")
ROM_WORD' ("0100")
ROM_WORD' ("1000"),
ROM_WORD' ("1100"),
)
)
)
)
)

’
’

’

ROM_WORD' ("1010"
ROM_WORD"' ("1001"
ROM_WORD"' ("1001"
ROM_WORD"' ("1010"
ROM_WORD' ("1100"

’

’

’

’

’

Synthesis and Simulation Design Guide www.xilinx.com 191
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices

SXILINX®

begin
proce

ROM_WORD' ("1001")
ROM_WORD"' ("1001™")
ROM_WORD"' ("1101"),
ROM_WORD"' ("1011")

)

’

’

’

ROM_WORD' ("1111"

)

ss (CLK) begin

if clk'event and clk =
DATA <= ROM (ADDR) ;

end
end p

if;
rocess;

end XILINX;

'l'" then

-- Read from the ROM

RTL Description of a ROM Verilog Example using Block SelectRAM

Following is an incomplete Verilog example that demonstrates the above inference rules:

/*

* This code is incomplete but demonstrates the
* rules for inferring block RAM for ROMs

* ROM_RTL.V
* block RAM ROM Example

*/

module rom_rtl (ADDR, CLK, DATA) ;

input
input
outpu
reg [

[9:0] ADDR ;
CLK ;
t [3:0] DATA
3:0] DATA ;

// A memory is implemented
// using a case statement

always @ (posedge CLK)

begin

case (ADDR)

9'b000000000
9'b000000001
9'b000000010
9'b000000011
9000000100
9000000101
9'b000000110
9'b000000111
9'b000001000
9'b000001001
9'b000001010
9'b000001011
9'b000001100
9'b000001101
9'b000001110
9'b000001111

endcase

DATA
DATA

DATA =
DATA =
DATA =
DATA =
DATA =
DATA =

DATA

DATA =
DATA =
DATA =
DATA =
DATA =
DATA =

DATA

= 4'b0000
= 4'b0001
4'b0010
4'b0100
4'p1000
4'b1000
4'b1100
4'b1010
= 4'bl001
4'b1001
4'p1010
4'b1100
4'b1001
4'b1001
4'bl101
= 4'bllll

192

www.Xxilinx.com

Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Implementing Shift Registers

end
endmodule

Implementing FIFOs

FIFOs are generally implemented in one of three ways:

e Use Core Generator to generate a FIFO implementation which is instantiated in the
end design.

¢ Instantiate the Virtex-4 FIFO primitive into the code.
e Describe the FIFO logic behaviorally described; the synthesis tool infers the FIFO
function.

The most common method is to use Core Generato to create the FIFO. For more
information on using Core Generator for FIFO generation and implementation, see the
Core Generato documentation.

RTL inference of the FIFO is left to the individual to code. There are many examples and
application notes available on the subject. For more information on instantiating the
Virtex-4 BlockRAM FIFO, see the Xilinx Virtex-4 HDL Libraries Guide.

Implementing CAM

Content Addressable Memory (CAM) or associative memory is a storage device which can
be addressed by its own contents. For more information on CAM designs in Virtex FPGA
devices, see:

e Xilinx Application Note XAPP201, “An Overview of Multiple CAM Designs in Virtex
Family Devices”

e Xilinx Application Note XAPP202, “Content Addressable Memory (CAM) in ATM

Applications”

e Xilinx Application Note XAPP203, “Designing Flexible, Fast CAMSs with Virtex Family
FPGA devices”

e Xilinx Application Note XAPP204, “Using Block RAM for High Performance Read/Write
CAMs”

Using CORE Generator to Implement Memory

Implementing memory with the CORE Generator is similar to implementing any module
with CORE Generator except for defining the memory initialization file. For more
information on the initialization file, see the memory module data sheets that come with
every CORE Generator module.

Implementing Shift Registers

This section applies to the following devices:

e Virtex
o Virtex E
e VirtexII

e Virtex II Pro
e VirtexII Pro X

Synthesis and Simulation Design Guide www.xilinx.com 193
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp201.pdf
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp202.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp203.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp204.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

e Virtex-4

e Spartan-1I
e Spartan-IIE
e Spartan-3

The SRL16 is a very efficient way to create shift registers without using up flip-flop
resources. You can create shift registers that vary in length from one to sixteen bits. The
SRL16 is a shift register look up table (LUT) whose inputs (A3, A2, A1,AQ) determine the
length of the shift register. The shift register may be of a fixed, static length, or it may be
dynamically adjusted. The shift register LUT contents are initialized by assigning a four-
digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal
digit is the most significant bit. If an INIT value is not specified, it defaults to a value of
four zeros (0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the Low-to-High clock
(CLK) transition. During subsequent Low-to-High clock transitions data is shifted to the
next highest bit position as new data is loaded. The data appears on the Q output when the
shift register length determined by the address inputs is reached.

The Static Length Mode of SRL16 implements any shift register length from 1 to 16 bits in
one LUT. Shift register length is (N+1) where N is the input address. Synthesis tools
implement longer shift registers with multiple SRL16 and additional combinatorial logic
for multiplexing.

In Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Spartan-3 devices, additional cascading shift
register LUTs (SRLC16) are available. SRLC16 supports synchronous shift-out output of
the last (16th) bit. This output has a dedicated connection to the input of the next SRLC16
inside the CLB. With four slices and dedicated multiplexers (such as MUXF5 and MUXF®6)
available in one Virtex-1I, Virtex-1I Pro, Virtex-II Pro X, or Spartan-3 CLB, up to a 128-bit
shift register can be implemented effectively using SRLC16. Synthesis tools, Synplify 7.1,
LeonardoSpectrum 2002a, and XST can infer the SRLC16. For more information, see the
product data sheet and user guide.

Dynamic Length Mode can be implemented using SRL16 or SRLC16. Each time a new
address is applied to the 4-input address pins, the new bit position value is available on the
Q output after the time delay to access the LUT. LeonardoSpectrum, Synplify, and XST can
infer a shift register component. A coding example for a dynamic SRL is included
following the SRL16 inference example.

Inferring SRL16 in VHDL

-- VHDL example design of SRL16
-- inference for Virtex

-- This design infer 16 SRL16
-- with 16 pipeline delay
library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity pipeline_delay is

generic (
cycle : integer := 16;
width :integer := 16
)i
port (
DATA_IN :in std_logic_vector (width - 1 downto 0);

194

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

S XILINX® Implementing Shift Registers

CLK :in std_logic;
RESULT :out std_logic_vector (width - 1 downto 0)
)i

end pipeline_delay;

architecture behav of pipeline_delay is
type my_type is array (0 to cycle -1) of

std_logic_vector (width -1 downto 0);
signal int_sig :my_type;

begin
main : process (CLK)
begin
if CLK'event and CLK = 'l' then
int_sig <= DATA_IN & int_sig(0 to cycle - 2);
end if;

end process main;
RESULT <= int_sig(cycle -1);

end behav;

Inferring SRL16 in Verilog

// Verilog Example SRL
//This design infer 3 SRL16 with 4 pipeline delay

module srle_example (CLK, ENABLE, DATA_IN, RESULT);

parameter cycle=4;
parameter width = 3;

input CLK, ENABLE;
input [0:width] DATA_IN;
output [0:width] RESULT;

reg [0:width-1] shift [cycle-1:0];
integer 1i;

always @ (posedge CLK)
if (ENABLE) begin

for (i = (cycle-1);i >0; i=i-1)
shift[i] = shift[i-1];
shift[0] = DATA_IN;

end
assign RESULT = shift[cycle-11];

endmodule

Inferring Dynamic SRL16 in VHDL

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity srltest is
port (

Synthesis and Simulation Design Guide www.xilinx.com 195
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

DATAIN : std_logic_vector (7 downto 0);

CLK, ENABLE : in std_logic;

ADDR : in integer range 3 downto 0;

RESULT : out std_logic_vector (7 downto 0));
end srltest;

architecture rtl of srltest is

type dataAryType is array (3 downto 0) of std_logic_vector (7 downto 0);
signal srldata : dataAryType;

begin
RESULT <= srldata (CONV_INTEGER (ADDR)) ;

process (CLK) begin
if (CLK'event and CLK = 'l') then
if (ENABLE='1l') then
srldata <= (srldata(2 downto 0) & DATAIN) ;
end if;
end if;
end process;

end rtl;

Inferring Dynamic SRL16 in Verilog

module test_srl(CLK, ENABLE, DATAIN, RESULT, ADDR) ;

input CLK, ENABLE;
input [3:0] DATAIN;
input [3:0] ADDR;
output [3:0] RESULT;

reg [3:0] srldata[l5:0];

integer 1i;
always @ (posedge CLK)
if (ENABLE)
begin
for (i=15; 1i>0; i=1i-1)
srldatal[i] <= srldatali-11];
srldata[0] <= dataln;
end

assign RESULT = srldatal[ADDR];

endmodule

Implementing LFSR

The SRL (Shift Register LUT) implements very efficient shift registers and can be used to
implement Linear Feedback Shift Registers. For a description of the implementation of
Linear Feedback Shift Registers (LFSR) using the Virtex SRL macro, see Xilinx Application
Note XAPP210, “Linear Feedback Shift Registers in Virtex Devices.” One half of a CLB can be
configured to implement a 15-bit LFSR, one CLB can implement a 52-bit LFSR, and with
two CLBs a 118-bit LFSR is implemented.

196 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp210.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp210.pdf
http://www.xilinx.com

ST XILINX®

Implementing Multiplexers

Implementing Multiplexers

A 4-to-1 multiplexer can be efficiently implemented in a single family slice by using
dedicated components called MUXF's. The six input signals (four inputs, two select lines)
use a combination of two LUTs and MUXF5 available in every slice. Up to 9 input functions
can be implemented with this configuration.

Virtex, Virtex-E, and Spartan-1l Families

In the Virtex, Virtex-E, and Spartan-II families, larger multiplexers can be implemented
using two adjacent slices in one CLB with its dedicated MUXF5s and a MUXF6.

Virtex-1l Parts and Newer

The slices in Virtex-1I parts and newer contain dedicated two-input multiplexers (one
MUXEF5 and one MUXEX per slice). MUXF?5 is used to combine two LUTs. MUXFX can be
used as MUXF6, MUXF7, and MUXES to combine 4, 8, and 16 LUTs, respectively. For more
information on designing large multiplexers in Virtex-II parts and newer, see the Virtex-II
Platform FPGA User Guide.

In addition, you can use internal 3-state buffers (BUFTs) to implement large multiplexers.
Large multiplexers built with BUFTs have the following advantages.

¢ Can vary in width with only minimal impact on area and delay
e Can have as many inputs as there are 3-state buffers per horizontal longline in the
target device

e Have one-hot encoded selector inputs

This last point is illustrated in the following VHDL and Verilog designs of a 5-to-1
multiplexer built with gates. Typically, the gate version of this multiplexer has binary
encoded selector inputs and requires three select inputs (SEL<2:0>). The schematic
representation of this design is shown in Figure 4-4.

Some synthesis tools include commands that allow you to switch between multiplexers
with gates or with 3-states. For more information, see your synthesis tool documentation.

The VHDL and Verilog designs provided at the end of this section show a 5-to-1
multiplexer built with 3-state buffers. The 3-state buffer version of this multiplexer has
one-hot encoded selector inputs and requires five select inputs (SEL<4:0>).

Mux Implemented with Gates VHDL Example

The following example shows a MUX implemented with Gates.

-- MUX_GATE.VHD
-- 5-to-1 Mux Implemented in Gates

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux_gate is
port (
SEL: in STD_LOGIC_VECTOR (2 downto 0);
A,B,C,D,E: in STD_LOGIC;
SIG: out STD_LOGIC
)i
end mux_gate;

Synthesis and Simulation Design Guide www.xilinx.com 197

8.1i

http://www.xilinx.com
hhttp://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
hhttp://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

architecture RTL of mux_gate is begin
SEL_PROCESS: process (SEL,A,B,C,D,E)
begin
case SEL is
when "000" => SIG <
when "001" => SIG <
when "010" => SIG <
when "011" => SIG <= D;
when others => SIG <= E;
end case;
end process SEL_PROCESS;
end RTL;

7

7

Il
g0 ww

7

MUX Implemented with Gates Verilog Example

The following example shows a MUX implemented with Gates.

/// mux_gate.v
// 5-to-1 Mux Implemented in Gates

module mux_gate (
input [2:0] SEL,
input A, B, C, D, E,
output reg SIG);

always @(*)
begin
case (SEL)
3'b000 : SIG =
3'b001 : SIG =
3'b010 : SIG =
3'b011 : SIG = D;
default : SIG = E;
endcase
end

i
7

’

o Qww

SIG

X6229

Figure 4-4: 5-to-1 MUX Implemented with Gates

Wide MUX Mapped to MUXFs

Synthesis tools use MUXF5 and MUXF6, and for Virtex-1II, Virtex-II Pro,

Virtex-1I Pro X, and Spartan-3 use MUXF7 and MUXES to implement wide multiplexers.
These MUXes can, respectively, be used to create a 5, 6, 7 or 8 input function or a 4-to-1, 8-
to-1, 16-to-1 or a 32-to-1 multiplexer.

198 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Using Pipelining

Using Pipelining

You can use pipelining to dramatically improve device performance at the cost of added
latency (more clock cycles to process the data). Pipelining increases performance by
restructuring long data paths with several levels of logic and breaking it up over multiple
clock cycles.

This method allows a faster clock cycle and, as a result, an increased data throughput at the
expense of added data latency. Because the Xilinx FPGA devices are register-rich, this is
usually an advantageous structure for FPGA designs, since the pipeline is created at no
cost in terms of device resources. Because data is now on a multi-cycle path, special
considerations must be used for the rest of your design to account for the added path
latency. You must also be careful when defining timing specifications for these paths.

Some synthesis tools have limited capability for constraining multi-cycle paths or
translating these constraints to Xilinx implementation constraints. For more information
on multi-cycle paths, see your synthesis tool documentation. If your tool cannot translate
the constraint, but can synthesize to a multi-cycle path, you can add the constraint to the
UCEF file.

Before Pipelining
In the following example, the clock speed is limited by:
e the clock-to out-time of the source flip-flop
e thelogic delay through four levels of logic
e the routing associated with the four function generators

e the setup time of the destination register

—| Function Function Function Function D QF—
— | Generator | —»] Generator | —| Generator | —| Generator
D — —_— D — D —

Slow_Clock X8339

Figure 4-5: Before Pipelining

After Pipelining

This is an example of the same data path in the previous example after pipelining. Because
the flip-flop is contained in the same CLB as the function generator, the clock speed is
limited by:

o the clock-to-out time of the source flip-flop

e the logic delay through one level of logic; one routing delay

e the setup time of the destination register

Synthesis and Simulation Design Guide www.xilinx.com 199
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

In this example, the system clock runs much faster than in the previous example.

—| Function +——{D Q Function ——{D Q Function ——{D QF—+ Function ——{D Qr—
—|Generator —|Generator —|Generator —»|Generator

1 | |]

Fast_Clock X8340

Figure 4-6: After Pipelining

Design Hierarchy

HDL designs can either be synthesized as a large flat module, or as many small modules.
Each methodology has its advantages and disadvantages, but as higher density FPGA
devices are created, the advantages of hierarchical designs outweigh many of the
disadvantages.

Advantages of Hierarchical Designs

Hierarchical designs:

Provide easier and faster verification and simulation

Allow several engineers to work on one design at the same time
Speed up design compilation

Produce designs that are easier to understand

Manage the design flow efficiently

Disadvantages of Hierarchical Designs

Some disadvantages of hierarchical designs are:

Design mapping into the FPGA may not be as optimal across hierarchical boundaries;
this can cause lesser device utilization and decreased design performance. If special
care is taken, the effect of this can be minimized.

Design file revision control becomes more difficult.

Designs become more verbose.

You can overcome most of these disadvantages with careful design consideration when
you choose the design hierarchy.

Using Synthesis Tools with Hierarchical Designs

By effectively partitioning your designs, you can significantly reduce compile time and
improve synthesis results. Here are some recommendations for partitioning your designs:

“Restrict Shared Resources to the Same Hierarchy Level”

“Compile Multiple Instances Together”

“Restrict Related Combinatorial Logic to the Same Hierarchy Level”
“Separate Speed Critical Paths from Non-Critical Paths”

“Restrict Combinatorial Logic that Drives a Register to the Same Hierarchy Level”

200

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Design Hierarchy

e “Restrict Module Size”
e “Register All Outputs”
e “Restrict One Clock to Each Module or to Entire Design”

Restrict Shared Resources to the Same Hierarchy Level

Resources that can be shared should be on the same level of hierarchy. If these resources are
not on the same level of hierarchy, the synthesis tool cannot determine if these resources
should be shared.

Compile Multiple Instances Together

You may want to compile multiple occurrences of the same instance together to reduce the
gate count. However, to increase design speed, do not compile a module in a critical path
with other instances.

Restrict Related Combinatorial Logic to the Same Hierarchy Level

Keep related combinatorial logic in the same hierarchical level to allow the synthesis tool
to optimize an entire critical path in a single operation. Boolean optimization does not
operate across hierarchical boundaries. Therefore, if a critical path is partitioned across
boundaries, logic optimization is restricted. In addition, constraining modules is difficult if
combinatorial logic is not restricted to the same level of hierarchy.

Separate Speed Critical Paths from Non-Critical Paths

To achieve satisfactory synthesis results, locate design modules with different functions at
different levels of the hierarchy. Design speed is the first priority of optimization
algorithms. To achieve a design that efficiently utilizes device area, remove timing
constraints from design modules.

Restrict Combinatorial Logic that Drives a Register to the Same Hierarchy
Level

To reduce the number of CLBs used, restrict combinatorial logic that drives a register to the
same hierarchical block.

Restrict Module Size

Restrict module size to 100 - 200 CLBs. This range varies based on:

e your computer configuration
¢ whether the design is worked on by a design team

e the target FPGA routing resources

Although smaller blocks give you more control, you may not always obtain the most
efficient design. For the final compilation of your design, you may want to compile fully
from the top down. For guidelines, see your synthesis tool documentation.

Register All Outputs

Arrange your design hierarchy so that registers drive the module output in each
hierarchical block. Registering outputs makes your design easier to constrain because you
only need to constrain the clock period and the ClockToSetup of the previous module. If
you have multiple combinatorial blocks at different levels of the hierarchy, you must

Synthesis and Simulation Design Guide www.xilinx.com 201
8.1i

http://www.xilinx.com

Chapter 4: Coding Styles for FPGA Devices 27 XILINX®

manually calculate the delay for each module. Also, registering the outputs of your design
hierarchy can eliminate any possible problems with logic optimization across hierarchical

boundaries.

Restrict One Clock to Each Module or to Entire Design

By restricting one clock to each module, you only need to describe the relationship
between the clock at the top level of the design hierarchy and each module clock. By
restricting one clock to the entire design, you only need to describe the clock at the top level
of the design hierarchy. For more information on optimizing logic across hierarchical
boundaries and compiling hierarchical designs, see your synthesis tool documentation.

202 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

$7 XILINX®

Chapter 5

Using SmartModels

This chapter describes the special considerations that should be taken into account when
simulating designs for Virtex™-II Pro, Virtex-II Pro X, and Virtex-4 FPGA devices. The
Virtex-II Pro and Virtex-4 families are platform FPGA devices for designs that are based on
IP cores and customized modules. The family incorporates RocketlO™ and PowerPC™
CPU and Ethernet MAC cores in the FPGA architecture. This chapter includes the
following sections.

e “Using SmartModels to Simulate Designs”
e “SmartModel Simulation Flow”

e “About SmartModels”

e “Supported Simulators”

e “Installing SmartModels”

e “Setting Up and Running Simulation”

Using SmartModels to Simulate Designs

SmartModels are an encrypted version of the actual HDL code. These models allow you to
simulate the actual functionality without having access to the code itself. Simulation of
these new features requires the use of Synopsys SmartModels along with the user design.
This section describes the SmartModel simulation flow. It assumes that the reader is
familiar with the Xilinx® FPGA simulation flow.

Table 5-1: Architecture Specific SmartModels

SmartModel Virtex-Il Pro|Virtex-ll Pro X |Virtex-4 FPGACore

DCC_FPGACORE | N/A N/A N/A |+

EMAC N/A N/A v N/A
GT V N/A N/A | N/A
GT10 N/A V N/A | N/A
GT11 N/A N/A \ N/A
PPC405 \ \ N/A | N/A
PPC405_ADV N/A N/A \ N/A

Synthesis and Simulation Design Guide www.xilinx.com 203

8.1i

http://www.xilinx.com

Chapter 5: Using SmartModels 27 XILINX®

SmartModel Simulation Flow

The HDL simulation flow using Synopsys SmartModels consists of two steps:

1. Instantiate the SmartModel wrapper used for simulation and synthesis. During
synthesis, the SmartModels are treated as black box components. This requires that a
wrapper be used that describes the modules port.

2. Use the SmartModels along with your design in an HDL simulator that supports the
SWIFT interface.

The wrapper files for the SmartModels are automatically referenced when using
Architecture Wizard or EDK.

About SmartModels

The Xilinx SmartModels are simulator-independent models that are derived from the
actual design and are therefore accurate evaluation models. To simulate these models, you
must use a simulator that supports the SWIFT interface.

Synopsys Logic Modeling uses the SWIFT interface to deliver models. SWIFT is a
simulator- and platform-independent API developed by Synopsys. SWIFT has been
adopted by all major simulator vendors, including Synopsys, Cadence, and Mentor
Graphics, as a way of linking simulation models to design tools.

When running a back-annotated simulation, the precompiled SmartModels support:
e gate-level timing

e pin-to-pin timing

e back-annotation timing

Gate-Level Timing

Gate-level timing distributes the delays throughout the design. All internal paths are
accurately distributed. Multiple timing versions can be provided for different speed parts.

Pin-to-Pin Timing

Pin-to-pin timing is less accurate, but is faster since only a few top-level delays must be
processed.

Back-Annotation Timing

Back-annotation timing allows the model to accurately process the interconnect delays
between the model and the rest of the design. It can be used with either gate-level or pin-
to-pin timing, or by itself.

204 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Supported Simulators

Supported Simulators

A simulator with SmartModel capability is required to use the SmartModels. While any
HDL simulator that supports the Synopsys SWIFT interface should be able to handle the
SmartModel simulation flow, the following HDL simulators are officially supported by
Xilinx for SmartModel simulation.

Table 5-2: Supported Simulators and Operating Systems

Simulator

Linux

Linux-64

Windows

Solaris

Solaris-64

HP Unix

MTIModelSim SE
(6.0 and newer)

\/

N/ A

\/

\/

\/

N/ A

MTI Modelsim PE
SWIFT enabled

(6.0 and newer) @

N/ A

N/ A

N/ A

N/ A

N/ A

Cadence NC-
Verilog (5.3 and
newer)

N/ A

N/ A

Cadence NC-
VHDL (5.3 and
newer)

N/ A

N/ A

Synopsys VCS-
MX (Verilog only.
7.1.2 and newer)

N/ A

N/ A

N/ A

Synopsys VCS-
MXi (Verilog only.
7.1.2 and newer)

N/ A

N/ A

N/ A

a. The SWIFT interface is not enabled by default on ModelSim PE (5.7 or later). Contact MTI to enable this option.

Installing SmartModels

The following software is required to install and run SmartModels:

e the Xilinx implementation tools
e an HDL Simulator that can simulate both VHDL and Verilog, andthe SWIFT interface

SmartModels are installed with the Xilinx implementation tools, but they are not

immediately ready for use. There are two ways to use them:

e In “Method One,” use the precompiled models. Use this method if your design does

not use any other vendors” SmartModels.

e In “Method Two,” install the SmartModels with additional SmartModels
incorporated in the design. Compile all SmartModels into a common library for the
simulator to use.

Method One

The Xilinx ISE™ installer sets the correct environment to work with SmartModels by

default. If this should fail, you must make the settings shown below for the SmartModels
to function correctly.

Synthesis and Simulation Design Guide

8.1i

www.Xxilinx.com

205

http://www.xilinx.com

Chapter 5: Using SmartModels 27 XILINX®

e “Method One on Linux”
e “Method One on Windows”
e “Method One on Solaris”

Method One on Linux

To use the SmartModels on Linux, set the following variables:

setenv LMC_HOME S$XILINX/smartmodel/lin/installed_lin
setenv LMC_CONFIG SLMC_HOME/data/x86_linux.lmc
setenv LD_LIBRARY_PATH S$LMC_HOME/lib/x86_linux.lib:$SLD_LIBRARY_PATH

Method One on Windows

To use the SmartModels on Windows, set the following variable:

LMC_HOME = $XILINX%\smartmodel\nt\installed_nt

Method One on Solaris

To use the SmartModels on Solaris, set the following variables:

setenv LMC_HOME $XILINX/smartmodel/sol/installed_sol
setenv LMC_CONFIG S$SLMC_HOME/data/solaris.lmc
setenv LD_LIBRARY_PATH $SLMC_HOME/lib/sund4Solaris.lib:$LD_LIBRARY PATH

The SmartModels are not extracted by default. The Xilinx ISE installer sets the
environment variable LMC_HOME, which points to the location to which the smartmodels
are extracted. In order to extract the SmartModels, run compx1ib with the appropriate
switches. For more information, see “Compiling Xilinx Simulation Libraries
(COMPXLIB)” in Chapter 6 of this guide.

Method Two
Use this method only if “Method One” did not work correctly.

e “Method Two on Linux”
o “Method Two on Windows”

e “Method Two on Solaris”

Method Two on Linux

To install SmartModels on Linux:

1. Runthe s1_admin.csh program from the $XILINX/smartmodel/lin/image
directory using the following commands:

a. $ cd SXILINX/smartmodel/lin/image
b. $ sl_admin.csh
2. Select SmartModels To Install.

a. Inthe Set Library Directory dialog box, change the default directory from
image/x86_linux to installed.

b. Click OK.
c. If the directory does not exist, the program asks if you want to create it. Click OK.
d. In the Install From... dialog box, click Open to use the default directory.

206 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Installing SmartModels

In the Select Models to Install, click Add All to select all models.
Click Continue.

In the Select Platforms for Installation dialog box:

- For Platforms, select Linux on x86.

- For EDAV Packages, select Other.

Click Install.

When Install complete appears, and the status line changes to Ready, the
SmartModels have been installed

3. Continue to perform other operations such as accessing documentation and running
checks on your newly installed library (optional).

4. Select File > Exit.

To properly use the newly compiled models, set the LMC_HOME variable to the image
directory. For example:

setenv LMC_HOME S$XILINX/smartmodel/lin/installed_lin

Method Two on Windows

To install SmartModels on Windows:

1. Run sl_admin.exe from the $XILINX%\smartmodel\nt\image\pcnt directory.
2. Select SmartModels To Install.

a.

b.

j-

k.

In the Set Library Directory dialog box, change the default directory from
image\pcnt to installed.

Click OK.
If the directory does not exist, the program asks if you want to create it. Click OK.

Click Install on the left side of the sl_admin window. This allows you choose the
models to install.

In the Install From... dialog box, click Browse.

Select the $XILINX%\smartmodel\nt\image directory. Click OK to select that
directory.

In the Select Models to Install dialog box, click Add All.

Click OK.

In the Choose Platform window:

- For Platforms, select Wintel.

- For EDAV Packages, select Other.

Click OK.

When Install complete appears, the SmartModels have been installed.

3. Continue to perform other operations such as accessing documentation and running
checks on your newly installed library (optional).

4. Select File > Exit.

To properly use the newly compiled models, set the LMC_HOME variable to the image
directory. For example:

Set LMC_HOME=%XILINX%\smartmodel\nt\installed_nt

Synthesis and Simulation Design Guide www.xilinx.com 207

8.1i

http://www.xilinx.com

Chapter 5: Using SmartModels 27 XILINX®

Method Two on Solaris

To install SmartModels on Solaris:

1.

Run sl_admin.csh from the $XILINX/smartmodel/sol/image directory using
the following commands:

a.

b.

$ cd S$XILINX/smartmodel/sol/image
$ sl _admin.csh

Select SmartModels To Install.

a.

o

® ™ e oo

k.

In the Set Library Directory dialog box , change the default directory from
image/sol to installed.

Click OK.

If the directory does not exist, the program asks if you want to create it. Click OK.
In the Install From... dialog box, click Open to use the default directory.

In the Select Models to Install dialog box, click Add All to select all models.
Click Continue.

In the Select Platforms for Installation dialog box:

- For Platforms, select Sun-4.

- For EDAV Packages, select Other.

Click Install.

When Install complete appears, and the status line changes to Ready, the
SmartModels have been installed.

Continue to perform other operations such as accessing documentation and
running checks on your newly installed library (optional).

Select File > Exit.

To properly use the newly compiled models, set the LMC_HOME variable to the image
directory. For example:

setenv LMC_HOME $XILINX/smartmodel/sol/installed_sol

Setting Up and Running Simulation

This section describes how to set up and run simulation on the supported simulators.
“MTI ModelSim SE and ModelSim PE”

“Cadence NC-Verilog”

“Cadence NC-VHDL”

“Synopsys VCS-MX”

“Synopsys VCS-MXi”

208

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Setting Up and Running Simulation

MTI ModelSim SE and ModelSim PE

This section describes how to set up and run simulation for MTI ModelSim SE and
ModelSim PE (6.0 or later) on the following platforms:

e “MTI ModelSim SE and ModelSim PE on Linux”
e “MTI ModelSim SE and ModelSim PE on Windows”
e “MTI ModelSim SE and ModelSim PE on Solaris”

MTI ModelSim SE and ModelSim PE on Linux

This section describes how to set up and run simulation for MTI ModelSim SE and
ModelSim PE (6.0 or later) on Linux.

Simulator Setup

ModelSim SE and PE support the SWIFT interface required for use with SmartModel.
Some modifications must be made to the default ModelSim setup to use the SWIFT
interface. The SWIFT interface is not enabled by default on ModelSim PE (5.7 or later).
Contact MTT to enable this option.

Make the following changes in the modelsim. ini file located in the $MODEL_TECH$%
directory.
1. After the lines:

; Simulator resolution
; Set to fs, ps, ns, us, ms, or sec with optional prefix of 1, 10, or
100.

Edit the statement that follows from Resolution = ns to Resolution = ps

2. After the lines:

; Specify whether paths in simulator commands should be described
; in VHDL or Verilog format. For VHDL, PathSeparator = /
; for Verilog, PathSeparator = .

Comment out the following statement by adding a ";" at the start of the line.
PathSeparator = /

3. After the line:
; List of dynamically loaded objects for Verilog PLI applications
Add the following statement:
Veriuser = SMODEL_TECH/libswiftpli.sl

4. After the line:
; Logic Modeling's SmartModel SWIFT software (Linux)

add the following statements:

libsm = $MODEL_TECH/libsm.sl
libswift = SLMC_HOME/lib/x86_linux.lib/libswift.so

Make these changes in the order in which the commands appear in the modelsim. ini
file. The simulation may not work if you do not follow the recommended order.

Synthesis and Simulation Design Guide www.xilinx.com 209

8.1i

http://www.xilinx.com

Chapter 5: Using SmartModels 27 XILINX®

Running Simulation

Once the simulator is set up, run the command line library compiling utility (CompXLib)
to compile the SmartModel wrapper files into the UNISIM and SIMPRIM libraries. To see
the exact commands for your system, type compxlib -help at the command line.

MTI ModelSim SE and ModelSim PE on Windows

This section describes how to set up and run simulation for MTI ModelSim SE and
ModelSim PE (6.0 or later) on Windows.

Simulator Setup

ModelSim SE and PE support the SWIFT interface required for use with SmartModel.
Some modifications must be made to the default ModelSim setup to use the SWIFT
interface. The SWIFT interface is not enabled by default on ModelSim PE (5.7 or later).
Contact MTT to enable this option.

Make the following changes to the modelsim. ini file located in the $MODEL_TECH$%
directory.

1. After the lines:

; Simulator resolution
; Set to fs, ps, ns, us, ms, or sec with optional prefix of 1, 10, or
100.

Edit the statement that follows from Resolution = ns to Resolution = ps

2. After the lines:

; Specify whether paths in simulator commands should be described
; 1n VHDL or Verilog format. For VHDL, PathSeparator = /
; for Verilog, PathSeparator = .

Comment out the following statement by adding a ";" at the start of the line.
PathSeparator = /
3. After the line:
; List of dynamically loaded objects for Verilog PLI applications
Add the following statement:
Veriuser = $%MODEL_TECH%/libswiftpli.dll
4. After the line:
; Logic Modeling's SmartModel SWIFT software (Windows NT)
add the following statements:

libsm = $MODEL_TECH%/libsm.dll
libswift = %LMC_HOME%/lib/pcnt.lib/libswift.dll

Make these changes in the order in which the commands appear in the modelsim.ini file.
The simulation may not work if you do not follow the recommended order.
Running Simulation

Once the simulator is set up, run the command line library compiling utility (CompXLib)
to compile the SmartModel wrapper files into the UNISIM and SIMPRIM libraries. To see
the exact commands for your system, type compxlib -help at the command line.

210

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Setting Up and Running Simulation

MTI ModelSim SE and ModelSim PE on Solaris

This section describes how to set up and run simulation for MTI ModelSim SE and
ModelSim PE (6.0 or later) on Solaris.

Simulator Setup

ModelSim SE and PE support the SWIFT interface required for use with SmartModel.
Some modifications must be made to the default ModelSim setup to use the SWIFT
interface. The SWIFT interface is not enabled by default on ModelSim PE (5.7 or later).
Contact MTT to enable this option.

Make the following changes in the modelsim. ini file located in the $MODEL_TECH
directory.
1. After the lines:

; Simulator resolution
; Set to fs, ps, ns, us, ms, or sec with optional prefix of 1, 10, or
100.

Edit the statement that follows from Resolution = ns to Resolution = ps

2. After the lines:

; Specify whether paths in simulator commands should be described
; in VHDL or Verilog format. For VHDL, PathSeparator = /
; for Verilog, PathSeparator =

Comment out the following statement by adding a ";" at the start of the line.
PathSeparator = /

3. After the line
; List of dynamically loaded objects for Verilog PLI applications
add the following statement:
Veriuser = SMODEL_TECH/libswiftpli.sl

4. After the line
; Logic Modeling's SmartModel SWIFT software (Sun4d Solaris 2.x)

add the following statements:

libsm = $MODEL_TECH/libsm.sl
libswift = SLMC_HOME/lib/sun4Solaris.lib/libswift.so

Make these changes in the order in which the commands appear in the modelsim.ini file.
The simulation may not work if you do not follow the recommended order.

Running Simulation

Once the simulator is set up, run the command line library compiling utility (CompXLib)
to compile the SmartModel wrapper files into the UNISIM and SIMPRIM libraries. To see
the exact commands for your system, type compxlib -help at the command line.

Synthesis and Simulation Design Guide www.xilinx.com 211

8.1i

http://www.xilinx.com

Chapter 5: Using SmartModels 27 XILINX®

Cadence NC-Verilog

This section describes how to set up and run simulation for Cadence NC-Verilog on the
following platforms:

e “Cadence NC-Verilog on Linux”
e “Cadence NC-Verilog on Windows”

e “Cadence NC-Verilog on Solaris”

Cadence NC-Verilog on Linux

This section describes how to set up and run simulation for Cadence NC-Verilog on Linux.

Running Simulation

Several files in the $XILINX/smartmodel/lin/simulation/ncverilog directory
can help you set up and run a simulation utilizing the SWIFT interface. You can run the

simulation after you have updated each of these files. Following is a description of each
file.

Setup File

The setup file describes the variables that must be set for correct simulation. For example:

setenv XILINX <Xilinx path>
setenv CDS_INST_DIR <Cadence path>
setenv LM_LICENSE_FILE <license.dat>:$LM_LICENSE_FILE

setenv LMC_HOME S$XILINX/smartmodel/lin/installed_1lin
setenv LMC_CONFIG S$SLMC_HOME/data/x86_linux.lmc

setenv LD_LIBRARY_PATH
SCDS_INST_DIR/tools/lib:S$LMC_HOME/sim/pli/src:S$SLMC_HOME/lib/x86_linux.
1ib:$LD _LIBRARY PATH

setenv LMC_CDS_VCONFIG $CDS_INST_ DIR/tools/verilog/bin/vconfig

setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/tools/bin ${PATH}
setenv PATH S${XILINX}/bin/lin ${PATH}

Change the parameters in the angle brackets (< >) to match your system configuration.

Simulate File

The simulate file is a sample NC-Verilog compilation simulation script. It shows the files
that must be compiled and loaded for simulation. To modify this file to simulate a design,
include the appropriate design and test bench files. For example:

ncverilog \

<design>.v <testbench>.v \

S{XILINX}/verilog/src/glbl.v \

-y ${XILINX}/verilog/src/unisims +libext+.v \

-y ${XILINX}/verilog/src/simprims +libext+.v \

-y ${XILINX}/smartmodel/lin/wrappers/ncverilog +libext+.v \
+loadplil=swiftpli:swift_boot +incdir+S$SLMC_HOME/sim/pli/src \
+access+r+w

Change the parameters in the angle brackets (< >) to match your design and test bench
files.

212 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Setting Up and Running Simulation

Cadence NC-Verilog on Windows

This section describes how to set up and run simulation for Cadence NC-Verilog on
Windows.

Running Simulation

Several files in the $XILINX%\smartmodel\nt\simulation\ncverilog directory

can help you set up and run a simulation utilizing the SWIFT interface. You can run the
simulation after you have updated each of these files. Following is a description of each
file.

Setup File
The setup file describes the variables that must be set for correct simulation. For example:

set XILINX = <Xilinx path>
set CDS_INST DIR = <Cadence path>
set LM_LICENSE_FILE = <license.dat>;%LM_LICENSE_FILE$

set LMC_HOME = $%XILINX%\smartmodel\nt\installed_nt
set LMC_CONFIG = %LMC_HOME%\data\pcnt.lmc

set PATH =
$LMC_HOMES%$\bin; $CDS_INST_DIR%\tools\lib;%$LMC_HOME%\sim\pli\src;%$LMC_HO
ME$\1lib\pcnt.lib; $PATHS

Change the parameters in the angle brackets (< >) to match your system configuration.

Simulate File

The simulate file is a sample NC-Verilog compilation simulation script. It shows the files
that must be compiled and loaded for simulation. To modify this file to simulate a design,
include the appropriate design and test bench files. For example:

ncverilog \
<design.v> <testbench.v> \
$XILINX%\verilog\src\glbl.v\
-y $XILINX%$\verilog\src\unisims +libext+.v\
-y $XILINX%\verilog\src\simprims +libext+.v\
-y %$XILINX%\smartmodel\nt\wrappers\ncverilog +libext+.v \
+access+rw\
+loadplil=swiftpli:swift_boot +incdir+%LMC_HOMES\sim\pli\src

Change the parameters in the angle brackets (< >) to match your design and test bench
files.

These environment variables and settings can also be set globally. Change global variables
and settings in the System Environment Variables, not in the User Environment Variables.

Cadence NC-Verilog on Solaris

This section describes how to set up and run simulation for Cadence NC-Verilog on
Solaris.

Running Simulation

Several files in the $XILINX/smartmodel/sol/simulation/ncverilog directory
can help you set up and run a simulation utilizing the SWIFT interface. You can run the

Synthesis and Simulation Design Guide www.xilinx.com 213

8.1i

http://www.xilinx.com

Chapter 5: Using SmartModels 27 XILINX®

simulation after you have updated each of these files. Following is a description of each
file.

Setup File

The setup file describes the variables that must be set for correct simulation. For example:

setenv XILINX <Xilinx path>
setenv CDS_INST_DIR <Cadence path>
setenv LM_LICENSE_FILE <license.dat>:$SLM_LICENSE_ FILE

setenv LMC_HOME $XILINX/smartmodel/sol/installed_sol
setenv LMC_CONFIG $LMC_HOME/data/solaris.lmc

setenv LD_LIBRARY_PATH
SLMC_HOME/sim/pli/src:$SLMC_HOME/lib/sun4Solaris.lib:S$LD_LIBRARY_PATH
setenv LMC_CDS_VCONFIG $CDS_INST DIR/tools/verilog/bin/vconfig

setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/tools/bin ${PATH}
setenv PATH ${XILINX}/bin/sol S${PATH}

Change the parameters in the angle brackets (< >) to match your system configuration.

Simulate File

The simulate file is a sample NC-Verilog compilation simulation script. It shows the files
that must be compiled and loaded for simulation. To modify this file to simulate a design,
include the appropriate design and test bench files. For example:

ncverilog \

<design>.v <testbench>.v \

S{XILINX}/verilog/src/glbl.v \

-y S$S{XILINX}/verilog/src/unisims +libext+.v \

-y S${XILINX}/verilog/src/simprims +libext+.v \

-y ${XILINX}/smartmodel/sol/wrappers/ncverilog +libext+.v \
+loadplil=swiftpli:swift_boot +incdir+S$LMC_HOME/sim/pli/src \
+access+r+w

Change the parameters in the angle brackets (< >) to match your design and test bench
files.

Cadence NC-VHDL

This section describes how to set up and run simulation for Cadence NC-VHDL on the
following platforms:

e “Cadence NC-VHDL on Linux”
e “Cadence NC-VHDL on Windows”
e “Cadence NC-VHDL on Solaris”

Cadence NC-VHDL on Linux

This section describes how to set up and run simulation for Cadence NC-VHDL on Linux.

Running Simulation

Several files in the $XILINX/smartmodel/lin/simulation/ncvhdl directory can
help you set up and run a simulation utilizing the SWIFT interface. You can run the

214

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Setting Up and Running Simulation

simulation after you have updated each of these files. Following is a description of each
file.

Setup File
The setup file describes the variables that must be set for correct simulation. For example:

setenv XILINX <Xilinx_ path>
setenv CDS_INST_DIR <Cadence_path>
setenv LM_LICENSE_FILE <license.dat>:$SLM_LICENSE_ FILE

setenv LMC_HOME S$XILINX/smartmodel/lin/installed_lin
setenv LMC_CONFIG $LMC_HOME/data/x86_linux.lmc

setenv LD_LIBRARY_PATH
SCDS_INST_DIR/tools/lib:$SLMC_HOME/sim/pli/src:$LMC_HOME/1lib/x86_linux.
lib:$LD_LIBRARY_ PATH

setenv LMC_TIMEUNIT -12

setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/tools/bin ${PATH}
setenv PATH ${XILINX}/bin/lin S${PATH}

Change the parameters within the angle brackets (< >) to match your system
configuration.

Simulate File

The simulate file is a sample NC-VHDL compilation simulation script. It shows the files
that must be compiled and loaded for simulation. This file can be modified to simulate a
design by including the design and test bench files appropriately. For example:

ncvhdl -v93 <testbench>.vhd <design>.vhd

ncelab -work worklib -cdslib cds.lib -access +wc
worklib.<testbench>:<view>

ncsim +access+rw -gui -cdslib cds.lib worklib.<testbench>:<view>

Change the parameters within the angle brackets (< >) to match your system
configuration.

Cadence NC-VHDL on Windows

This section describes how to set up and run simulation for Cadence NC-VHDL on
Windows.

Running Simulation

Several files in the $XILINX%\smartmodel\nt\simulation\ncvhdl directory can
help you set up and run a simulation utilizing the SWIFT interface. You can run the
simulation after you have updated each of these files. Following is a description of each
file.

Setup File
The setup file describes the variables that must be set for correct simulation. For example:

set XILINX = <Xilinx path>
set CDS_INST DIR = <Cadence path>
set LM_LICENSE_FILE = <license.dat>;%LM_LICENSE_FILE%

set LMC_HOME = $%XILINX%\smartmodelllin\installed_nt
set LMC_CONFIG = $LMC_HOME%\data\pcnt.lmc

Synthesis and Simulation Design Guide www.xilinx.com 215
8.1i

http://www.xilinx.com

Chapter 5: Using SmartModels 27 XILINX®

set PATH =
LMC_HOMES\bin; $CDS_INST_DIR%\tools\1lib;%LMC_HOME%\sim\pli\src;%$LMC_HO
ME\lib\pcnt.lib; $PATHS

Change the parameters within the angle brackets (< >) to match your system
configuration.

Simulate File

The simulate file is a sample NC-VHDL compilation simulation script. It shows the files
that must be compiled and loaded for simulation. To modify this file to simulate a design,
include the appropriate design and test bench files. For example:

ncvhdl -v93 <testbench>.vhd <design>.vhd

ncelab -work worklib -cdslib cds.lib -access +wc
worklib.<testbench>:<view>

ncsim +access+rw -gui -cdslib cds.lib worklib.<testbench>:<view>

Change the parameters within the angle brackets (< >) to match your system
configuration.

Cadence NC-VHDL on Solaris

This section describes how to set up and run simulation for Cadence NC-VHDL on Solaris.

Running Simulation

Several files in the $XILINX/smartmodel/sol/simulation/ncvhdl directory can
help you set up and run a simulation utilizing the SWIFT interface. The following is a
description of each file.

Setup File
The setup file describes the variables that must be set for correct simulation. For example:

setenv XILINX <Xilinx_ path>
setenv CDS_INST DIR <Cadence_path>
setenv LM_LICENSE_FILE <license.dat>:$SLM_LICENSE_ FILE

setenv LMC_HOME S$XILINX/smartmodel/sol/installed_sol
setenv LMC_CONFIG $LMC_HOME/data/solaris.lmc

setenv LD_LIBRARY_PATH
SCDS_INST_DIR/tools/lib:$LMC_HOME/sim/pli/src:$LMC_HOME/lib/sun4Solari
s.lib:$LD_LIBRARY_PATH
setenv LMC_TIMEUNIT -12

setenv PATH ${LMC_HOME}/bin ${CDS_INST_DIR}/tools/bin ${PATH}
setenv PATH ${XILINX}/bin/sol S${PATH}

Change the parameters within the angle brackets (< >) to match your system
configuration.

216 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Setting Up and Running Simulation

Simulate File

The simulate file is a sample NC-VHDL compilation simulation script. It shows the files
that must be compiled and loaded for simulation. This file can be modified to simulate a
design by including the design and test bench files appropriately. For example:

ncvhdl -v93 <testbench>.vhd <design>.vhd

ncelab -work worklib -cdslib cds.lib -access +wc
worklib.<testbench>:<view>

ncsim +access+rw -gui -cdslib cds.lib worklib.<testbench>:<view>

Change the parameters within the angle brackets (< >) to match your system
configuration.

Synopsys VCS-MX
This section describes how to set up and run simulation for Synopsys VCS-MX (Verilog
Only) on the following platforms:
¢ “Synopsys VCS-MX on Linux”
e “Synopsys VCS-MX on Solaris”

Synopsys VCS-MX on Linux

This section describes how to set up and run simulation for Synopsys VCS-MX (Verilog
Only) on Linux.

Running Simulation

Several files in the $XILINX/smartmodel/lin/simulation/vecsmxverilog
directory can help you set up and run a simulation utilizing the SWIFT interface. You can
run the simulation after you have updated each of these files. Following is a description of
each file.

Setup File

The setup file describes the variables that must be set for correct simulation. For example:

setenv XILINX <Xilinx path>

setenv VCS_HOME <VCS path>

setenv LM_LICENSE_FILE <license.dat>:${LM_LICENSE_FILE}
setenv VCS_SWIFT_NOTES 1

setenv LMC_HOME S$XILINX/smartmodel/lin/installed_lin
setenv LMC_CONFIG S$SLMC_HOME/data/x86_linux.lmc

setenv VCS_CC gcc

setenv LD_LIBRARY_PATH
$LMC_HOME/sim/pli/src:$LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_ PATH
setenv PATH ${LMC_HOME}/bin ${VCS_HOME}/bin ${PATH}

setenv PATH ${XILINX}/bin/lin S${PATH}

Change the parameters in the angle brackets (< >) to match your system configuration.

Simulate File

The simulate file is a sample VCS compilation simulation script. It shows the files that
must be compiled and loaded for simulation. To modify this file to simulate a design,
include the appropriate design and test bench files. For example:

Synthesis and Simulation Design Guide www.xilinx.com 217
8.1i

http://www.xilinx.com

Chapter 5: Using SmartModels 27 XILINX®

vcs -lmc-swift \

<design>.v <testbench>.v \

S{XILINX}/verilog/src/glbl.v \

-y ${XILINX}/verilog/src/unisims +libext+.v \

-y ${XILINX}/verilog/src/simprims +libext+.v \

-y ${XILINX}/smartmodel/lin/wrappers/vcsmxverilog +libext+.v \
sim -1 vecs.log

Change the parameters in the angle brackets (< >) to match your design and test bench
files.

Synopsys VCS-MX on Solaris

This section describes how to set up and run simulation for Synopsys VCS-MX (Verilog
Only) on Solaris.

Running Simulation

Several files in the $XILINX/smartmodel/sol/simulation/vcsmxverilog
directory can help you set up and run a simulation utilizing the SWIFT interface. You can
run the simulation after you have updated each of these files. Following is a description of
each file.

Setup File

The setup file describes the variables that must be set for correct simulation. For example:

setenv XILINX <Xilinx path>

setenv VCS_HOME <VCS path>

setenv LM_LICENSE_FILE <license.dat>:${LM_LICENSE_FILE}
setenv VCS_SWIFT_NOTES 1

setenv LMC_HOME $XILINX/smartmodel/sol/installed_sol
setenv LMC_CONFIG ${LMC_HOME}/data/solaris.lmc

setenv VCS_CC gcc

setenv LD_LIBRARY_PATH
SLMC_HOME/sim/pli/src:SLMC_HOME/lib/sund4Solaris.lib:$LD_LIBRARY_ PATH
setenv PATH ${LMC_HOME}/bin ${VCS_HOME}/bin ${PATH}

setenv PATH ${XILINX}/bin/sol ${PATH}

Change the parameters in the angle brackets (< >) to match your system configuration.

Simulate File

The simulate file is a sample VCS compilation simulation script. It shows the files that
must be compiled and loaded for simulation. To modify this file to simulate a design,
include the appropriate design and test bench files. For example:

vcs -lmc-swift \

<design>.v <testbench>.v \

S{XILINX}/verilog/src/glbl.v \

-y S${XILINX}/verilog/src/unisims +libext+.v \

-y ${XILINX}/verilog/src/simprims +libext+.v \

-y ${XILINX}/smartmodel/sol/wrappers/vcsmxverilog +libext+.v \
sim -1 vcs.log

Change the parameters in the angle brackets (< >) to match your design and test bench
files.

218

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Setting Up and Running Simulation

Synopsys VCS-MXi

This section describes how to set up and run simulation for Synopsys VCS-MXi (Verilog
Only) on the following platforms:

e “Synopsys VCS-MXi on Linux”
e “Synopsys VCS-MXi on Solaris”

Synopsys VCS-MXi on Linux

This section describes how to set up and run simulation for Synopsys VCS-MXi (Verilog
Only) on Linux.

Running Simulation

In the $XILINX/smartmodel/lin/simulation/vesmxiverilog directory there are
several files to help set up and run a simulation utilizing the SWIFT interface.

Setup File
The setup file describes the variables that must be set for correct simulation. For example:

setenv XILINX <Xilinx_path>
setenv VCS_HOME <VCS-MXI_path>
setenv LM_LICENSE_FILE <license.dat>:${LM_LICENSE_FILE}

setenv LMC_HOME S$XILINX/smartmodel/lin/installed_lin
setenv LMC_CONFIG S$SLMC_HOME/data/x86_linux.lmc

setenv VCS_CC gcc

setenv PATH ${LMC_HOME}/bin ${VCSI_HOME}/bin ${PATH}
setenv PATH S${XILINX}/bin/lin ${PATH}

Change the parameters within the angle brackets (< >) to match your system
configuration.

Simulate File

The simulate file is a sample VCSi compilation simulation script. It shows the files that
must be compiled and loaded for simulation. To modify this file to simulate a design,
include the appropriate design and test bench files. For example:

rm simv\

vesi -lme-swift \

<design>.v <testbench>.v \

S{XILINX}/verilog/src/glbl.v \
S{XILINX}/smartmodel/lin/wrappers/vcsmxiverilog/GT_SWIFT.v \
$S{XILINX}/smartmodel/lin/wrappers/vcsmxiverilog/GT_SWIFT_BIT.v \
S{XILINX}/smartmodel/lin/wrappers/vcsmxiverilog/GT10_SWIFT.v \
S{XILINX}/smartmodel/lin/wrappers/vcsmxiverilog/GT10_SWIFT BIT.v \
S{XILINX}/smartmodel/lin/wrappers/vcsmxiverilog/PPC405_SWIFT.v \
S{XILINX}/smartmodel/lin/wrappers/vcsmxiverilog/PPC405_SWIFT_BIT.v \
-y S${XILINX}/verilog/src/unisims +libext+.v \

-y S${XILINX}/verilog/src/simprims +libext+.v \

sim -1 vcs.log

Change the parameters within the angle brackets (< >) to match your system
configuration.

Synthesis and Simulation Design Guide www.xilinx.com 219
8.1i

http://www.xilinx.com

Chapter 5: Using SmartModels 27 XILINX®

Synopsys VCS-MXi on Solaris

This section describes how to set up and run simulation for Synopsys VCS-MXi (Verilog
Only) on Solaris.

Running Simulation

Several files in the $XILINX/smartmodel/sol/simulation/vcsmxiverilog
directory can help you set up and run a simulation utilizing the SWIFT interface. You can
run the simulation after you have updated each of these files. Following is a description of
each file.

Setup File

The setup file describes the variables that must be set for correct simulation. For example:

setenv XILINX <Xilinx path>

setenv VCS_HOME <VCS-MXi path>

setenv LM_LICENSE_FILE <license.dat>:${LM_LICENSE_FILE}
setenv VCS_SWIFT_NOTES 1

setenv LMC_HOME S$XILINX/smartmodel/sol/installed_sol
setenv LMC_CONFIG ${LMC_HOME}/data/solaris.lmc

setenv VCS_CC gcc

setenv LD_LIBRARY_PATH
SLMC_HOME/sim/pli/src:$SLMC_HOME/lib/sun4Solaris.lib:SLD_LIBRARY_PATH
setenv PATH ${LMC_HOME}/bin ${VCS_HOME}/bin ${PATH}

setenv PATH ${XILINX}/bin/sol ${PATH}

Change the parameters in the angle brackets (< >) to match your system configuration.

Simulate File

The simulate file is a sample VCSi compilation simulation script. It shows the files that
must be compiled and loaded for simulation. To modify this file to simulate a design,
include the appropriate design and test bench files. For example:

vesi -lmc-swift \

<design>.v <testbench>.v \

S{XILINX}/verilog/src/glbl.v \

-y ${XILINX}/verilog/src/unisims +libext+.v \

-y ${XILINX}/verilog/src/simprims +libext+.v \

-y ${XILINX}/smartmodel/sol/wrappers/vcsmxverilog +libext+.v \
sim -1 vcsi.log

Change the parameters in the angle brackets (< >) to match your design and test bench
files.

220 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

$7 XILINX®
Chapter 6

Simulating Your Design

This chapter describes the basic HDL simulation flow using Xilinx® and third party
software. This chapter includes the following sections.

e “Introduction”

e “Adhering to Industry Standards”

e “Simulation Points”

e “Providing Stimulus”

e “VHDL and Verilog Libraries and Models”

e “Compiling Xilinx Simulation Libraries (COMPXLIB)”
¢ “Running NetGen”

e “Disabling X Propagation”

e “SIM_COLLISION_CHECK”

e “MIN/TYP/MAX Simulation”

e “Understanding the Global Reset and 3-state for Simulation”
e “Simulating VHDL”

e “Simulating Verilog”

e “Design Hierarchy and Simulation”

e “RTL Simulation Using Xilinx Libraries”

e “Timing Simulation”

e “Simulation Flows”

e “IBIS I/O Buffer Information Specification (IBIS)”

Introduction

Increasing design size and complexity, as well as improvements in design synthesis and
simulation tools, have made HDL the preferred design language of most integrated circuit
designers. The two leading HDL synthesis and simulation languages today are Verilog and
VHDL. Both of these languages have been adopted as IEEE standards.

The Xilinx software is designed to be used with several HDL synthesis and simulation
tools that provide a solution for programmable logic designs from beginning to end. The
Xilinx software provides libraries, netlist readers, and netlist writers, along with powerful
place and route software that integrates with your HDL design environment on PC, Linux,
and UNIX workstation platforms.

Synthesis and Simulation Design Guide www.xilinx.com 221
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

Adhering to Industry Standards

Xilinx adheres to relevant industry standards.

Standards Supported by Xilinx Simulation Flow

The standards in the following table are supported by the Xilinx simulation flow.

Table 6-1: Standards Supported by Xilinx Simulation Flow

Description Version

VHDL Language IEEE-STD-1076-1993
VITAL Modeling Standard IEEE-STD-1076.4-2000
Verilog Language IEEE-STD-1364-2001
Standard Delay Format (SDF) OVI 3.0

Std_logic Data Type IEEE-STD-1164-93

Although the Xilinx HDL netlisters produce IEEE-STD-1076-93 VHDL code or IEEE-STD-
1364-2001 Verilog code, that does not restrict the use of newer or older standards for the
creation of test benches or other simulation files. If the simulator being used supports both
older and newer standards, then generally, both standards can be used in these simulation
files. Be sure to indicate to the simulator during code compilation which standard was
used for the creation of the file.

Xilinx Supported Simulators

Xilinx currently tests and supports the following simulators for VHDL and Verilog
simulation.

Table 6-2: Xilinx Supported Simulators
VHDL Verilog

Xilinx ISE™ Simulator Xilinx ISE Simulator
Model Technology ModelSim Model Technology ModelSim
Cadence NC-SIM (NC-VHDL) Cadence NC-SIM (NC-Verilog)

Synopsys VCS-MX Synopsys VCS-MX

In general, you should run the most current version of the simulator available to you.

Xilinx develops its libraries and simulation netlists using IEEE standards, so you should be
able to use most current VHDL and Verilog simulators. Check with your simulator vendor
to confirm that the standards are supported by your simulator, and to verify the settings
for your simulator.

Xilinx Libraries

The Xilinx VHDL libraries are tied to the IEEE-STD-1076.4-2000 VITAL standard for
simulation acceleration. VITAL 2000 is in turn based on the IEEE-STD-1076-93 VHDL
language. Because of this, the Xilinx libraries must be compiled as 1076-93.

222 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Simulation Points

VITAL libraries include some additional processing for timing checks and back-annotation
styles. The UNISIM library turns these timing checks off for unit delay functional
simulation. The SIMPRIM back-annotation library keeps these checks on by default to
allow accurate timing simulations.

Simulation Points

Xilinx supports functional and timing simulation of HDL designs at five points in the HDL

design flow:

e “Primary Simulation Points for HDL Designs”

e “Register Transfer Level (RTL)”

e “Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation”
e “Post-NGDBuild (Pre-Map) Gate-Level Simulation”

e “Post-Map Partial Timing (Block Delays)”

e “Timing Simulation Post-Place and Route”

Primary Simulation Points for HDL Designs

Figure 6-1 shows the points of the design flow.

Y
—

UNISIM

Y
—

XilinxCoreLib

Modules
N~

Y
—

SmartModel

Libraries
_/

Figure 6-1:

HDL
Design
HDL RTL Testbench
Simulation Stimulus
—_— Synthesis

Post-Synthesis Gate-Level
Functional Simulation

Xilinx
Implementation

HDL Timing
Simulation

X10018

Primary Simulation Points for HDL Designs

Synthesis and Simulation Design Guide

8.1i

www.Xxilinx.com 223

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

The Post-NGDBuild and Post-Map simulations can be used when debugging synthesis or
map optimization issues

Table 6-3: Five Simulation Points in HDL Design Flow

Simulation

unisim | XilinxCorelib oo inodel SIMPRIM | SDF
Models

1. RTL

X

2. Post-Synthesis (optional) X X X

3. Functional Post-NGDBuild X X
(optional)

4. Functional Post-Map X X X
(optional)

5. Post-Route Timing X X X

These Xilinx simulation points are described in detail in the following sections. The
libraries required to support the simulation flows are described in detail in “VHDL and
Verilog Libraries and Models” in this chapter. The flows and libraries support functional
equivalence of initialization behavior between functional and timing simulations.

Different simulation libraries are used to support simulation before and after running
NGDBuild. Prior to NGDBuild, your design is expressed as a UNISIM netlist containing
Unified Library components that represents the logical view of the design. After
NGDBuild, your design is a netlist containing SIMPRIMs that represents the physical view
of the design.

Although these library changes are fairly transparent, there are two important
considerations to keep in mind:

* You must specify different simulation libraries for pre- and post-implementation
simulation.

e There are different gate-level cells in pre- and post-implementation netlists.

For Verilog, within the simulation netlist there is the Verilog system task $sdf_annotate,
which specifies the name of the SDF file to be read. If the simulator supports the
$sdf_annotate system task, the Standard Delay Format (SDF) file is automatically read
when the simulator compiles the Verilog simulation netlist. If the simulator does not
support $sdf_annotate, in order to get timing values applied to the gate-level netlist,
you must manually specify to the simulator to annotate the SDF file.

For VHDL, you must specify:
e thelocation of the SDF file

¢ which instance to annotate during the timing simulation

The method for doing this depends on the simulator being used. Typically, a command line
or program switch is used to read the SDF file. For more information on annotating SDF
files, see your simulation tool documentation.

224

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Simulation Points

Register Transfer Level (RTL)

Register Transfer Level (RTL) may include the following;:

e RTL Code

¢ Instantiated UNISIM library components

¢ XilinxCoreLib and UNISIM gate-level models (CORE Generator™)
e SmartModels

The RTL-level (behavioral) simulation enables you to verify or simulate a description at the
system or chip level. This first pass simulation is typically performed to verify code syntax,
and to confirm that the code is functioning as intended. At this step, no timing information
is provided, and simulation should be performed in unit-delay mode to avoid the
possibility of a race condition.

RTL simulation is not architecture-specific unless the design contains instantiated UNISIM
or CORE Generator components. To support these instantiations, Xilinx provides the
UNISIM and XilinxCoreLib libraries. You can instantiate CORE Generator components if
you do not want to rely on the module generation capabilities of the synthesis tool, or if the
design requires larger memory structures.

Keep the code behavioral for the initial design creation. Do not instantiate specific
components unless necessary. This allows for:

e more readable code

e faster and simpler simulation

e code portability (the ability to migrate to different device families)

e code reuse (the ability to use the same code in future designs)

However, you may find it necessary to instantiate components if the component is not

inferable (for example, DCM, GT, and PPC405), or in order to control the mapping,
placement, or structure of a function.

Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation

Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation may include one of the following
(optional):

e Gate-level netlist containing UNISIM library components
¢ XilinxCoreLib and UNISIM gate-level models (CORE Generator)
e SmartModels

Most synthesis tools can write out a post-synthesis HDL netlist for a design. If the VHDL
or Verilog netlists are written for UNISIM library components, you may use the netlists to
simulate the design and evaluate the synthesis results. However, Xilinx does not support
this method if the netlists are written in terms of the vendor’s own simulation models.

The instantiated CORE Generator models are used for any post-synthesis simulation
because these modules are processed as a “black box” during synthesis. It is important that
you maintain the consistency of the initialization behavior with the behavioral model used
for RTL, post-synthesis simulation, and the structural model used after implementation. In
addition, the initialization behavior must work with the method used for synthesized logic
and cores.

Synthesis and Simulation Design Guide www.xilinx.com 225
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

Post-NGDBuild (Pre-Map) Gate-Level Simulation

Post-NGDBuild (Pre-Map) Gate-Level Simulation (optional) may include the following:

e Gate-level netlist containing SIMPRIM library components
e SmartModels

The post-NGDBuild (pre-map) gate-level functional simulation is used when it is not
possible to simulate the direct output of the synthesis tool. This occurs when the tool
cannot write UNISIM-compatible VHDL or Verilog netlists. In this case, the NGD file
produced from NGDBUILD is the input into the Xilinx simulation netlister, NetGen.
NetGen creates a structural simulation netlist based on SIMPRIM models.

Like post-synthesis simulation, post-NGDBuild simulation allows you to verify that your
design has been synthesized correctly, and you can begin to identify any differences due to
the lower level of abstraction. Unlike the post-synthesis pre-NGDBuild simulation, there
are GSR and GTS nets that must be initialized, just as for post-Map and post-PAR
simulation. For more information on using the GSR and GTS signals for post-NGDBuild
simulation, see “Understanding the Global Reset and 3-state for Simulation” in this
chapter.

Post-Map Partial Timing (Block Delays)

Post-Map Partial Timing (Block Delays) may include the following (optional):

¢ Gate-level netlist containing SIMPRIM library components
e Standard Delay Format (SDF) files
e SmartModels

You may also perform simulation after mapping the design. Post-Map simulation occurs
before placing and routing. This simulation includes the block delays for the design, but
not the routing delays. This is generally a good metric to test whether the design is meeting
the timing requirements before additional time is spent running the design through a
complete place and route.

As with the post-NGDBuild simulation, NetGen is used to create the structural simulation
Running the simulation netlister tool, NetGen, creates an SDF file. The delays for the
design are stored in the SDF file which contains all block or logic delays. However, it does
not contain any of the routing delays for the design since the design has not yet been
placed and routed. As with all NetGen created netlists, GSR and GTS signals must be
accounted for. For more information on using the GSR and GTS signals for post-NGDBuild
simulation, see “Understanding the Global Reset and 3-state for Simulation” in this
chapter.

Timing Simulation Post-Place and Route

Timing Simulation Post-Place and Route Full Timing (Block and Net Delays) may include
the following:

e Gate-level netlist containing SIMPRIM library components

e Standard Delay Format (SDF) files

e SmartModels

After your design has completed the place and route process in the Xilinx Implementation

Tools, a timing simulation netlist can be created. It is not until this stage of design
implementation that you start to see how your design behaves in the actual circuit. The

226

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Providing Stimulus

overall functionality of the design was defined in the beginning stages, but it is not until
the design has been placed and routed that all of the timing information of the design can
be accurately calculated.

The previous simulations that used NetGen created a structural netlist based on SIMPRIM
models. However, this netlist comes from the placed and routed NCD file. This netlist has
GSR and GTS nets that must be initialized. For more information on initializing the GSR
and GRTS nets, see “Understanding the Global Reset and 3-state for Simulation” in this
chapter.

When you run timing simulation, an SDF file is created as with the post-Map simulation.
However, this SDF file contains all block and routing delays for the design.

Providing Stimulus

Before you perform simulation, create a test bench or test fixture to apply the stimulus to
the design.

Test Benches

A test bench is HDL code written for the simulator that:
e instantiates the design netlists
e initializes the design

e applies stimuli to verify the functionality of the design

You can also set up the test bench to display the desired simulation output to a file,
waveform or screen.

A test bench can be very simple in structure and sequentially apply stimulus to specific
inputs. A test bench can also be very complex, and include:

e subroutine calls

e stimulus read in from external files

¢ conditional stimulus

e other more complex structures

The test bench has several advantages over interactive simulation methods:
e It allows repeatable simulation throughout the design process.

e It provides documentation of the test conditions.

Creating a Test Bench
Use any of the following to create a test bench and simulate a design:

e “Creating a Test Bench in ISE Tools”
o “Creating a Test Bench in Waveform Editor”

e “Creating a Test Bench in NetGen”

Creating a Test Bench in ISE Tools

The ISE tools create a template test bench containing the proper structure, library
references, and design instantiation based on your design files from Project Navigator. This
greatly eases test bench development at the beginning stages of the design.

Synthesis and Simulation Design Guide www.xilinx.com 227

8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

Creating a Test Bench in Waveform Editor

You may use Waveform Editor to automatically create a test bench by drawing the
intended stimulus and the expected outputs in a waveform viewer. For more information,
see the ISE help and the ISE Simulator help.

Creating a Test Bench in NetGen

You can use NetGen to create a test bench file. The —tb switch for NetGen creates a test
fixture or test bench template. The Verilog test fixture file has a . tv extension, and the
VHDL test bench file has a . tvhd extension.

Test Bench Recommendations

Xilinx recommends the following when you create and run a test bench.

Give the name testbench to the main module or entity name in the test bench file.

Specify the instance name for the instantiated top-level of the design in the test bench
as UUT.

These names are consistent with the default names used by ISE for calling the test
bench and annotating the SDF file when invoking the simulator.

Initialize all inputs to the design within the test bench at simulation time zero in order
to properly start simulation with known values.

Apply stimulus data after 100 ns in order to account for the default Global Set/Reset
pulse used in SIMPRIM-based simulation. However, the clock source should begin
before the GSR is released. For more information on GSR, see “Understanding the
Global Reset and 3-state for Simulation” in this chapter.

VHDL and Verilog Libraries and Models

The five simulation points require the following libraries:

UNISIM

CORE Generator (XilinxCoreLib)
SmartModel

SIMPRIM

Required Libraries

This section shows the libraries required for each of the five simulation points.

First Simulation Point

The first point, “Register Transfer Level (RTL)”, is a behavioral description of your design
at the register transfer level. RTL simulation is not architecture-specific unless your design
contains instantiated UNISIM, or CORE Generator components.

To support these instantiations, Xilinx provides a functional UNISIM library, a CORE
Generator Behavioral XilinxCoreLib library, and a SmartModelLibrary. You can also
instantiate CORE Generator components if you do not want to rely on the module
generation capabilities of your synthesis tool, or if your design requires larger memory
structures.

228

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® VHDL and Verilog Libraries and Models

Second Simulation Point

The second simulation point is “Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation”. If
the UNISIM library and CORE Generator components are used, then the UNISIM, the
XilinxCoreLib and SmartModel Libraries must all be used.

The synthesis tool must write out the HDL netlist using UNISIM primitives. Otherwise,
the synthesis vendor provides its own post-synthesis simulation library, which is not
supported by Xilinx.

Third, Fourth, and Fifth Simulation Points

The third, fourth, and fifth points simulation points are:

e “Post-NGDBuild (Pre-Map) Gate-Level Simulation”
e “Post-Map Partial Timing (Block Delays)”

e “Timing Simulation Post-Place and Route”

These simulation points use the SIMPRIM and SmartModel Libraries.

Simulation Phase Library Information

The following table shows the library required for each of the five simulation points.

Table 6-4: Simulation Phase Library Information

Simulation Point Compilation Order of Library Required
“Register Transfer Level (RTL)”, UNISIM
XilinxCoreLib
SmartModel
“Post-Synthesis (Pre-NGDBuild) UNISIM
Gate-Level Simulation” XilinxCorelib
SmartModel
“Post-NGDBuild (Pre-Map) Gate- SIMPRIM
Level Simulation” SmartModel
“Post-Map Partial Timing (Block SIMPRIM
Delays)” SmartModel
“Timing Simulation Post-Place and | SIMPRIM
Route” SmartModel
Synthesis and Simulation Design Guide www.xilinx.com 229

8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design

SXILINX®

Locating Library Source Files

The following table shows:

o the location of the simulation library source files

e the order for a typical compilation

Table 6-5: Simulation Library Source Files

Location of Source Files

Compile Order

Library Verilo VITAL Verilo VITAL
9 VHDL 9 VHDL
UNISIM $XILINX/verilog | $XILINX/vhdl/ No special | Required;
Spartan-II, /src/unisims src / L/ll'll sims - co(rinpﬂatlon typical compilation order:
Spartan-IIE, - Unix/Linux Unix/Linux order -
Sgartan—?) re quire dfor | unis im_VCOMP.vhd
Spartan-3E . . Verilog unisim_ VPKG.vhd
, o o . SXILINX%\vhdl\ ; ;
Virtex, SXILINX%\verilo libraries unisim VITAL.vhd
Virtex-E g \src\unisims - | src\unisims -
Virtex-I1 Windows Windows
Virtex-II Pro,
Virtex-II Pro X,
Virtex-4,
Xilinx IBM FPGA
Core
UNISIM $XILINX/verilog | $XILINX/vhdl/ No special | Required;
9500, /src/uni3000- src/unisims - compilation | il compilation order:
CoolRunner Unix/Linux . . order o
CoolR ,II Unix/Linux required for unisim_VCOMP.vhd
oolRunner-
Verilog unisim_VPKG.vhd
$XILINX%\verilo libraries
g\src\uni9000- SXILINXS\vhdl\ unisim_ VITAL.vhd
Windows src\unisims -
Windows
XilinxCoreLib $XILINX/verilog | SXILINX/vhdl/ No special | Compilation order required;
FPGA Families /src/XilinxCore | src/XilinxCore- compilation | gee the vhdl_analyze_order
only -Lib-Unix/Linux Lib-Unix/Linux orde%‘ file located in
i/qulued for | «x1r,1N%/vhdl/sre/
erilo ‘o .
$XILINXS\verilo | $XILINX%\vhdl\ i XilinxCoreLib/ -
\ \Xil] c libraries Unix/Linux
g §rc .l inxtor src\XilinxCoreL
eLib-Windows ib-Windows
%XILINX%\vhdI\src\
XilinxCoreLib\-Windows
for the required compile
order
230 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

VHDL and Verilog Libraries and Models

Table 6-5: Simulation Library Source Files

Location of Source Files

Compile Order

Library Verilo VITAL Verilo VITAL
9 VHDL 9 VHDL
SmartModel $XILINX/ SXILINX/ No special | Required.
Virtex-1I Pro smartmodel/ smartmodel/ compilation Typical compilation order
Virtex-1I Pro X <platform>/ <platforms/ order for Functional Simulation:
i wrappers/ p required for o
Virtex-4 <gsimulator>- wrappers/ Verilog unisim VCOMP.vhd
Unix/Linux csimulators— libraries smartmodel_wrappers.
Unix/Linux vhd
SXTLINXS\ unisim_SMODEL.vhd
smartmodel \ $XILINX%\ Typlgal comp 11at10r_1 order
for Timing Simulation:
<platform>\ smartmodel\ . .
simprim_Vcomponents.
wrappers \ <platform>\ vhd
<§imulator>— wrappers \ (Simprim_Vcomponents
windows <simulator>- _mti.vhd) - for MTI
windows only
smartmodel_wrappers.
vhd
simprim_SMODEL.vhd
(simprim_SMODEL_mti.
vhd) - for MTI only
SIMPRIM $XILINX/verilog | $XILINX/vhdl/ No special | Required;
(All Xilinx /src/simprims- | src/simprims- compilation | il compilation order:
Technologies) Unix/Linux Unix/Linux order) .
3 requﬁedfor simprim_Vcomponents.
. . _ . . Verilog vhd
/oXILINX?\VeJ._’l lo | $XILINX%\vhdl\ libraries (simprim Vcomponents
ngrc\81mpr1ms— src\simprims- _mti.vhd)®?
Windows Windows

(simprim_Vpackage_mt
i.vhd)Pb
simprim_Vpackage.vhd
simprim_VITAL.vhd
(simprim_VITAL_mti.v
hd) ¢

a. for MTI only
b. for MTI only
c¢. for MTI only

Synthesis and Simulation Design Guide

8.1i

www.Xxilinx.com

231

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

Using the Libraries

This section discusses using the following simulation libraries:

e “Using the UNISIM Library”

e “Using the VHDL UNISIM Library”

e “Using the Verilog UNISIM Library”

e “Using the CORE Generator XilinxCoreLib Library”
e “Using the SIMPRIM Library”

e “Using the SmartModel Library”

Using the UNISIM Library

The UNISIM Library is used for functional simulation only. This library includes:

e all of the Xilinx Unified Library primitives that are inferred by most synthesis tools

e primitives that are commonly instantiated, such as DCMs, BUFGs, and GTs
You should generally infer most design functionality using behavioral RTL code unless:

e the desired component is not inferable by your synthesis tool, or

¢ you want to take manual control of mapping and placement of a function

The UNISIM library structure is different for VHDL and Verilog.

Using the VHDL UNISIM Library

The VHDL UNISIM library is split into four files containing:

e the component declarations (unisim_VCOMP.vhd)

e package files (unisim_VPKG.vhd)

e entity and architecture declarations (unisim_VITAL.vhd)

e SmartModel declarations (unisim_SMODEL.vhd)

All primitives for all Xilinx device families are specified in these files. The VHDL UNISIM

Library source directories are located as shown in the following table.

Table 6-6: VHDL UNISIM Library Source Files

Platform Location
Unix/Linux SXILINX/vhdl/src/unisims
Windows .$XILINX$\vhdl\src\unisims

Using the Verilog UNISIM Library

For Verilog, each library component is specified in a separate file. This allows automatic
library expansion using the —y library specification switch. All Verilog module names and
file names are all upper case (for example, module BUFG would be BUFG.v, and module
IBUF would be IBUE.v).

232

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

VHDL and Verilog Libraries and Models

Since Verilog is a case-sensitive language, make sure that all UNISIM primitive
instantiations adhere to this upper-case naming convention. The library sources are split
into two directories. See the following table.

Table 6-7: Verilog UNISIM Library Source Files

FPGA device families CPLD device families

Unix/Linux | SXILINX/verilog/src/unisims SXILINX/verilog/src/uni9000

Windows $XILINX%\verilog\src\unisims | $XILINX%\verilog\src\uni9000

Using the CORE Generator XilinxCoreLib Library

The Xilinx CORE Generator is a graphical intellectual property design tool for creating
high-level modules like FIR Filters, FIFOs and CAMs, as well as other advanced IP. You can
customize and pre-optimize modules to take advantage of the inherent architectural
features of Xilinx FPGA devices, such as block multipliers, SRLs, fast carry logic, and on-
chip, single-port or dual-port RAM. You can also select the appropriate HDL model type as
output to integrate into your HDL design.

The CORE Generator HDL library models are used for RTL simulation. The models do not
use library components for global signals.

For the location of the CORE Generator library source files, see the following table.

Table 6-8: CORE Generator Library Source Files

VHDL Verilog

Unix/Linux

SXILINX/vhdl/src/XilinxCoreLib SXILINX/verilog/src/XilinxCoreLib

Windows

$XILINX%\vhdl\src\XilinxCoreLib | .%XILINX%\verilog\src\XilinxCoreLib

Using the SIMPRIM Library

The SIMPRIM library is used for post Ngdbuild (gate level functional), post-Map (partial
timing), and post-place-and-route (full timing) simulations. This library is architecture
independent.

For the location of the SIMPRIM Library source files,ee the following table.

Table 6-9: SIMPRIM Library Source Files
VHDL Verilog

Unix/Linux | SXILINX/vhdl/src/simprims SXILINX/verilog/src/simprims

Windows SXILINX%\vhdl\src\simprims | $XILINX%\verilog\src\simprims

Using the SmartModel Library

The SmartModel Libraries are used to model very complex functions of modern FPGA
devices such as the PowerPC™ and the RocketIO™. SmartModels are encrypted source
files that communicate with simulators via the SWIFT interface.

The SmartModel Libraries are located at:

SXILINX/smartmodel or $%XILINX%\smartmodel

Synthesis and Simulation Design Guide www.xilinx.com 233

8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

The SmartModel Libraries require additional installation steps to properly install on your
system. Additional setup within the simulator may also be required. For more information
on how to install and set up the SmartModel Libraries, see Chapter 5, “Using
SmartModels” in this guide.

Compiling Xilinx Simulation Libraries (COMPXLIB)

Note: Do NOT use with ModelSim XE (Xilinx Edition) or ISE Simulator.

Before starting the functional simulation of your design, you must compile the Xilinx
Simulation Libraries for the target simulator. For this purpose Xilinx provides a tool called
COMPXLIB.

COMPXLIB is a tool for compiling the Xilinx HDL based simulation libraries using the
tools provided by the simulator vendor. Libraries should generally be compiled or
recompiled any time a new version of a simulator is installed, including a new service
pack.

Compiling Simulation Libraries

You can compile the simulation libraries from Project Navigator, or from the command
line, as described below.

Compiling Simulation Libraries from Project Navigator

To compile a simulation library from Project Navigator.
1. Create or open an existing project for Project Navigator.
2. In the Sources window, highlight the target device.

3. In the Processes window, under the Design Entry Utilities toolbox,
right-click Compile HDL Simulation Libraries.

Select Properties to open the Process Properties dialog box.

5. Choose one or more of the “Project Navigator Options” from the Process Properties
dialog box.

6. Click OK.
Double-click Compile HDL Simulation Libraries.

Project Navigator compiles the libraries using the properties you specified.

To see the compilation results after the libraries are compiled, double-click View
Compilation Log to open the COMPXLIB.log file.

Project Navigator Options

The following options are available from the Process Properties dialog box. Project
Navigator shows only the options that apply to your specific design flow. For example, for
a Virtex-1I project, it shows only the list of libraries required to simulate a Virtex-II design.

Target Simulator

Select the target simulator for which the libraries are to be compiled. Click anywhere in the
Value field to display the list of supported simulators. You must choose a Target Simulator
before starting the compile process.

234

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Compiling Xilinx Simulation Libraries (COMPXLIB)

Language

Language is selected by default according to the Project Properties.

Compiled Library Directory
Specify the directory where the compiled libraries will be saved.
To change the directory path:

1. Type a new path in the Value field, or
a. Click anywhere in the Value field.
b. Double-click the button to the right of the current value.
2. Choose an output directory from the Browse for File dialog box.

The default directory path is $XILINX/language/simulator, where:

e language is the selected language to compile

e simulator is the name of the selected simulator

Simulator Location

Specify the path to the simulator executables. By default, Project Navigator searches the
path environment variable for the simulator path. If you have multiple simulators, or if the
simulator path is not defined in the environment variable, set the Simulator Location
property to specify the path to your simulator.

To change the simulator path:

1. Click the Value field.
2. Double-click the button to the right of the current value.
3. Choose a directory from the Browse for File dialog box.

Existing Compiled Library

Choose whether to overwrite the previously compiled library, or map to the previously
compiled library. The compiled libraries are overwritten by default.

Compile UNISIM (Functional) Simulation Library

Choose whether to compile the UNISIM library. The UNISIM libraries are compiled by
default.

Compile SIMPRIM (Timing) Simulation Library

Choose whether to compile the SIMPRIM library. The SIMPRIM libraries are compiled by
default.

Compile XilinxCoreLib (Coregen) Simulation Library

Choose whether to compile the XilinxCoreLib library. The XilinxCoreLib libraries are
compiled by default.

Note: Since XilinxCorelLib libraries depend on the UNISIM libraries, COMPXLIB automatically
compiles UNISIM prior to compiling the XilinxCoreLib libraries.

Compile SmartModels (PPC, MGT) Simulation SmartModels

Choose whether to compile the SmartModels library. The SmartModels libraries are
compiled by default.

Synthesis and Simulation Design Guide www.xilinx.com 235
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

Update modelsim.ini File for Xilinx SmartModel Use

Instructs COMPXLIB to make the necessary modifications to the modelsim. ini file to
run SmartModel simulations.

Compiling Simulation Libraries from the Command Line

To compile libraries from the command line, type:

compxlib [options]
For options and syntax details, see “COMPXLIB Syntax” in this chapter.
To view COMPXLIB help, type:

compxlib -help

COMPXLIB Support

For the libraries, device families, and simulators that COMPXLIB supports, see the
following sections.

Libraries

COMPXLIB Support supports the compilation of the following Xilinx HDL Simulation
Libraries:

e UNISIM (Functional)

e Uni9000 (Verilog Functional CPLDs only)

¢ SIMPRIM (Timing)

e XilinxCoreLib (Functional)

¢ SmartModel Library (Functional & Timing)
e CoolRunner (Functional)

e Abel (Functional)

Device Families

COMPXLIB supports the compilation of libraries for all Xilinx Device Families.

Simulators

Caution! Do NOT use with ModelSim XE (Xilinx Edition) or ISE Simulator.

COMPXLIB supports the compilation of Xilinx HDL Simulation Libraries for the following
simulators:

e ModelSim SE (all Xilinx supported platforms)

e ModelSim PE (all Xilinx supported platforms)

e NCSIM (all Xilinx supported platforms)

e VCS-MX (only on Solaris and Linux based platforms)
e VCS-MXi (only on Solaris and Linux based platforms)

The VHDL SIMPRIM library is VITAL2000 compliant. Make sure that your simulator is
also VITAL2000 compliant to successfully compile the SIMPRIM library.

236 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Compiling Xilinx Simulation Libraries (COMPXLIB)

COMPXLIB Syntax

The following command compiles all Xilinx Verilog libraries for the Virtex device family
on the ModelSim SE simulator:

compxlib -s mti_se -arch virtex -1 verilog
The compiled results are saved in the default location:

SXILINX/verilog/mti_se

COMPXLIB Command Line Options

This section describes COMPXLIB command line options.

Target Simulator (-s)

Specify the simulator for which the libraries will be compiled.

If -s is not specified, COMPXLIB exits without compiling the libraries.
Valid values for -s are:

-s mti_se
-s mti_pe
-8 ncsim
-s vcs_mx

-S ves_mxi
Language (-1)
Specify the language from which the libraries will be compiled.

By default, COMPXLIB detects the language type from the -s (Target Simulator) option. If
the simulator supports both Verilog and VHDL, COPMXLIB:

e sets the =1 option to all

e compiles both Verilog and VHDL libraries
If the simulator does not support both Verilog and VHDL, COMXPLIB:
e detects the language type supported by the simulator

e sets the =1 option value accordingly

If the -1 option is specified, COMXPLIB compiles the libraries for the language specified
with the =1 option.

Valid values for -1 are:
-1 verilog
-1 vhdl
-1 all
Device Family (-arch)
Specify the device family.

If —arch is not specified, COMPXLIB exits with an error message without compiling the
libraries.

Synthesis and Simulation Design Guide www.xilinx.com 237
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

Valid values for —arch are:

-arch all® -arch virtex -arch virtexe
—arch virtex2 —arch virtex2p —arch virtex4
—arch spartan2 —arch spartan3 —arch spartanle
—-arch spartan3e —arch cpld -arch fpga
-arch cr2s —arch xpla3 —arch xbr

—arch xc9500 —arch xc9500x1 —arch xc9500xv
-arch acr2 -arch aspartan2e -arch aspartan3
-arch grvirtex -arch grvirtex2 -arch gvirtex
-arch gvirtex2 -arch gvirtexe

a. all device families

To compile selected libraries, use the following —arch syntax.

—arch device_family

Output Directory (-dir)

Specify the directory path where you want to compile the libraries. By default, COMXPLIB
compiles the libraries as shown in in the following table.

Table 6-10: Default COMXPLIB Output Directories

Operating System Default Output Directory
Unix/Linux SXILINX/language/target_simulator
Windows $XILINX%\language\target_simulator

Simulator Path (-p)

Specify the directory path where the simulator executables reside. By default, COMPXLIB
automatically searches for the path from the $PATH or $PATHS environment variable. This
option is required if the target simulator is not specified in the SPATH or $PATH%
environment variable.

Overwrite Compiled Library (-w)

Overwrite the precompiled libraries. By default, COMXPLIB does not overwrite the
precompiled libraries.

Create Configuration File (-c£g)

Create a configuration file with default settings. By default, COMPXLIB creates the
compxlib. cfg file if it is not present in the current directory.

Use the configuration file to pass run time options to COMPXLIB while compiling the
libraries. For more information on the configuration file, see “Specifying Run Time
Options” in this chapter.

238 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Compiling Xilinx Simulation Libraries (COMPXLIB)

Print Precompiled Library Info (-info)
Print the precompiled information of the libraries. Specify a directory path with ~info to
print the information for that directory.
Specify Name of Library to Compile (-1ib)
Specify the name of the library to compile.
Valid values for -1ib are:

unisim

simprim

unign00

xilinxcorelib

smartmodel

abel

coolrunner
For multiple libraries, separate the ~1ib options with spaces. For example:
. -1ib uisim -1ib simprim ..

If -1ib is not used, all the libraries are compiled by default.

Print COMXPLIB Help (-help)
View COMPXLIB help.

SmartModel Setup (MTI only)

The -smartmodel_setup option instructs COMPXLIB to modify the modelsim.ini
file to make the amendments necessary to run SmartModel simulations.

COMPXLIB Command Line Examples

This section shows examples of the following:

e “Compiling Libraries as a System Administrator”

e “Compiling Libraries as a User”

Compiling Libraries as a System Administrator

System administrators compiling the libraries using COMPXLIB should compile the
libraries in a default location that is accessible to all users.

The following example shows how to compile the libraries for ModelSim SE for all devices
and all libraries and all languages setting up the ini file for smartmodels

compxlib -s mti_se -arch all -smartmodel_setup

This compiles the libraries needed for simulation using Model sim SE. For the location to
which the libraries are compiled, see the following table.

Table 6-11: ModelSim SE Libraries Locations

VHDL Verilog
Unix/Linux SXILINX/vhdl/mti_se SXILINX/verilog/mti_se
Windows $XILINX%\vhdl\mti_se $XILINX%\verilog\mti_se
Synthesis and Simulation Design Guide www.xilinx.com 239

8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design

SXILINX®

Compiling Libraries as a User

When you run COMPXLIB as a user, Xilinx recommends that you compile the libraries on
a per project basis. If your project targets a single Xilinx device, compile the libraries for

that specific device only.

The following example shows how to compile UNISIM and SIMPRIM libraries for NCSIM

(VHDL) for a Virtex-4 design:

compxlib -s ncsim -arch virtex4 -1lib unisim -1ib simprim -lang vhdl -o

This compiles the libraries to the current working directory.

Mapping to Pre-Compiled Libraries as a User

If the system administrator has compiled all the libraries to the default location, each

./

individual user can map to these libraries as needed. Xilinx recommends that each user

map to the libraries on a per project basis to minimize the need for unnecessary library

mappings in the project location.

The example below shows how to map to the pre-compiled UNISIM and XILINXCORELIB
libraries for ModelSim PE for a Virtex-4 design:

compxlib -s mti_pe -arch virtex4 -1lib unisim -1lib xilinxcorelib

When you map to a pre-compiled location, do not specify the -w switch. If there are no
pre-compiled libraries in the default location, COMPXLIB starts to compile the libraries.

Additional Compxlib Examples

Following are additional examples of using Compxlib.

Table 6-12: Additional Compxlib Examples

Task

Command

Display the COMPXLIB help onscreen

compxlib -h

Obtain help for a specific option

compxlib -h <option>

Obtain help for all the available architectures

compxlib -h arch

Compile all of the Verilog libraries for a Virtex device (UNISIM,
SIMPRIM and XilinxCoreLib) on the ModelSim SE simulator and
overwrite the results in $XILINX/verilog/mti_se

compxlib -s mti_se -arch virtex
-1 verilog -w

Compile the Verilog UNISIM, Uni9000 and SIMPRIM libraries for
the ModelSim PE simulator and save the results in the $MYAREA
directory

compxlib -s mti_pe -arch all -
1ib uni9000 -1ib simprim-1
verilog -dir S$SMYAREA

Compile the VHDL and Verilog SmartModels for the Cadence NC-
Sim simulator and save the results in /tmp directory

compxlib -s ncsim -arch
virtex2p -1lib smartmodel -1 all
-dir /tmp

Compile the Verilog Virtex-II XilinxCoreLib library for the Synopsys
VCS simulator and save the results in the default directory,
SXILINX/verilog/vcs

compxlib -s vcs_mx -arch
virtex2 -1lib xilinxcorelib

Compile the Verilog CoolRunner library for the Synopsys VCSi
simulator and save the results in the current directory

compxlib -s vcs mxi -arch
coolrunner -1lib -dir ./

240 www.Xxilinx.com

Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

S XILINX® Compiling Xilinx Simulation Libraries (COMPXLIB)

Table 6-12: Additional Compxlib Examples

Task Command

Compile the Spartan-IIE and Spartan-3 libraries (VHDL UNISIMs, | compxlib -s vcs mx -arch
SIMPRIMs and XilinxCoreLib) for the Synopsys Scirocco simulator | spartan2e -1 vhdl -arch

and save the results in the default directory spartan3 -p
($XILINX/vhdl/scirocco), and use the simulator executables /products/eproduct.ver2_0/2.0/
from the path specified with the —p option, comnon/sunoss/bin

Print the precompiled library information for the libraries compiled | compx1ib -info
in $XILINX%\xilinxlibs $XILINX%\xilinxlibs

Print the precompiled library information for the libraries compiled | compx1lib -info $XILINX/mti_se/
in $XILINX for the ModelSim SE simulator

Create compxlib. cfg with default options compxlib -cfg

Specifying Run Time Options

Use the compx1ib. cfg file to specify run time options for COMPXLIB. By default,
COMPXLIB creates this file in the current directory. To automatically create this file with its
default settings, use -c£g.

You can specify the following run time options in the configuration file.

EXECUTE: ON|OFF
By default, the value is ON.
If the value is ON, COMPXLIB compiles the libraries.

If the value is OFF, COMPXLIB generates only the list of compilation commands in the
compxlib. log file, without executing them.

EXTRACT_ LIB_FROM_ ARCH: ONlOFF

This option supports Early Access devices. Do not change this option.

LOCK_PRECOMPILED: ON |OFF
By default, the value is OFF.

If the value is OFF, COMPXLIB compiles the dependent libraries automatically if they are
not precompiled.

If the value is ON, COMPXLIB does not compile the precompiled libraries.

For example, if you want to compile the SmartModel Library, COMPXLIB looks for this
variable value to see if the dependent libraries, UNISIM and SIMPRIM, are to be compiled.

LOG_CMD_TEMPLATE: ONlOFF
By default, the value is OFFE.

If the value is OFF, COMPXLIB does not print the compilation command line in the
compxlib. log file.

If the value is ON, COMXPLIB prints the compilation commands in the compx1ib.log
file.

Synthesis and Simulation Design Guide www.xilinx.com 241
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

PRECOMPILED INFO: ON | OFF
By default, the value is ON.

If the value is ON, COMPXLIB prints the precompiled library information including the
date the library was compiled.

If the value is OFF, COMXPLIB does not print the precompiled library information.

BACKUP_SETUP_FILES: ON | OFF
By default, the value is ON.

If the value is ON, COMPXLIB creates a backup of the all the simulator specific setup files
(modelsim.ini/cds/1lib/hdl.var/) that it wrote out in the previous run.

If the value is OFF, COMXPLIB does not create a backup of the setup files.

FAST COMPILE: ON | OFF
By default, the value is ON.

If the value is ON, COMPXLIB uses advanced compilation techniques for faster library
compilation for select libraries.

If the value is OFF, COMXPLIB does not use the advanced compilation methods and
reverts to traditional methods for compilation.

ABORT_ON_ERROR: ON|OFF
By default, the value is OFFE.
If the value is OFF, COMPXLIB does not error out if a compilation error occurs.

If the value is ON, COMXPLIB errors out if a compilation error occurs.

ADD_COMPILATION_ RESULTS_TO_LOG: ON|OFF

By default, the value is ON.

If the value is ON, COMPXLIB writes to the log file with the name specified by -1log.
If the value is OFF, COMXPLIB ignores -log.

USE_OUTPUT_DIR_ENV: NONE | <NAME_OF_ENVIRONMENT VARIABLE>
By default, the value is NONE.

If the value is NONE, COMPXLIB does not look for an environment variable for the output
directory. Instead, it uses the directory specified by -o.

If the value is <NAME_OF_ENV_VAR>, COMXPLIB looks on the system for an
environment variable with the name listed in this option, and compiles the libraries to that
folder. See the following example.

cfg file USE_OUTPUT_DIR_ENV:MY_LIBS
system setting setenv MY_LIBS /my_compiled_libs
compiles the libraries to the folder /my_compiled_libs

242 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

S XILINX® Compiling Xilinx Simulation Libraries (COMPXLIB)

INSTALL SMARTMODEL: ON|OFF
By default, the value is ON.
If the value is ON, COMPXLIB installs the smartmodels when -1ib smartmodel is used.

If the value is OFF, COMXPLIB does not install the SmartModels even if the -1ib
smartmodel is used.

INSTALL_ SMARTMODEL_DIR:
By default, the value is left blank.

If the value is blank, COMPXLIB writes to the location pointed to by the LMC_HOME
environment variable.

If the LMC_HOME environment variable is not set, the SmartModels are installed to the
directory specified here. This option is used only if the INSTALL_SMARTMODEL option
is set to ON

OPTION
Simulator language command line options.
OPTION:Target_Simulator:Language:Command_Line_Options

By default, COMXPLIB picks the simulator compilation commands specified in the
Command_Line Options.

You can add or remove the options from Command_Line_Options depending on the
compilation requirements.

Sample Configuration File (Windows Version)

#***

compxlib initialization file (compxlib.cfq)

Copyright (c) 1995-2005 Xilinx, Inc. All rights reserved.

*
*
*
*
*
All options/variables must start from first column *
*
*

#
#
#
#
Important :-
#
#
#

EEE R I S I S R I S S S R S R S I S R I R S S I S R I S I I S I S

#

RELEASE_VERSION:I.23

#

set current simulator name
SIMULATOR_NAME:mti_se

#

set current language name
LANGUAGE_NAME:verilog

#

set compilation execution mode
EXECUTE: on

#

compile additional libraries in architecture specific directories
EXTRACT_LIB_FROM_ARCH:on

#

MAP_PRE_COMPILED_LIBS:off

#

Synthesis and Simulation Design Guide www.xilinx.com 243
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design

SXILINX®

donot re-compile dependent libraries

LOCK_PRECOMPILED:off

#

print compilation command template in log file
LOG_CMD_TEMPLATE:off

#

print Pre-Compiled library info

PRECOMPILED_INFO:on

#

create backup copy of setup files

BACKUP_SETUP_FILES:0on

#

use enhanced compilation techniques for faster library compilation
(applicable to selected libraries only)

FAST COMPILE:on

#

abort compilation process if errors are detected in the library
ABORT_ON_ERROR:off

#

save compilation results to log file with the name specified with -log option

ADD_COMPILATION_RESULTS_TO_LOG:on
#

compile library in the directory specified by the environment variable if the

-dir option is not specified
USE_OUTPUT_DIR_ENV:NONE

#

turn on/off smartmodel installation process
INSTALL_SMARTMODEL : on

#

smartmodel installation directory
INSTALL_SMARTMODEL_DIR:

#

WL 777 7000777777077 7777000777

MTI-SE setup file name
SET:mti_se:MODELSIM=modelsim.ini

m (smartmodel) a (abel) r (coolrunner)

#

MTI-SE options for VHDL Libraries

Syntax:-

OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c¢ (xilinxcorelib)
#

#

OPTION:mti_se:vhdl:u:-source -93
OPTION:mti_se:vhdl:s:-source -93
OPTION:mti_se:vhdl:c:-source -93 -explicit
OPTION:mti_se:vhdl:m:-source -93
OPTION:mti_se:vhdl:a:-source -93
OPTION:mti_se:vhdl:r:-source -93

m (smartmodel) a (abel) r (coolrunner)

#

MTI-SE options for VERILOG Libraries

Syntax:-

OPTION:<simulator_name>:<language>:<library>:<options>
<library> :- u (unisim) s (simprim) c¢ (xilinxcorelib)
#

#

OPTION:mti_se:verilog:u:-source -93
OPTION:mti_se:verilog:s:-source -93
OPTION:mti_se:verilog:n:-source -93
OPTION:mti_se:verilog:c:-source -93

244

www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX®

Compiling Xilinx Simulation Libraries (COMPXLIB)

OPTION:mti_se:verilog:m:-source -93
OPTION:mti_se:verilog:a:-source -93
OPTION:mti_se:verilog:r:-source -93

#

/7177770777777 77
MTI-PE setup file name
SET:mti_pe:MODELSIM=modelsim.ini

HH FH H H F H H*

OPTION:
OPTION:
OPTION:
OPTION:

OPTION

HH FH H H I H H*

OPTION

OPTION

#

mti_pe
mti_pe
mti_pe
mti_pe

:mti_pe
OPTION:

mti_pe

:mti_pe
OPTION:
OPTION:

mti_pe
mti_pe

:mti_pe
OPTION:
OPTION:
OPTION:

mti_pe
mti_pe
mti_pe

- u

m

:vhdl:
:vhdl:
:vhdl:
:vhdl
:vhdl:
:vhdl:

- u

m

:verilog:u
:verilog:s
:verilog:n
:verilog:c:-source -93
:verilog:m
:verilog:a
:verilog:r

MTI-PE options for VHDL Libraries
Syntax: -
OPTION:<simulator_name>:<language>:<library>:<options>
<library>

(unisim) s (simprim) c¢ (xilinxcorelib)
(smartmodel) a (abel) r (coolrunner)

:-source -93
:-source -93
:-source -93 -explicit

:-source -93
:-source -93

u
s
c
:m:-source -93
a
r

MTI-PE options for VERILOG Libraries
Syntax: -
OPTION:<simulator_name>:<language>:<library>:<options>
<library>

(unisim) s (simprim) c¢ (xilinxcorelib)
(smartmodel) a (abel) r (coolrunner)

:-source -93
:-source -93
:-source -93

:-source -93
:-source -93
:-source -93

/077777777777 77
NCSIM setup file names

SET:ncsim:CDS=cds.1lib

SET:ncsim:HDL=hdl.var

HH FH H H FH H H*

OPTION:
OPTION:
OPTION:

OPTION

HH 3 H H H H H*

ncsim:
ncsim:
ncsim:

:ncsim:
OPTION:
OPTION:

ncsim:
ncsim:

- u

m

vhdl:u:
vhdl:
vhdl:

vhdl

vhdl:
vhdl:

- u

m

NCSIM options for VHDL Libraries
Syntax: -
OPTION:<simulator_name>:<language>:<library>:<options>
<library>

(unisim) s (simprim) c¢ (xilinxcorelib)
(smartmodel) a (abel) r (coolrunner)

NCSIM options for
Syntax: -
OPTION:<simulator_name>:<language>:<library>:<options>
<library>

-MESSAGES -v93 -NOLOG -CDSLIB $CDS -HDLVAR $HDL

s:-MESSAGES -v93 -NOLOG -CDSLIB SCDS -HDLVAR $HDL
c:-MESSAGES -v93 -NOLOG -CDSLIB $CDS -HDLVAR SHDL
tm:
a
r

-MESSAGES -v93 -NOLOG -CDSLIB $CDS -HDLVAR $HDL

: -MESSAGES -v93 -NOLOG -CDSLIB $CDS -HDLVAR S$HDL
:-MESSAGES -v93 -NOLOG -CDSLIB $CDS -HDLVAR S$SHDL

VERILOG Libraries

(unisim) s (simprim) c¢ (xilinxcorelib)
(smartmodel) a (abel) r (coolrunner)

Synthesis and Simulation Design Guide www.xilinx.com

8.1i

245

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

OPTION:ncsim:
OPTION:ncsim:
OPTION:ncsim:
OPTION:ncsim:
OPTION:ncsim:
OPTION:ncsim:
OPTION:ncsim:

verilog:
verilog:
verilog:

verilog

verilog:
verilog:
verilog:

u:-MESSAGES -NOLOG -CDSLIB $CDS -HDLVAR S$SHDL
s:-MESSAGES -NOLOG -CDSLIB $CDS -HDLVAR S$HDL
n:-MESSAGES -NOLOG -CDSLIB $CDS -HDLVAR $HDL
:c:-MESSAGES -NOLOG -CDSLIB $CDS -HDLVAR S$SHDL
m: -MESSAGES -NOLOG -CDSLIB $CDS -HDLVAR SHDL
a:-MESSAGES -NOLOG -CDSLIB $CDS -HDLVAR S$HDL
r:-MESSAGES -NOLOG -CDSLIB $CDS -HDLVAR S$HDL

R0 7700 077 7777707777770007777770777777777777777777777777777777777777

End

Running NetGen

Xilinx provides a program that can create a verification netlist file from your design files.

You
[]
[]

can create a timing simulation netlist as follows:

“Running NetGen from Project Navigator”
“Running NetGen from XFLOW”

“Running NetGen from the Command Line or a Script File”

Running NetGen from Project Navigator

Toc

1.

AR N

6.

reate a simulation netlist from Project Navigator:

Highlight the top level design in the Sources window.

Make sure that the flow is set to Synthesis/Implementation.

In the Processes window, click the “+” sign next to Implement Design.
Click the “+” sign next to Place & Route.

To change default options:

a. Right-click the Generate Post Place & Route Simulation Model process.
b. Select Properties.

c. Select Standard or Advanced from Property display level in the Simulation
Model Properties dialog box.

d. Choose options. For more information about options, see the Project Navigator
help.

Double-click Generate Post Place & Route Simulation Model.

Project Navigator creates the back-annotated simulation netlist.

Running NetGen from XFLOW
To display the available options for XFLOW, and for a complete list of the XFLOW option

files
opti

, type xf1low at the prompt without any arguments. For complete descriptions of the
ons and the option files, see the Xilinx Development System Reference Guide.

Creating a Simulation Netlist from XFLOW

To create a Simulation netlist from XFLOW:

1.
2.
3.

Open a command terminal.
Change directory to the project directory.
Type the following at the command prompt:

246

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Running NetGen

a. To create a functional simulation (Post NGD) netlist from an input design EDIF
file:

> xflow -fsim option_file.opt design_name.edif
b. To create a timing simulation (post PAR) netlist from an input EDIF design file:
> xflow -implement option_file -tsim option_file design_name.edf
c. To create a timing simulation (Post PAR) netlist from an NCD file:

> xflow -tsim option file.opt design_name.ncd

XFLOW runs the appropriate programs with the options specified in the option file.

Changing Options
To change the options:
1. Run XFLOW with the —norun option.
XFLOW copies the option files to the project directory.
2. Edit the option files to modify the run parameters for the flow.

For more information, see the Xilinx Development System Reference Guide.

Running NetGen from the Command Line or a Script File

To create a simulation netlist from the command line or a script file, follow the instructions
below.

Post-NGD simulation

To run a post-NGD simulation for VHDL, type:
netgen -sim -ofmt vhdl [options] design.ngd
To run a post-NGD simulation for Verilog, type:

netgen -sim -ofmt verilog [options] design.ngd

Post-Map Simulation

To run a post-Map simulation, perform the following command line operations:
ngdbuild options design
map options design.ngd

e Verilog
netgen -sim -ofmt verilog [options] design.ncd

e VHDL

netgen -sim -ofmt vhdl [options] design.ncd

Post-PAR simulation

To run a post-PAR simulation, perform the following command line operations:
ngdbuild options design
map options design.ngd

par options design.ncd -w design_par.ncd

Synthesis and Simulation Design Guide www.xilinx.com 247

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

e Verilog
netgen -sim -ofmt verilog [options] design_par.ncd

e VHDL

netgen -sim -ofmt vhdl [options] design_par.ncd

Disabling X Propagation

When a timing violation occurs during a timing simulation, the default behavior of a latch,
register, RAM, or other synchronous element outputs an X to the simulator.

This occurs because the actual output value is not known. The output of the register could:

e retain its previous value
e update to the new value

e go metastable, in which a definite value is not settled upon until some time after the
clocking of the synchronous element

Since this value cannot be determined, and accurate simulation results cannot be
guaranteed, the element outputs an X to represent an unknown value. The X output
remains until the next clock cycle in which the next clocked value updates the output if
another violation does not occur.

X generation can significantly affect simulation. For example, an X generated by one
register can be propagated to others on subsequent clock cycles. This may cause large
portions of the design being tested to become unknown. This can be corrected as follows:

¢ Onasynchronous path, analyze the path and fix any timing problems associated with
this or other paths to ensure a properly operating circuit.

e On an asynchronous path, if you cannot otherwise avoid timing violations, disable
the X propagation on synchronous elements during timing violations.

When X propagation is disabled, the previous value is retained at the output of the
register. In the actual silicon, the register may have changed to the new' value.
Disabling X propagation may yield simulation results that do not match the silicon
behavior.

Caution! Exercise care when using this option. Use it only if you cannot otherwise avoid timing
violations.

Using the ASYNC_REG Constraint
The ASYNC_REG constraint:
e identifies asynchronous registers in the design
e disables X propagation for those registers
ASYNC_REG can be attached to a register in the front end design by:
e an attribute in the HDL code, or
¢ aconstraint in the UCF

The registers to which ASYNC_REG is attached retain the previous value during timing
simulation, and do not output an X to simulation.

Caution! A timing violation error may still occur. Use care, as the new value may have been
clocked in as well.

248 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

SIM_COLLISION_CHECK

The ASYNC_REG constraint is applicable to CLB and IOB registers and latches only. If you
cannot avoid clocking in asynchronous data, Xilinx recommends that you do so on IOB or
CLB registers only. Clocking in asynchronous signals to RAM, SRL, or other synchronous
elements has less deterministic results, and therefore should be avoided. Xilinx highly
recommends that you first properly synchronize any asynchronous signal in a register,
latch, or FIFO before writing to a RAM, SRL, or any other synchronous element.

For more information on ASYNC_REG, see the Xilinx Constraints Guide.

SIM_COLLISION_CHECK

Xilinx block RAM memory is a true dual-port RAM where both ports can access any
memory location at any time. Be sure that the same address space is not accessed for
reading and writing at the same time. This will cause a block RAM address collision. These
are valid collisions, since the data that is read on the read port is not valid. In the hardware,
the value that is read might be the old data, the new data, or a combination of the old data
and the new data. In simulation, this is modeled by outputting X since the value read is
unknown. For more information on block RAM collisions, see the architecture specific user

guides.

In certain applications, this situation cannot be avoided or designed around. In these cases,
the block RAM can be configured not to look for these violations. This is controlled by the
generic (VHDL) or parameter (Verilog) SIM_COLLISION_CHECK in all the Xilinx block
RAM primitives.

Use With Care

Xilinx strongly recommends that you disable X propagation ONLY on paths that are truly
asynchronous where it is impossible to meet synchronous timing requirements. This
capability is present for simulation in the event that timing violations cannot be avoided,
such as when a register must input asynchronous data. Use extreme caution when
disabling X propagation; simulation results may no longer accurately reflect what is
happening in the silicon.

SIM_COLLISION_CHECK Strings

Use the following strings with SIM_COLLISION_CHECK to control what happens in the
event of a collision.

Table 6-13: SIM_COLLISION_CHECK Strings

String Write Collision Messages | Write Xs on the Output
ALL Yes Yes
WARNING_ONLY Yes No
GENERATE_X_ONLY No Yes
None No No

SIM_COLLISION_CHECK can be applied at an instance level. This enables you to change
the setting for each block RAM instance.

Synthesis and Simulation Design Guide www.xilinx.com 249

8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

MIN/TYP/MAX Simulation

The Standard Delay Format (SDF) file allows you to specify three sets of delay values for
simulation:

o “Maximum (MAX)”

o “Typical (TYP)”

e “Minimum (MIN)”

These values are usually abbreviated as MIN:TYP:MAX.

Xilinx uses these values to allow the simulation of the target architecture under various
operating conditions. By allowing for the simulation across various operating conditions,
you can perform more accurate setup and hold timing verification.

Definitions
Following are the definitions of the three values:

e “Maximum (MAX)”
e “Typical (TYP)”
e “Minimum (MIN)”

Maximum (MAX)

The Maximum (MAX) field is used to represent the delays under the worst case operating
conditions of the device. The worst case operating conditions are defined as the maximum
operating temperature, the minimum voltage, and the worst case process variations.
Under worst case conditions, the data paths of the device have the maximum delay
possible, while the clock path delays are the minimum possible relative to the data path
delays. This situation is ideal for setup time verification of the device.

Typical (TYP)

The Typical (TYP) field is used to represent the typical operating conditions of the device.
In this situation, the clock and data path delays are both the maximum possible. This is
different from the MAX field, in which the clock paths are the minimum possible relative to
the maximum data paths.

Minimum (MIN)

The Minimum (MIN) field is used to represent the device under the best case operating
conditions. The base case operating conditions are defined as the minimum operating
temperature, the maximum voltage, and the best case process variations. Under best case
conditions, the data paths of the device have the minimum delay possible, while the clock
path delays are the maximum possible relative to the data path delays. This situation is
ideal for hold time verification of the device.

250 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® MIN/TYP/MAX Simulation

Obtaining Accurate Results

In order to obtain the most accurate setup and hold timing simulations, you should
perform two simulations using the proper SDF values.

To perform a setup simulation, specify values in the Maximum (MAX) field with the
following command line modifier:

-SDFMAX

To perform the most accurate hold simulation, specify values in the Minimum (MIN) field
with the following command line modifier:

-SDFMIN

For a simulation that matches the results of previous software releases, specify values in
the Typical (TYP) field with the following command line modifier:

-SDFTYP

For more information on how to pass the SDF switches to the simulator, see your simulator
tool documentation.

Using NetGen

NetGen can optionally produce absolute minimum delay values for simulation by
applying the -s min switch. The resulting SDF file produced from NetGen has the
absolute process minimums populated in all three SDF fields: MIN, TYP, and MAX.

Absolute process MIN values are the absolute fastest delays that a path can run in the
target architecture given the best operating conditions within the specifications of the
architecture:

¢ lowest temperature
e highest voltage

e Dbest possible silicon

Generally, these process minimum delay values are only useful for checking board-level,
chip-to-chip timing for high-speed data paths in best/worst case conditions.

By default, the worst case delay values are derived from the worst temperature, voltage,
and silicon process for a particular target architecture. If better temperature and voltage
characteristics can be ensured during the operation of the circuit, you can use prorated
worst case values in the simulation to gain better performance results. The default would
apply worst case timing values over the specified TEMPERATURE and VOLTAGE within
the operating conditions recommended for the device.

Using the VOLTAGE and TEMPERATURE Constraints

Prorating is a linear scaling operation. It applies to existing speed file delays, and is applied
globally to all delays. The prorating constraints, the “VOLTAGE Constraint” and the
“TEMPERATURE Constraint”, provide a method for determining timing delay
characteristics based on known environmental parameters.

Synthesis and Simulation Design Guide www.xilinx.com 251
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

VOLTAGE Constraint

The VOLTAGE constraint provides a means of prorating delay characteristics based on the
specified voltage applied to the device. The UCF syntax is:

VOLTAGE=value[V]

where:
value

is an integer or real number specifying the voltage, and
units

is an optional parameter specifying the unit of measure.

TEMPERATURE Constraint

The TEMPERATURE constraint provides a means of prorating device delay characteristics
based on the specified junction temperature. The UCF syntax is:

TEMPERATURE=value[C|F|K]

where:
value

is an integer or a real number specifying the temperature, and
C, K, and F

are the temperature units:

e F=degrees Fahrenheit

o K =degrees Kelvin

e C =degrees Celsius (default)

The resulting values in the SDF fields when using prorated TEMPERATURE and
VOLTAGE values are the prorated worst case values.

To determine the specific range of valid operating temperatures and voltages for the target
architecture, see the product data sheet. If the temperature or voltage specified in the
constraint does not fall within the supported range, the constraint is ignored and an
architecture specific default value is used instead. Not all architectures support prorated
timing values. For simulation, the VOLTAGE and TEMPERATURE constraints are
processed from the UCF file into the PCF file. The PCF file must then be referenced when
running NetGen in order to pass the operating conditions to the delay annotator.

To generate a simulation netlist using prorating for VHDL, type:
netgen -sim -ofmt vhdl [options] -pcf design.pcf design.ncd
To generate a simulation netlist using prorating for Verilog, type:
netgen -sim -ofmt verilog [options] -pcf design.pcf design.ncd

Combining both minimum values overrides prorating, and results in issuing only absolute
process MIN values for the simulation SDF file. Prorating may be available only for select
FPGA families. It is not intended for military and industrial ranges. It is applicable only
within the commercial operating ranges.

252 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

ST XILINX®

Understanding the Global Reset and 3-state for Simulation

Table 6-14: NetGen Options

NetGen Option MIN:TYP:MAX Field in SDF File Produced by NetGen —sim
default MAX:-MAX:MAX
—s min Process MIN: Process MIN: Process MIN

Prorated voltage/temperature in UCF/PCF | Prorated MAX: Prorated MAX: Prorated MAX

Understanding the Global Reset and 3-state for Simulation

Xilinx FPGA devices have dedicated routing and circuitry that connects to every register in
the device. The dedicated global GSR (Global Set-Reset) net is asserted and is released
during configuration immediately after the device is configured. All the flip-flops and
latches receive this reset and are either set or reset, depending on how the registers are
defined.

Although you can access the GSR net after configuration, Xilinx does not recommend
using the GSR circuitry in place of a manual reset. This is because the FPGA devices offer
high-speed backbone routing for high fanout signals like a system reset. This backbone
route is faster than the dedicated GSR circuitry, and is easier to analyze than the dedicated
global routing that transports the GSR signal.

In back-end simulations, a GSR signal is automatically pulsed for the first 100 ns to
simulate the reset that occurs after configuration. A GSR pulse can optionally be supplied
in front end functional simulations, but is not necessary if the design has a local reset that
resets all registers. When you create a test bench, remember that the GSR pulse occurs
automatically in the back-end simulation. This holds all registers in reset for the first 100 ns
of the simulation. For more information about controlling the GSR pulse or inserting a GSR
pulse in the front end simulation, see “Simulating VHDL"” and “Simulating Verilog” in this
chapter.

In addition to the dedicated global GSR, all output buffers are set to a high impedance state
during configuration mode with the dedicated GTS (global output 3-state enable) net. All
general-purpose outputs are affected whether they are regular, 3-state, or bi-directional
outputs during normal operation. This ensures that the outputs do not erroneously drive
other devices as the FPGA is being configured.

In simulation, the GTS signal is usually not driven. The circuitry for driving GTS is
available in the back-end simulation and can be optionally added for the front end
simulation, but the GTS pulse width is set to 0 by default. For more information about
controlling the GTS pulse or inserting the circuitry to pulse GTS in the front end
simulation, see “Simulating VHDL” and “Simulating Verilog” in this chapter.

Synthesis and Simulation Design Guide www.xilinx.com 253

8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

The following figure shows how the global GTS and GSR signals are used in the FPGA.

1/0s Used for
Initialization User
Programmable
ACOCOEEE Latch/Register
Global Tri-State ‘ ‘ ‘ L{—W—HMD —D QF—
(GTS) | BE
Initializati T —|CE
User Tri-State D r&',it'f;}f,n MD
Enable D* ,MD —C
| 'GSR H CLR
1| GTS 1]
DM% User D
/o D:W Programmable :D
User Output Logic
Pad s Resources 1] A User
[X-| output Buter DW : o Sioba
|] - obal
H [T T [[T H
User Input I T O Set/Reset
I I | (GSR)
T B General Purpose X8352

Figure 6-2: Built-in FPGA Initialization Circuitry

Simulating VHDL

This section discusses simulation in VHDL.

Emulating the Global GSR Pulse in VHDL in Functional Simulation

Many HDL designs targeted for Xilinx FPGA devices have a user reset that initializes all
registers in the design during the functional simulation. For these designs, it is not
necessary to emulate the GSR pulse in the functional simulation. If the design contains
registers that are not connected to a user reset, the GSR pulse can be emulated to ensure
that the functional simulation matches the timing simulation. There are two methods that
can be used to emulate the GSR pulse:

e Use the ROC cell to generate a one-time GSR pulse at the beginning of the simulation.
See “Using VHDL Reset-On-Configuration (ROC) Cell” in this chapter.

e Use the ROCBUF cell to control the emulated GSR signal in the test bench. See”Using
VHDL ROCBUF Cell” in this chapter.

Using VHDL Reset-On-Configuration (ROC) Cell

The ROC cell, which is modeled in the UNISIM library, can be used to emulate the GSR
pulse at the beginning of a functional simulation. This is the same component that is
automatically inserted into the back-end netlist. It generates a one time pulse at the
beginning of the simulation that lasts for a default value of 100ns.

During implementation, the signal connected to the output of the ROC component will
automatically be mapped to the Global GSR network and will not be routed on local
routing.

Code Example

The following example shows how to use the ROC cell.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

254

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Simulating VHDL

library UNISIM;
use UNISIM.all;
entity EX_ROC is
port (
CLOCK, ENABLE : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0)
)i
end EX_ROC;
architecture A of EX _ROC is
signal GSR : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROC
port (O : out std_logic);
end component;
begin
Ul : ROC port map (O => GSR);

UP_COUNTER : process (CLOCK, ENABLE, GSR)

begin
if (GSR = '1l') then
COUNT_UP <= "0000";
elsif (CLOCK'event AND CLOCK = 'l') then
if (ENABLE = '1l') then
COUNT_UP <= COUNT_UP + "0001";
end if;
end if;

end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)

begin

if (GSR = 'l' OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK'event AND CLOCK = '1l') then
if (ENABLE = 'l') then

COUNT_DOWN <= COUNT_DOWN - "0001";

end if;

end if;

end process DOWN_COUNTER;
CUP <= COUNT_UP;
CDOWN <= COUNT_DOWN;

end A;

Synthesis and Simulation Design Guide www.xilinx.com 255
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

Progression of the ROC Model

The following figure shows the progression of the ROC model and its interpretation in the
four main design phases.

1. Behavioral 2. Synthesized
Inferred
-\ x FDCE FDPE
—D Q— —D Q— —D QF— —D Q—
_CKR _CKS _CKR —CKS
ROC ROC
GSR GSR
Mo Mo
Local Set Local Set
3. Implemented 4. Back-Annotated
FDCE FDPE
—D Q— —D Q— —D Q— —D Q—
]] —] CK —] CK
CK CK K CK ¢
GSR R GSR S
[[
I GSR | ROC
Local Set A o GSR
Local Set

X8348

Figure 6-3: ROC Simulation and Implementation

Behavioral Phase

In the behavioral phase, the behavioral or RTL description registers are inferred from the
coding style, and the ROC cell is instantiated. This ensures that GSR behavior at the RTL
level matches the behavior of the post-synthesis and implementation netlists.
Synthesized Phase

In the synthesized phase, inferred registers are mapped to a technology and the ROC
instantiation is carried from the RTL to the implementation tools. As a result, consistent
global set/reset behavior is maintained between the RTL and synthesized structural
descriptions during simulation.

Implemented Phase

During the implemented phase, the ROC is removed from the logical description and is
placed and routed as a pre-existing circuit on the chip. All set/resets for the registers are
automatically assumed to be driven by the global set/reset net so data is not lost.

Back-Annotated Phase
In the back-annotated phase, the Xilinx VHDL netlist program:

e assumes all buffers are driven by the GSR net

256

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Simulating VHDL

e uses the X_ROC simulation model for the ROC

e rewires it to the GSR nets in the back-annotated netlist

For a non-hierarchical netlist, the GSR net is a fully wired net and the X_ROC cell drives it.
For a hierarchical netlist, the GSR net is not wired across hierarchical modules. The GSR

net in each hierarchical module is driven by an X_ROC cell. The ROC pulse width of the
X_ROC component can be controlled using the -rpw switch for NetGen.

Using VHDL ROCBUF Cell

A second method of emulating GSR in the functional simulation is to use the ROCBUF.
This component creates a buffer for the global set/reset signal, and provides an input port
on the buffer to drive the global set reset line. This port must be declared in the entity list
and driven in RTL simulation.

This method is applicable when system-level issues make your design's initialization
synchronous to an off-chip event. In this case, you provide a pulse that initializes your
design at the start of simulation time, and you possibly provide further pulses as
simulation time progresses (perhaps to simulate cycling power to the device).

During the place and route process, this port is removed; it is not implemented on the chip.
ROCBUF does not by default reappear in the post-routed netlist unless the —gp switch is
used during NetGen netlisting. The nets driven by a ROCBUF must be an active High
set/reset.

Code Example
The following example illustrates how to use the ROCBUF in your designs.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

library UNISIM;
use UNISIM.all;

entity EX_ROCBUF is
port (
CLOCK, ENABLE, SRP : in std_logic;
CUP, CDOWN : out std_logic_vector (3 downto 0)
)i
end EX_ROCBUF;

architecture A of EX_ROCBUF 1is
signal GSR : std_logic;
signal COUNT_UP, COUNT_DOWN : std_logic_vector (3 downto 0);
component ROCBUF
port (
I : in std_logic;
O : out std_logic
)i
end component;
begin
Ul : ROCBUF port map (I => SRP, O => GSR);
UP_COUNTER : process (CLOCK, ENABLE, GSR)
begin
if (GSR = '1l') then
COUNT_UP <= "0000";
elsif (CLOCK'event AND CLOCK = '1') then

Synthesis and Simulation Design Guide www.xilinx.com 257

8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

if (ENABLE = '1l') then
COUNT_UP <= COUNT_UP + "0001";
end if;
end if;

end process UP_COUNTER;
DOWN_COUNTER : process (CLOCK, ENABLE, GSR, COUNT_DOWN)

begin

if (GSR = '1' OR COUNT_DOWN = "0101") then
COUNT_DOWN <= "1111";

elsif (CLOCK'event AND CLOCK = '1l') then
if (ENABLE = 'l') then

COUNT_DOWN <= COUNT_DOWN - "0001";

end if;

end if;

end process DOWN_COUNTER;
CUP <= COUNT_UP;
CDOWN <= COUNT_DOWN;

end A;

Progression of the ROC Model

The following figure shows the progression of the ROCBUF model and its interpretation in
the four main design phases.

1. Behavioral 2. Synthesized
Inferred
; \ FDCE FDPE
—D Q— —D Q— —D Q— —D Q—
—CKR —CKS ACKR 4CKS
ROCBUF ROCBUF
N GSR N GSR
L~ Local Set L~ Local Set
3. Implemented 4. Back-Annotated
FDCE FDPE
—D QF— —D QF— —D QF— —D QF—
] | — CK — CK
CK CK R s
GSR R GSR S
[[
__L___GSR__ |
GSR_PORT *
Local Set b GSR
Local Set
* With global reset port option X8349

Figure 6-4: ROCBUF Simulation and Implementation

Behavioral Phase

In the behavioral phase, the behavioral or RTL description registers are inferred from the
coding style, and the ROCBUF cell is instantiated. Use the ROCBUF cell instead of the ROC
cell when you want test bench control of GSR simulation.

258 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Simulating VHDL

Synthesized Phase

In the synthesized phase, inferred registers are mapped to a technology and the ROCBUF
instantiation is carried from the RTL to the implementation tools. As a result, consistent
global set/reset behavior is maintained between the RTL and synthesized structural
descriptions during simulation.

Implemented Phase

In the implemented phases, the ROCBUF is removed from the logical description of the
design and the global resources are used for the set/reset function.

Back-Annotated Phase

In the back-annotated phase, use the NetGen option —gp to replace the port that was
previously occupied by the ROCBUF in the RTL description of the design. A non-
hierarchical netlist will have this port drive the fully wired GSR signal. For hierarchical
designs, the GSR net is not wired across hierarchical modules. The VHDL global signal,
X_GSR_GLOBAL_SIGNAL, is used to connect the top level port created by the —gp switch
to the GSR signals of the hierarchical modules. Each hierarchical module contains an
X_ROCBUF cell, which is driven by X_GSR_GLOBAL_SIGNAL. The output of the
X_ROCBUF is connected to the GSR signal of the hierarchical module. Toggling the input
to the top level port affects the entire design. The X_GSR_GLOBAL_SIGNAL global signal
is defined in a package within the VHDL netlist. The package name is
design_name_ROCTOC.

If desired, each of the hierarchical modules can be written out as a separate netlist using
the NetGen —mhf switch to create multiple hierarchical files. This helps in analyzing lower
level modules individually. Every netlist contains the design_name_ROCTOC package
definition with X_GSR_GLOBAL_SIGNAL signal. When lower modules are simulated,
though X_ROCBUF is connected to X_GSR_GLOBAL_SIGNAL, there will be no event on
it. Hence the X_ROCBUF creates a pulse similar to X_ROC and the GSR of the module is
toggled. The ROC pulse width of the X_ROCBUF component can be controlled using the —
rpw switch for NetGen.

If all the modules, including the top level design module, are compiled and analyzed
together, the top level port created via the -gp switch would drive the
X_GSR_GLOBAL_SIGNAL and all X_ROCBUF cells. In this situation, the X_ROCBUF
component does not create a pulse, but rather behaves like a buffer passing on the value of
the X_GSR_GLOBAL_SIGNAL. The ROC pulse width of the X_ROCBUF component can
be controlled using the -rpw switch for NetGen.

Simulating Special Components in VHDL

The following section provides a description and examples of using special components,
such as the Block SelectRAM™ for Virtex.

Simulating CORE Generator Components in VHDL

For CORE Generator model simulation flows, see the CORE Generator Guide.

Differential 1/0 (LVDS, LVPECL)

When you target a Virtex-E or Spartan-IIE device, the inputs of the differential pair are
currently modeled with only the positive side. In contrast, the outputs have both pairs,
positive and negative. For more information, see Xilinx Answer Record 8187, “Virtex-E,
Spartan-IIE LVDS/LVPECL - How do I use LVDS/LVPECL I/O standards?”

Synthesis and Simulation Design Guide www.xilinx.com 259
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=8187
http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

This is not an issue for Virtex-II, Virtex-II Pro, Virtex-II Pro X, or Spartan-3, since the
differential buffers for Virtex-1I and later architectures now accept both the positive and
negative inputs. For newer devices, instantiate either an IBUFDS or IBUFGDS and connect
and simulate normally. Instantiation templates for these components can be found in the
ISE Project Navigator HDL Templates or the appropriate Xilinx HDL Libraries Guide.

Code Example

The following is an example of an instantiated differential I/O in a Virtex-E or
Spartan-1IE design.

entity lvds_ex is
port (
data: in std_logic;
data_op: out std_logic;
data_on: out std_logic
)i
end entity lvds_ex;
architecture lvds_arch of lvds_ex is
signal data_n_int : std_logic;
component OBUF_LVDS port (
I : in std_logic;
O : out std_logic
)
end component;
component IBUF_LVDS port (
I : in std_logic;
O : out std_logic
)i
end component;
begin
--Input side
I0: IBUF_LVDS port map (I => data), O =>data_int);
--Output side
OP0: OBUF_LVDS port map (I => data_int, O => data_op);
data_n_int = not(data_int);
ONO: OBUF_LVDS port map (I => data_n_int, O => data_on);
end arch_1lvds_ex;

Simulating Verilog

This section discusses simulation in Verilog.

Defining Global Signals in Verilog

The global set/reset and global 3-state signals are defined in the
$XILINX/verilog/src/glbl.v module. The VHDL UNISIM library contains the
ROC, ROCBUF, TOC, TOCBUF, and STARTBUEF cells to assist in VITAL VHDL simulation
of the global set/reset and 3-state signals. However, Verilog allows a global signal to be
modeled as a wire in a global module, and thus, does not contain these cells.

Using the glbl.v Module

The g1bl .v module connects the global signals to the design, which is why it is necessary
to compile this module with the other design files and load it along with the design.v file
and the testfixture.v file for simulation.

260 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=8.1i&topic=online+books&sub=docs/lib/lib.pdf

S XILINX® Simulating Verilog

Defining GSR/GTS in a Test Bench

In most cases, GSR and GTS need not be defined in the test bench. The glbl . v file declares
the global GSR and GTS signals and automatically pulses GSR for 100 ns. This is all that is
necessary for back-end simulations and is generally all that is necessary for functional
simulations. If GSR or GTS needs to be emulated in the functional simulation, then it is
necessary to add GSR and GTS to the test bench and connect them to the user defined
global signals. This is discussed in more detail in the following section.

Note: The terms “test bench” and “test fixture” are used synonymously throughout this guide.

Emulating the Global GSR in a Verilog Functional Simulation

Many HDL designs that target Xilinx FPGA devices have a user reset that initializes all
registers in the design during the functional simulation. For these designs, it is not
necessary to emulate the GSR pulse that occurs after the device is configured. If the design
contains registers that are not connected to a user reset, the GSR pulse can be emulated to
ensure that the functional simulation matches the timing simulation.

In the design code, declare a GSR as a Verilog wire. The GSR is not specified in the port list
for the module. Describe the GSR to reset or set every inferred register or latch in your
design. GSR need not be connected to any instantiated registers or latches, as the UNISIM
models for these components connect to GSR directly. This is shown in the following
example.

Code Example

module my_counter (CLK, D, Q, COUT);
input CLK, D;

output Q;

output [3:0] COUT;

wire GSR;
reg [3:0] COUT;

always @ (posedge GSR or posedge CLK)
begin
if (GSR == 1'Dbl)
COUT = 4'h0;
else
COUT = COUT + 1'bl;
end
// GSR is modeled as a wire within a global module.
// So, CLR does not need to be connected to GSR and
// the flop will still be reset with GSR.
FDCE UO (.Q (Q), .D (D), .C (CLK), .CE (1'bl), .CLR (1'b0));
endmodule

Since GSR is declared as a floating wire and is not in the port list, the synthesis tool
optimizes the GSR signal out of the design. GSR is replaced later by the implementation
software for all post-implementation simulation netlists.

Synthesis and Simulation Design Guide www.xilinx.com 261
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

Simulating Special Components in Verilog

The following section provides descriptions and examples of simulating special
components for Virtex.

Defparam Support Considerations

Some synthesis tools do not support the use of defparams to attach attributes. If your
synthesis tool does not support defparams, use the special meta comment to make the code
visible only to the simulator. Place the meta comments immediately before and after the
defparam declarations and mappings as follows:

// synthesis translate_off
defparam UO.INIT = 2'b01;
// synthesis translate_off

The attributes can then be passed to the implementation tools by defining them in the UCF
file. Alternatively, the synthesis tool may support a mechanism to pass these attributes
directly from the Verilog file without using the generics. For more information on attribute
passing, see your synthesis tool documentation.

Differential 1/0 (LVDS, LVPECL)

For Virtex-E and Spartan-IIE families, the inputs of the differential pair are currently
modeled with only the positive side, whereas the outputs have both pairs, positive and
negative. For more information, see Xilinx Answer Record 8187, “Virtex-E, Spartan-1IE
LVDS/LVPECL - How do I use LVDS/LVPECL I/O standards?”

This is not an issue for Virtex-1I, Virtex-II Pro, Virtex-II Pro X, or Spartan-3, since the
differential buffers for Virtex-II and later architectures now accept both the positive and
negative inputs. For newer devices, instantiate either an IBUFDS or IBUFGDS and connect
and simulate normally. Instantiation templates for these components can be found in the
ISE Project Navigator HDL Templates or the appropriate Xilinx Libraries Guide.

The following is an example of an instantiated differential I/O in a Virtex-E or
Spartan-IIE design.

module 1lvds_ex (data, data_op, data_on);
input data;
output data_op, data_on;

// Input side
IBUF_LVDS I0 (.I (data), .0 (data_int));

// Output side

OBUF_LVDS OP0O (.I (data_int), .0 (data_op));
wire data_n_int = ~data_int;
OBUF_LVDS ONO (.I (data_n_int), .0 (data_on));
endmodule
262 www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=8187
http://www.xilinx.com

S XILINX® Design Hierarchy and Simulation

Simulation CORE Generator Components

The simulation flow for CORE Generator models is described in the CORE Generator Guide.

Design Hierarchy and Simulation

Most FPGA designs are partitioned into levels of hierarchy. This section discusses design
hierarchy and simulation.

Advantages of Hierarchy
Hierarchy:

e Makes the design easier to read
e Makes the design easier to re-use
e Allows partitioning for a multi-engineer team

e Improves verification

Improving Design Utilization and Performance

To improve design utilization and performance, the synthesis tool or the Xilinx
implementation tools often flatten or modify the design hierarchy. After this flattening and
restructuring of the design hierarchy in synthesis and implementation, it may become
impossible to reconstruct the hierarchy. As a result, much of the advantage of using the
original design hierarchy in RTL verification is lost in back-end verification. In order to
improve visibility of the design for back-end simulation, the Xilinx design flow allows for
retention of the original design hierarchy with this described methodology.

To allow preservation of the design hierarchy through the implementation process with
little or no degradation in performance or increase in design resources, stricter design rules
should be followed and design hierarchy should be carefully selected so that optimization
is not necessary across the design hierarchy.

Good Design Practices

Some good design practices to follow are:

e Register all outputs exiting a preserved entity or module.
e Do not allow critical timing paths to span multiple entities or modules.
e Keep related or possibly shared logic in the same entity or module.

e Place all logic that is to be placed or merged into the I/O (such as IOB registers, three
state buffers, and instantiated I/O buffers) in the top-level module or entity for the
design. This includes double-data rate registers used in the I/O.

¢ Manually duplicate high-fanout registers at hierarchy boundaries if improved timing
is necessary.

Synthesis and Simulation Design Guide www.xilinx.com 263
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

Maintaining the Hierarchy

To maintain the entire hierarchy (or specified parts of the hierarchy) during synthesis, the
synthesis tool must first be instructed to preserve hierarchy for all levels (or for each
selected level of hierarchy). This may be done with:

e aglobal switch

e a compiler directive in the source files

¢ asynthesis command.

For more information on how to retain hierarchy, see your synthesis tool documentation.

After taking the necessary steps to preserve hierarchy, and properly synthesizing the
design, the synthesis tool creates a hierarchical implementation file (EDIF or NGC) that
retains the hierarchy.

Using the KEEP_HIERARCHY Constraint

Before implementing the design with the Xilinx software, place a KEEP_HIERARCHY
constraint on each instance in the design in which the hierarchy is to be preserved. This
tells the Xilinx software which parts of the design should not be flattened or modified to
maintain proper hierarchy boundaries.

This constraint may be passed in the source code as an attribute, as an instance constraint
in the NCF or UCFfile, or may be automatically generated by the synthesis tool. For more
information on this process, see your synthesis tool documentation. For more information
on the KEEP_HIERARCHY constraint, see the Xilinx Constraints Guide.

After the design is mapped, placed, and routed, run NetGen using the following
parameters to properly back-annotate the hierarchy of the design.

netgen -sim -ofmt {vhdl|verilog}design_name.ncd netlist_name

This is the NetGen default when you use ISE or XFLOW to generate the simulation files. It
is only necessary to know this if you plan to execute NetGen outside of ISE or XFLOW, or
if you have modified the default options in ISE or XFLOW. When you run NetGen in the
preceding manner, all hierarchy that was specified to KEEP_HIERARCHY is reconstructed
in the resulting VHDL or Verilog netlist.

NetGen can write out a separate netlist file and SDF file for each level of preserved
hierarchy. This capability allows for full timing simulation of individual portions of the
design, which in turn allows for:

e greater test bench re-use
e team-based verification methods

e the potential for reduced overall verification times

Use the —mhf switch to produce individual files for each KEEP_HIERARCHY instance in
the design. You can also use the -mhf switch together with the —dir switch to place all
associated files in a separate directory.

netgen -sim -ofmt {vhd1|verilog} -mhf -dir

directory_name design_name.ncd

When you run NetGen with the =mhf switch, NetGen produces a text file called
design_mhf_info.txt. This file lists all produced module/entity names, their
associated instance names, SDF files, and sub modules. This file is useful for determining
proper simulation compile order, SDF annotation options, and other information when
you use one or more of these files for simulation.

264

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Design Hierarchy and Simulation

Example File

The following is an example of an mhf_info. txt file for a VHDL produced netlist:

//
//
//
//
//
//
//
//
//
//
//
//
//
//

Xilinx design hierarchy information file produced by netgen (I.23)
The information in this file is useful for
- Design hierarchy relationship between modules

- Bottom up compilation order
- SDF file annotation

Design Name

Module
Instance

Design File

SDF File
SubModule

Module,

Module
Instance
Design File
SDF File
SubModule

Module
Instance
Design File
SDF File
SubModule

Module
Instance
Design File
SDF File
SubModule

Module
Instance
Design File
SDF File
SubModule

Module
Instance
Design File
SDF File
SubModule
Module
Module

Module
Instance
Design File
SDF File
SubModule

Module
Instance

stopwatch

(VHDL simulation)
(VHDL simulation)

The name of the hierarchical design module.
The instance name used in the parent module.
The name of the file that contains the module.
The SDF file associated with the module.

The sub module(s)

Instance

contained within a given module.
The sub module and instance names.

hex2led_1

msbled
hex2led_1_sim.vhd
hex2led_1_sim.sdf
NONE

hex2led

1sbled
hex2led_sim.vhd
hex2led_sim.sdf
NONE

smallcntr_1
lsbcount
smallcntr_1_sim.vhd
smallcntr_ 1 sim.sdf
NONE

smallcntr
msbcount
smallcntr_sim.vhd
smallcntr_sim.sdf
NONE

cnt60

sixty

cnt60_sim.vhd
cnt60_sim.sdf
smallcntr, smallcntr_1

smallcntr, Instance msbcount
smallcntr_1, Instance lsbcount
decode

decoder

decode_sim.vhd
decode_sim.sdf
NONE

dcml
Inst_dcml

Synthesis and Simulation Design Guide

8.1i

www.Xxilinx.com

265

http://www.xilinx.com

Chapter 6: Simulating Your Design

SXILINX®

Design File :
: deml_sim.sdf
: NONE

SDF File
SubModule

Module
Instance

SDF File
SubModule

Module

Design File :

SDF File
SubModule

Module :
Module :
Module :
Module :
Module :
Module :

dcml_sim.vhd

statmach

: MACHINE
Design File :

statmach_sim.vhd
statmach_sim.sdf

: NONE

stopwatch

stopwatch_timesim.vhd

stopwatch_timesim.sdf

statmach, dcml, decode, cnt60, hex2led, hex2led_1
statmach, Instance : MACHINE

dcml, Instance : Inst_dcml

decode, Instance : decoder

cnt60, Instance sixty

hex2led, Instance lsbled

hex2led_1, Instance : msbled

Note: Hierarchy created by generate statements may not match the original simulation due to
naming differences between the simulator and synthesis engines for generated instances.

RTL Simulation Using Xilinx Libraries

Since Xilinx simulation libraries are VHDL-93 and Verilog-2001 compliant, they can be
simulated using any simulator that supports these language standards. However, certain
delay and modelling information is built into the libraries, which is required to correctly
simulate the Xilinx hardware devices.

Xilinx recommends not changing data signals at clock edges, even for functional
simulation. The simulators add a unit delay between the signals that change at the same
simulator time. If the data changes at the same time as a clock, it is possible that the data
input will be scheduled by the simulator to occur after the clock edge. Thus, the data will
not go through until the next clock edge, although it is possible that the intent was to have
the data get clocked in before the first clock edge. To avoid any such unintended
simulation results, Xilinx recommends not switching data signals and clock signals

simultaneously.

Simulating Certain Xilinx Components

This section discusses Xilinx Block RAM (RAMB4/RAMB16) models. The UNISIM dual-
port block RAM models have a built-in collision checking function that monitors reads and
writes to each port, and reports violations if data is improperly handled for the RAM.
While this is reported similarly to a timing violation, in reality, it is warning of a potential
functionality issue for the design. If you receive any collision warnings from the UNISIM
dual-port block RAM models during functional simulation, you should investigate the
warning to ensure it will not have any negative impact on the end design functionality.
Generally, this is best handled either by trying to re-code to avoid such errors or by
ensuring that the data written or received from the RAM will be discarded as the actual
value cannot be determined and therefore should not be used.

266

www.xilinx.com Synthesis and Simulation Design Guide

8.1i

http://www.xilinx.com

ST XILINX® RTL Simulation Using Xilinx Libraries

CLKDLL, DCM and DCM_ADV

This section discusses the following:

e “CLKDLL/DCM Clocks Do Not Appear De-Skewed”

e “TRACE/Simulation Model Differences”

e “Non-LVTTL Input Drivers”

e “Viewer Considerations”

e “Attributes for Simulation and Implementation”

e “Simulating the DCM in Digital Frequency Synthesis Mode Only”
e “JTAG / BSCAN (Boundary Scan) Simulation”

CLKDLL/DCM Clocks Do Not Appear De-Skewed

The CLKDLL and DCM components remove the clock delay from the clock entering into
the chip. As a result, the incoming clock and the clocks feeding the registers in the device
have a minimal skew within the range specified in the databook for any given device.
However, in timing simulation, the clocks may not appear to be de-skewed within the
range specified. This is due to the way the delays in the SDF file are handled by some
simulators.

The SDF file annotates the CLOCK PORT delay on the X_FF components. However, some
simulators may show the clock signal in the waveform viewer before taking this delay into
account. If it appears that the simulator is not properly de-skewing the clock, see your
synthesis tool documentation to find out if it is not displaying the input port delays in the
waveform viewer at the input nodes. If this is the case, then when the CLOCK PORT delay
on the X_FF is added to the internal clock signal, it should line up within the device
specifications in the waveform viewer with the input port clock. The simulation is still
functioning properly, the waveform viewer is just not displaying the signal at the expected
node. To verify that the CLKDLL/DCM is functioning correctly, delays from the SDF file
may need to be accounted for manually to calculate the actual skew between the input and
internal clocks.

TRACE/Simulation Model Differences

To fully understand the simulation model, you must first understand that there are
differences in the way the DLL/DCM is built in silicon, the way TRACE reports their
timing, and the way the DLL/DCM is modeled for simulation. The DLL/DCM simulation
model attempts to replicate the functionality of the DLL/DCM in the Xilinx silicon, but it
does not always do it exactly how it is implemented in the silicon. In the silicon, the
DLL/DCM uses a tapped delay line to delay the clock signal. This accounts for input delay
paths and global buffer delay paths to the feedback in order to accomplish the proper clock
phase adjustment. TRACE or Timing Analyzer reports the phase adjustment as a simple
delay (usually negative) so that you can adjust the clock timing for static timing analysis.

As for simulation, the DLL/DCM simulation model itself attempts to align the input clock
to the clock coming back into the feedback input. Instead of putting the delay in the DLL or
DCM itself, the delays are handled by combining some of them into the feedback path as
clock delay on the clock buffer (component) and clock net (port delay). The remainder is
combined with the port delay of the CLKFB pin. While this is different from the way
TRACE or Timing Analyzer reports it, and the way it is implemented in the silicon, the end
result is the same functionality and timing. TRACE and simulation both use a simple delay
model rather than an adjustable delay tap line similar to silicon.

Synthesis and Simulation Design Guide www.xilinx.com 267
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

The primary job of the DLL/DCM is to remove the clock delay from the internal clocking
circuit as shown in the following figure.

CLEQUT Fi
- Variable LR Digtrbution
CLEIN Cieliy Ling Halwork

CLEFE

rild_H_DedTaE

Figure 6-5: Delay Locked Loop Block Diagram

Do not confuse this with the function of de-skewing the clock. Clock skew is generally
associated with delay variances in the clock tree, which is a different matter. By removing
the clock delay, the input clock to the device pin should be properly phase aligned with the
clock signal as it arrives at each register it is sourcing. This means that observing signals at
the DLL/DCM pins generally does not give the proper view point to observe the removal
of the clock delay. The place to see if the DCM is doing its job is to compare the input clock
(at the input port to the design) with the clock pins of one of the sourcing registers. If these
are aligned (or shifted to the desired amount) then the DLL/DCM has accomplished its
job.

Non-LVTTL Input Drivers

When using non-LVTTL input buffer drivers to drive the clock, the DCM does not make
adjustments as to the type of input buffer chosen, but instead has a single delay value to
provide the best amount of clock delay across all I/O standards. If you are using the same
input standard for the data, the delay values should track, and generally not cause a
problem. Even if you are not using the same input standard, the amount of delay variance
generally does not cause hold time failures because the delay variance is small compared
to the amount of input delay. The delay variance is calculated in both static timing analysis
and simulation so you should see proper setup time values during static timing analysis,
as well as during simulation.

Viewer Considerations

Depending on which simulator you use, the waveform viewer might not depict the delay
timing the way you expect to see it. Some simulators, including the current version of MTI
ModelSim, combine interconnect delays (either interconnect or port delays) with the input
pins of the component delays when you view the waveform on the waveform viewer. In
terms of the simulation, the results are correct, but in terms of what you see in the
waveform viewer, this may not always be what you expect to see.

Since interconnect delays are combined, when you look at a pin using the MTI ModelSim
viewer, you do not see the transition as it happens on the pin. In terms of functionality, the
simulation acts properly, and this is not very relevant, but when attempting to calculate
clock delay, the interconnect delays before the clock pin must be taken into account if the
simulator you are using combines these interconnect delays with component delays. For

268

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX® RTL Simulation Using Xilinx Libraries

more information, see Xilinx Answer Record 11067, “ModelSim Simulations: Input and
Output clocks of the DCM and CLKDLL models do not appear to be de-skewed (VHDL, Verilog).”

Attributes for Simulation and Implementation

Make sure that the same attributes are passed for simulation and implementation. During
implementation of the design, DLL/DCM attributes may be passed either by the synthesis
tool (via a synthesis attribute, generic or defparam declaration), or within the UCF file. For
RTL simulation of the UNISIM models, the simulation attributes must be passed via a
generic (VHDL), or inline parameters (Verilog).

If you do not use the default setting for the DLL/DCM, make sure that the attributes for
RTL simulation are the same as those used for implementation. If not, there may be
differences between RTL simulation and the actual device implementation.

To make sure that the attributes passed to implementation are the same as those used for
simulation, use the generic mapping method (VHDL) or inline parameter passing
(Verilog), provided your synthesis tool supports these methods for passing functional
attributes.

Simulating the DCM in Digital Frequency Synthesis Mode Only

To simulate the DCM in Digital Frequency Synthesis Mode only, set the CLK_FEEDBACK
attribute to NONE and leave the CLKFB unconnected. The CLKFX and CLKFX180 are
generated based on CLKEX_MULTIPLY and CLKFX_DIVIDE attributes. These outputs do
not have phase correction with respect to CLKIN.

JTAG / BSCAN (Boundary Scan) Simulation

Simulation of the BSCAN component is now supported for the Virtex-4 architecture. The
simulation supports the interaction of the JTAG ports and some of the JTAG operation
commands. Full support of the JTAG interface, including interface to the scan chain, is
planned for a future release, but is not currently supported. In order to simulate this
interface:

1. Instantiate the BSCAN_VIRTEX4 component and connect it to the design.
2. Instantiate the JTAG_SIM_VIRTEX4 component into the test bench (not the design).

This becomes:

e the interface to the external JTAG signals (such as TDI, TDO, and TCK).

¢ the communication channel to the BSCAN component

The communication between the components takes place in the VPKG VHDL package file
or the glbl Verilog global module. Accordingly, no implicit connections are necessary
between the JTAG_SIM_VIRTEX4 component and the design or the BSCAN_VIRTEX4
symbol.

Stimulus can be driven and viewed from the JTAG_SIM_VIRTEX4 component within the
test bench to understand the operation of the JTAG/BSCAN function. Instantiation
templates for both of these components are available in both the ISE HDL Templates in
Project Navigator and the Virtex-4 Libraries Guide.

Synthesis and Simulation Design Guide www.xilinx.com 269
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=11067
http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

Timing Simulation

In back annotated (timing) simulation, the introduction of delays can cause the behavior to
be different from what is expected. Most problems are caused due to timing violations in
the design, and are reported by the simulator. However, there are a few other situations
that can occur.

Glitches in Your Design

When a glitch (small pulse) occurs in an FPGA circuit or any integrated circuit, the glitch
may be passed along by the transistors and interconnect (transport) in the circuit, or it may
be swallowed and not passed (internal) to the next resource in the FPGA. This depends on
the width of the glitch and the type of resource the glitch passes through. To produce more
accurate simulation of how signals are propagated within the silicon, Xilinx models this
behavior in the timing simulation netlist.

For VHDL simulation, there are two library components (X_BUF_PP and X_TRI_PP) in
which proper values are annotated for pulse rejection in the simulation netlist. The result
of these constructs in the simulation netlists is a more true-to-life simulation model, and
therefore a more accurate simulation.

For Verilog simulation, this information is passed by the PATHPULSE construct in the SDF
file. This construct is used to specify the size of pulses to be rejected or swallowed on
components in the netlist.

Debugging Timing Problems

In back-annotated (timing) simulation, the simulator takes into account timing
information that resides in the standard delay format (SDF) file. This may lead to eventual
timing violations issued by the simulator if the circuit is operated too fast or has
asynchronous components in the design. This section explains some of the more common
timing violations, and gives advice on how to debug and correct them.

Identifying Timing Violations
After you run timing simulation, check the messages generated by your simulator. If you

have timing violations, they are indicated by warning or error messages.

The following example is a typical setup violation message from MTI ModelSim for a
Verilog design. Message formats vary from simulator to simulator, but all contain the same
basic information. For more information, see your simulator tool documentation.

** Error:/path/to/xilinx/verilog/src/simprims/X_RAMD16.v(96) :
Ssetup (negedge WE:29138 ps, posedge CLK:29151 ps, 373 ps);
Time:29151 ps Iteration:0 Instance: /test_bench/ul/\Ul/X_RAMD16\

Line One

** Error:/path/to/xilinx/verilog/src/simprims/X_RAMD16.v(96) :

Line One points to the line in the simulation model that is in error. In this example, the
failing line is line 96 of the Verilog file, X_RAMD16.

270 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Timing Simulation

Line Two
Ssetup (negedge WE:29138 ps, posedge CLK:29151 ps, 373 ps);
Line Two gives information about the two signals that caused the error:

o The type of violation (for example, $setup, $hold, or $recovery). This example is a
$setup violation.

e The name of each signal involved in the violation, followed by the simulation time at
which that signal last changed values. In this example, the failing signals are the
negative-going edge of the signal WE, which last changed at 29138 picoseconds, and
the positive-going edge of the signal CLK, which last changed at 29151 picoseconds.

¢ The allotted amount of time for the setup. In this example, the signal on WE should be
stable for 373 pico seconds before the clock transitions. Since WE changed only 13 pico
seconds before the clock, this violation was reported.

Line Three
Time:29151 ps Iteration:0 Instance: /test_bench/ul/\Ul/X_RAMD16\

Line Three gives the simulation time at which the error was reported, and the instance in
the structural design (time_sim) in which the violation occurred.

Verilog System Timing Tasks

Verilog system tasks and functions are used to perform simulation related operations such
as monitoring and displaying simulation time and associated signal values at a specific
time during simulation. All system tasks and functions begin with a dollar sign, for
example $setup. For information about specific system tasks, see the Verilog Language
Reference Manual available from IEEE.

Timing check tasks may be invoked in specific blocks to verify the timing performance of
a design by making sure critical events occur within given time limits. Timing checks
perform the following steps:

¢ Determine the elapsed time between two events.
e Compare the elapsed time to a specified limit.

¢ If the elapsed time does not fall within the specified time window, report timing
violation.

The following system tasks may be used for performing timing checks:

$hold $setup
$nochange $setuphold
$period $skew

$recovery $width

VITAL Timing Checks

VITAL (VHDL Initiative Towards ASIC Libraries) is an addition to the VHDL specification
that deals with adding timing information to VHHDL models. One of the key aspects of
VITAL is the specification of the package vital_timing. This package includes standard
procedures for performing timing checks.

Synthesis and Simulation Design Guide www.xilinx.com 271
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

The package vital_timing defines the following timing check procedures:

e VitalSetupHoldCheck

e VitalRecoveryRemovalCheck
e VitallnPhaseSkewCheck

e VitalOutPhaseSkewCheck

e VitalPeriodPulseCheck.

VitalSetupHoldCheck is overloaded for use with test signals of type Std_Ulogic or
Std_Logic_Vector. Each defines a CheckEnabled parameter that supports the modeling of
conditional timing checks. For more information about specific VITAL timing checks, see
the VITAL Language Reference Manual available from IEEE.

Timing Problem Root Causes

Timing violations, such as $setuphold, occur any time data changes at a register input
(either data or clock enable) within the setup or hold time window for that particular
register. There are a few typical causes for timing violations. The most common are:

e “Design Not Constrained”

e “Path Not or Improperly Constrained”

e “Design Does Not Meet Timespec”

e “Simulation Clock Does Not Meet Timespec”
e “Unaccounted Clock Skew”

e “Asynchronous Inputs, Asynchronous Clock Domains, Crossing Out-of-Phase”

Design Not Constrained

Timing constraints are essential to help you meet your design goals and obtain the best
implementation of your circuit. Global timing constraints cover most constrainable paths
in a design. These global constraints cover clock definitions, input and output timing
requirements, and combinatorial path requirements. Specify global constraints such as
PERIOD, OFFSET_IN_BEFORE, and OFFSET_OUT_AFTER to match your simulation
stimulus with the timespecs of the devices used in the design.

PERIOD

The PERIOD constraint can be quickly applied to a design. It also leads in the support of
OFFSET, which you can use to specify your I/O timing. This works well for a single-clock
design, or multi-clock design that is not multi-cycle.

FROM-TO

This constraint works well with more complicated timing paths. Designs that are multi-
cycle or have paths that cross clock domains are better handled this way. For I/O, however,
you must add/subtract the delay of the global buffer. Note that using an OFFSET before
for input and an OFFSET after for output is supported without the need to specify a
period, so you can use the advantages of both.

272 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Timing Simulation

Additional Resources
For more information on constraining your design, see the following.

e The Xilinx Constraints Guide lists all of the Xilinx constraints along with explanations
and guides to their usage. For more information on constraining timing to achieve
optimum results, see the Xilinx Constraints Guide, “Timing Constraint Strategies.”

e Timing & Constraints on the Xilinx Support website provides a wealth of material,
including What’s New, Latest Answers, Documentation, and FAQ.

¢ The Timing Improvement Wizard provides suggestions for improving failing paths,
and can help you find answers to your specific timing questions. The Timing
Improvement Wizard is available from the Problem Solvers section of the Xilinx
Support website.

Path Not or Improperly Constrained

Unconstrained or improperly constrained data and clock paths are the most common
sources of setup and hold violations. Because data and clock paths can cross domain
boundaries, global constraints are not always adequate to ensure that all paths are
constrained. For example, a global constraint, such as PERIOD, does not constrain paths
that originate at an input pin, and data delays along these paths could cause setup
violations.

Use Timing Analyzer to determine the length of an individual data or clock path. For input
paths to the design, if the length of a data path minus the length of the corresponding clock
path, plus any data delay, is greater than the clock period, a setup violation occurs.

clock period < data path - clock path + data delay value setup value for
register

For more information on constraining paths driven by input pins, see the Xilinx Constraints
Guide, “Timing Constraint Strategies.” For other constraints resources, see “Design Not
Constrained” in this chapter.

Design Does Not Meet Timespec

Xilinx software enables you to specify precise timing requirements for your Xilinx FPGA

designs. Specify the timing requirements for any nets or paths in your design. The primary
way to specify timing requirements is to assign timing constraints. You can assign timing
constraints in:

e the Xilinx Constraints Editor

e your synthesis tool

e the User Constraint File (UCF)

For more information on entering timing specifications, see the Xilinx Development System

Reference Guide. For more information about the constraints you can use with your
schematic entry software, see the Xilinx Constraints Guide.

Once you define timing specifications, use TRACE (Timing Report, Circuit Evaluator, and
TSI Report) or Timing Analyzer to analyze the results of your timing specifications.
Review the timing report carefully to make sure that all paths are constrained, and that the
constraints are specified properly. Check for any error messages in the report.

If your design still does not meet timespec after you apply timing constraints, see your tool
documentation for additional options to improve timing performance.

Synthesis and Simulation Design Guide www.xilinx.com 273
8.1i

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_tt_product.jsp?BV_UseBVCookie=yes&sProduct=Timing%2fConstraints
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=problem+solvers

Chapter 6: Simulating Your Design 27 XILINX®

If these additional options do not sufficiently improve timing performance, you may need
to edit your source code to reconfigure parts of your design. Re-structuring code can
reduce the levels of logic without necessarily changing end functionality, thereby reducing
timing delays.

Simulation Clock Does Not Meet Timespec

If the frequency of the clock specified during simulation is greater than the frequency of
the clock specified in the timing constraints, this over-clocking can cause timing violations.
For example, if the simulation clock has a frequency of 5 ns, and a PERIOD constraint is set
at 10 ns, a timing violation can occur. This situation can also be complicated by the
presence of DLL or DCM in the clock path.

This problem is usually caused either by an error in the test bench or either by an error in
the constraint specification. Make sure that the constraints match the conditions in the test
bench, and correct any inconsistencies. If you modify the constraints, re-run the design
through place and route to make sure that all constraints are met.

Unaccounted Clock Skew

Clock skew is the difference between the amount of time the clock signal takes to reach the
destination register, and the amount of time the clock signal takes to reach the source
register. The data must reach the destination register within a single clock period plus or
minus the amount of clock skew. Clock skew is generally not a problem when you use
global buffers; however, clock skew can be a concern if you use the local routing network
for your clock signals.

To determine if clock skew is the problem, run a setup test in TRACE and read the report.
For directions on how to run a setup check, see the Xilinx Development System Reference
Guide, “TRACE.” For information on using Timing Analyzer to determine clock skew, see
the Timing Analyzer help.

Clock skew is modeled in the simulation, but not in TRACE, unless you invoke TRACE
using the -skew switch. Simulation results may not equal TRACE results if the skew is
significant (as when a non-BUFG clock is used). To account for skew in TRACE, use the
following command:

trce -skew
or set the following environment variable:
setenv XILINX_DOSKEWCHECK yes

If your design has clock skew, consider redesigning your path so that all registers are tied
to the same global buffer. If that is not possible, consider using the USELOWSKEWLINES
constraint to minimize skew. For more information on USELOWSKEWLINES, see the
Xilinx Constraints Guide.

Do not use the XILINX_DOSKEWCHECK environment variable with PAR. If you have
clocks on local routing, the PAR timing score may oscillate. This is because the timing score
is a function of both a clock delay and the data delay, and attempts to make the data path
faster may make the clock path slower, or vice versa. It should only be used within PAR on
designs with paths that make use of global clock resources.

274

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Timing Simulation

Asynchronous Inputs, Asynchronous Clock Domains, Crossing Out-of-Phase

Timing violations can be caused by data paths that:

e are not controlled by the simulation clock
e are not clock controlled at all

e cross asynchronous clock boundaries

e have asynchronous inputs

e cross data paths out of phase

Asynchronous Clocks

If the design has two or more clock domains, any path that crosses data from one domain
to another can cause timing problems. Although data paths that cross from one clock
domain to another are not always asynchronous, it is always best to be cautious.

Always treat the following as asynchronous:

e Two clocks with unrelated frequencies
¢ Any clocking signal coming from off-chip

* Any time a register’s clock is gated (unless extreme caution is used)

To see if the path in question crosses asynchronous clock boundaries, check the source code
and the Timing Analyzer report. If your design does not allow enough time for the path to
be properly clocked into the other domain, you may have to redesign your clocking
scheme. Consider using an asynchronous FIFO as a better way to pass data from one clock
domain to another.

Asynchronous Inputs

Data paths that are not controlled by a clocked element are asynchronous inputs. Because
they are not clock controlled, they can easily violate setup and hold time specifications.

Check the source code to see if the path in question is synchronous to the input register. If
synchronization is not possible, you can use the ASYNC_REG constraint to work around
the problem. For more information, see “Using the ASYNC_REG Constraint” in this
chapter.

Out of Phase Data Paths

Data paths can be clock controlled at the same frequency, but nevertheless can have setup
or hold violations because the clocks are out of phase. Even if the clock frequencies are a
derivative of each other, improper phase alignment could cause setup violations.

To see if the path in question crosses another path with an out of phase clock, check the
source code and the Timing Analyzer report.

Debugging Tips
When you are faced with a timing violation, ask the following questions:

e Was the clock path analyzed by TRACE or Timing Analyzer?

e Did TRACE or Timing Analyzer report that the data path can run at speeds being
clocked in simulation?

e Is clock skew being accounted for in this path delay?

Synthesis and Simulation Design Guide www.xilinx.com 275
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

¢ Does subtracting the clock path delay from the data path delay still allow clocking
speeds?

e Will slowing down the clock speeds eliminate the $setup/$hold time violations?

¢ Does this data path cross clock boundaries (from one clock domain to another)? Are
the clocks synchronous to each other? Is there appreciable clock skew or phase
difference between these clocks?

¢ If this path is an input path to the device, does changing the time at which the input
stimulus is applied eliminate the $setup/$hold time violations?

Based on the answers to these questions, you may need to make changes to your design or
test bench to accommodate the simulation conditions.

Special Considerations for Setup and Hold Violations

This section discusses special considerations for setup and hold violations.

Zero Hold Time Considerations

While Xilinx data sheets report that there are zero hold times on the internal registers and
I/0O registers with the default delay and using a global clock buffer, it is still possible to
receivea $hold violation from the simulator. This $hold violation is really a $setup
violation on the register. However, in order to get an accurate representation of the CLB
delays, part of the setup time must be modeled as a hold time.

Negative Hold Times

In older versions of Xilinx simulation models, negative hold times were truncated and
specified as zero hold times. While this does not cause inaccuracies for simulation, it does
reveal a more pessimistic model in terms of timing than is possible in the actual FPGA
device. Therefore, this made it more difficult to meet stringent timing requirements.

Negative hold times are now specified in the timing models to provide a wider, yet more
accurate representation, of the timing window. This is accomplished by combining the
setup and hold parameters for the synchronous models into a single setuphold parameter
in which the timing for the setup /hold window can be expressed. This should not change
the timing simulation methodology in any way; however, when using Cadence NC-
Verilog, there are no longer separate violation messages for setup and hold. They are now
combined into a single setuphold violation.

RAM Considerations

Timing Violations

Xilinx devices contain two types of memories, block RAM and distributed RAM. Both
block RAM and distributed RAM are synchronous elements when you write data to them,
so the same precautions must be taken as with all synchronous elements to avoid timing
violations. The data input, address lines, and enables, all must be stable before the clock
signal arrives to guarantee proper data storage.

Collision Checking

Block RAMs also perform synchronous read operations. During a read cycle, the addresses
and enables must therefore be stable before the clock signal arrives, or a timing violation
may occur.

276

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

ST XILINX®

Timing Simulation

When you use distribute RAM or block RAM in dual-port mode, take special care to avoid
memory collisions. A memory collision occurs when (a) one port is being written to, and
(b) an attempt is made to either read or write to the other port at the same address at the
same time (or within a very short period of time thereafter). The model warns you if a
collision occurs.

If the RAM is being read on one port as it is being written to on the other, the model
outputs an X value signifying an unknown output. If the two ports are writing data to the
same address at the same time, the model can write unknown data into memory. Take
special care to avoid this situation, as unknown results may occur. For the hardware
documentation on collision checking, see “Design Considerations: Using Block SelectRAM
Memory,” in the Virtex-1I Platform FPGA User Guide.

You can use the generic (VHDL) or parameter (Verilog) SIM_COLLISION_CHECK to
disable these checks in the model. See “SIM_COLLISION_CHECK" in this chapter.

Hierarchy Considerations

It is possible for the top-level signals to switch correctly, keeping the setup and hold times
accounted for, and at the same time, have an error reported at the lowest level primitive in
the design. This can happen because as the signals travel down through the hierarchy to
this low-level primitive, the delays they go through can reduce the differences between
them to the point where they begin to violate the setup time.

To correct this problem:

1. Browse the design hierarchy, and add the signals of the instance reporting the error to
the top-level waveform. Make sure that the setup time is actually being violated at the
lower level.

2. Step back through the structural design until a link between an RTL (pre-synthesis)
design path and this instance reporting the error can be determined.

3. Constrain the RTL path using timing constraints so that the timing violation no longer
occurs. Usually, most implemented designs have a small percentage of unconstrained
paths after timing constraints have been applied, and these are the ones where $setup
and $hold violations generally occur.

The debugging steps for $hold violations and $setup violations are identical.

$Width Violations

The $width Verilog system task monitors the width of signal pulses. When the pulse
width of a specific signal is less than that required for the device being used, the simulator
issues a $width violation. Generally, $width violations are specified only for clock signals
and asynchronous set or reset signals.

For more information on device switching characteristics, see the product data sheet. Find
the minimum pulse width requirements, and make sure that the device stimulus conforms
to these specifications.

$Recovery Violations

The $recovery Verilog system task specifies a time constraint between an asynchronous
control signal and a clock signal (for example, between clearbar and the clock for a flip-
flop). A $recovery violation occurs when a change to the signal occurs within the
specified time constraint.

Synthesis and Simulation Design Guide www.xilinx.com 277

8.1i

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?category=User+Guides
http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Chapter 6: Simulating Your Design 27 XILINX®

The $recovery Verilog system task checks for one of two dual-port block RAM conflicts:

e If both ports write to the same memory cell simultaneously, violating the clock-to-
setup requirement, the data stored is invalid.

e If one port attempts to read from the same memory cell to which the other is
simultaneously writing (also violating the clock setup requirement), the write will be
successful, but the data read will be invalid.

Recovery tasks are also used to detect if an asynchronous set/reset signal is released just
before a clock event occurs. If this happens, the result is similar to a setup violation, in that
it is undetermined whether the new data should be clocked in or not.

Simulation Flows

When simulating, you may compile the Verilog source files in any order since Verilog is
compile order independent. However, VHDL components must be compiled bottom-up
due to order dependency. Xilinx recommends that you specify the test fixture file before
the HDL netlist of your design, as in the following examples.

Xilinx recommends giving the name testbench to the main module in the test fixture file.
This name is consistent with the name used by default in the ISE Project Navigator. If this
name is used, no changes are necessary to the option in ISE in order to perform simulation
from that environment.

ModelSim SE/PE/XE VHDL

The following is information regarding ModelSim SE/PE/XE VHDL.

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before using ModelSim
SE/PE/XE VHDL. For instructions on compiling the Xilinx VHDL libraries, see
“Compiling Xilinx Simulation Libraries (COMPXLIB)” in this chapter.

Depending on the makeup of the design (Xilinx instantiated primitives, or CORE
Generator components), for RTL simulation, specify the following at the command line.

1. Create working directory.
vlib work
2. Compile design files and workbench.

vcom lower_ level_ files.vhd top_level.vhd testbench.vhd
(testbench_cfg.vhd)

3. Simulate design.

vsim testbench_cfg

For timing or post-NGDBuild simulation, use the SIMPRIM-based libraries. Specify the
following at the command line:

1. Create working directory.

vlib work
2. Compile design files and workbench.

vcom design.vhd testbench.vhd [testbench_cfg.vhd]
3. Simulate design.

vsim -sdfmax instance_name=design.sdf testbench_cfg

278

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Simulation Flows

VCS-MX VHDL

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before using VCS-MX VHDL.
For instructions on compiling the Xilinx VHDL librarie, see “Compiling Xilinx Simulation
Libraries (COMPXLIB)” in this chapter.

Depending on the makeup of the design (Xilinx instantiated components, or CORE
Generator components), for RTL simulation, specify the following at the command line.
1. Create working directory.

mkdir work
2. Compile design files and workbench.

vhdlan work_macrol.vhd top_level.vhd testbench.vhd
testbench_cfg.vhd

scs testbench cfg
3. Simulate design.

scsim

For timing or post-NGDBuild simulation, use the SIMPRIM-based libraries. Specify the
following at the command line:

1. Create working directory.
mkdir work

2. Compile design files and workbench.
vhdlan work_design.vhd testbench.vhd
scs testbench

3. Simulate design.

scsim -sdf testbench:design.sdf

NC-SIM VHDL
The following is information regarding NC-SIM VHDL.

Using Shared Precompiled Libraries

Simulation libraries have to be compiled to compiled_lib_dir before using NC-SIM VHDLL.
For instructions on compiling the Xilinx VHDL librarie, see “Compiling Xilinx Simulation
Libraries (COMPXLIB)” in this chapter. It is assumed that the proper mapping and setup
files are present before simulation. If you are unsure whether the simulation is properly set
up, see your simulation tool documentation.

Depending on the makeup of the design (Xilinx instantiated components, or CORE
Generator components), for RTL simulation, specify the following at the command line.

1. Create a working directory.
mkdir test
2. Compile design files and workbench.

ncvhdl -work test testwork macrol.vhd top_ level.vhd testbench.vhd
testbench_cfg.vhd

3. Elaborate the design at the proper scope.

Synthesis and Simulation Design Guide www.xilinx.com 279
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

ncelab testbench_cfg:A
4. Invoke the simulation.

ncsim testbench_cfg:A

For timing or post-NGDBuild simulation, use the SIMPRIM-based libraries. Specify the
following at the command line:

1. Compile the SDF annotation file:
ncsdfc design.sdf
2. Create an SDF command file, sdf . cmd, with the following data in it:
COMPILED_SDF_FILE = design.sdf.X
SCOPE = uut,
MTM_CONTROL = ‘MAXIMUM';
3. Create a working directory.
mkdir test
4. Compile design files and workbench.
ncvhdl -work test work design.vhd testbench.vhd
5. Elaborate the design at the proper scope.
ncelab -sdf_cmd_file.cmd testbench_cfg:A
6. Invoke the simulation.

ncsim testbench_cfg:A

NC-SIM Verilog

There are two methods to run simulation with NC-SIM Verilog.

e “Using Library Source Files With Compile Time Options”
e “Using Shared Precompiled Libraries”

Using Library Source Files With Compile Time Options
Depending on the makeup of the design (Xilinx instantiated primitives, or CORE
Generator components), for RTL simulation, specify the following at the command line:
ncverilog +libext+.v -y $XILINX/verilog/src/unisims \

testfixture.v design.v $XILINX/verilog/src/glbl.v

For timing or post-NGDBuild simulation, use the SIMPRIM-based libraries. Specify the
following at the command line.

ncverilog -y $XILINX/verilog/src/simprims \
+libext+.v testfixture.v time_sim.v S$SXILINX/verilog/src/glbl.v

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before using NC-Verilog. For
instructions on compiling the Xilinx Verilog libraries, see “Compiling Xilinx Simulation
Libraries (COMPXLIB)” in this chapter.

Depending on the makeup of the design (Xilinx instantiated primitives, or CORE
Generator components), for RTL simulation, edit the hdl . var and cds. 1ib files to
specify the library mapping.

cds.lib

280 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® Simulation Flows

DEFINE simprims_ver compiled_1lib dir/simprims_ver
DEFINE xilinxcorelib_ver compiled 1ib dir/xilinxcorelib_ver
DEFINE worklib worklib

hdl.var

DEFINE VIEW_MAP (SVIEW_MAP, .v => v)

DEFINE LIB_MAP (SLIB_MAP, compiled 1lib dir/unisims_ver => unisims_ver)
DEFINE LIB_MAP (SLIB_MAP, compiled lib dir/simprims_ver => simprims_ver)
DEFINE LIB_MAP (SLIB_MAP, + => worklib)

// After setting up the libraries, now compile and simulate the design:

ncvlog -messages -update S$SXILINX/verilog/src/glbl.v testfixture.v design.v
ncelab -messages testfixture_name glbl
ncsim -messages testfixture_name

The —update option of Ncvlog enables incremental compilation.

For timing or post-NGDBuild simulation, use the SIMPRIM-based libraries. Specify the
following at the command line:

ncvlog -messages -update $SXILINX/verilog/src/glbl.v testfixture.v time_sim.v
ncelab -messages -autosdf testfixture_name glbl
ncsim -messages testfixture_name

VCS-MX Verilog

VCS and VCSi are identical except that VCS is more highly optimized, resulting in greater
speed for RTL and mixed level designs. Pure gate level designs run with comparable
speed. However, VCS and VCSi are guaranteed to provide exactly the same simulation
results. VCSi is invoked using the vesi command rather than the ves. command.

There are two methods to run simulation with VCS-MX Verilog.

e “Using Library Source Files With Compile Time Options”
e “Using Shared Precompiled Libraries”

Using Library Source Files With Compile Time Options
Depending on the makeup of the design (Xilinx instantiated primitives, or CORE
Generator components), for RTL simulation, specify the following at the command line.
ves -y SXILINX/verilog/src/unisims \
+libext+.v $XILINX/verilog/src/glbl.v \

-Mupdate -R testfixture.v design.v

For timing or post-NGDBuild, use the SIMPRIM-based libraries. Specify the following at
the command line.

vecs +compsdf -y $SXILINX/verilog/src/simprims \
SXILINX/verilog/src/glbl.v \

+libext+.v -Mupdate -R testfixture.v time_sim.v
The =R option automatically simulates the executable after compilation.

The -Mupdate option enables incremental compilation. Modules are recompiled for any
of the following reasons:

1. Target of a hierarchical reference has changed.

2. A compile time constant, such as a parameter, has changed.

Synthesis and Simulation Design Guide www.xilinx.com 281
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

3. Ports of a module instantiated in the module have changed.

Module inlining. For example, a group of module definitions merging, internally in
VCS into a larger module definition which leads to faster simulation. These affected
modules are again recompiled. This is done only once.

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before using VCS/VCSi.For
instructions on compiling the Xilinx Verilog libraries, see “Compiling Xilinx Simulation
Libraries (COMPXLIB)” in this chapter.

Depending on the makeup of the design (Xilinx instantiated primitives, or CORE
Generator components), for RTL simulation, specify the following at the command line.

vcs -Mupdate -Mlib=compiled dir/unisims_ver -y \
$XILINX/verilog/src/unisims -Mlib=compiled dir/simprims_ver -y \
SXILINX/verilog/src/simprims \
-Mlib=compiled dir/xilinxcorelib_ver +libext+.v \

SXILINX/verilog/src/glbl.v -R testfixture.v design.v

For timing or post-NGDBuild simulation, the SIMPRIM-based libraries are used. Specify
the following at the command line.

ves +compsdf -y S$SXILINX/verilog/src/simprims \
SXILINX/verilog/src/glbl.v +libext+.v-Mupdate -R \

testfixture.v time_sim.v

The -R option automatically simulates the executable after compilation. Finally,

the -Mlib=compiled 1ib_dir option provides VCS with a central place to look for the
descriptor information before it compiles a module and a central place to get the object files
when it links together the executable.

The -Mupdate option enables incremental compilation. Modules are recompiled for any of
the following reasons:

1. Target of a hierarchical reference has changed.

2. A compile time constant such as a parameter has changed.
3. Ports of a module instantiated in the module have changed.
4

Module inlining. For example, a group of module definitions merging, internally in
VCS, into a larger module definition which leads to faster simulation. These affected
modules are again recompiled. This is done only once.

ModelSim Verilog

There are two methods to run simulation with ModelSim Verilog.

e “Using Library Source Files With Compile Time Options”

e “Using Shared Precompiled Libraries”

282 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

S XILINX® IBIS I/O Buffer Information Specification (IBIS)

Using Library Source Files With Compile Time Options

Depending on the makeup of the design (Xilinx instantiated primitives, or CORE
Generator components), for RTL simulation, specify the following at the ModelSim
prompt:
set XILINX $env (XILINX)
vlog -y $XILINX/verilog/src/unisims \
+libext+.v SXILINX/verilog/src/glbl.v -incr testfixture.v design.v
vsim testfixture glbl
For timing or post-NGDBuild simulation, the SIMPRIM-based libraries are used. Specify
the following at the ModelSim prompt:
vlog -y S$XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v \
+libext+.v testfixture.v time_sim.v -incr

vsim testfixture glbl +libext+.v testfixture.v

The -inecr option enables incremental compilation.

Using Shared Precompiled Libraries

Simulation Libraries have to be compiled to compiled_lib_dir before using ModelSim Vlog.
For instructions on compiling the Xilinx Verilog libraries, see “Compiling Xilinx
Simulation Libraries (COMPXLIB)” in this chapter.

Depending on the makeup of the design (Xilinx instantiated primitives, or CORE
Generator components), for RTL simulation, specify the following at the ModelSim
prompt:
set XILINX S$env (XILINX)
vlog $XILINX/verilog/src/glbl.v testfixture.v time_sim.v -incr
vsim -L unisims_ver -L simprims_ver -L xilinxcorelib_ver \
testfixture glbl
For timing or post-NGDBuild simulation, the SIMPRIM-based libraries are used. Specify
the following at the ModelSim prompt:
vlog $XILINX/verilog/src/glbl.v testfixture.v time_sim.v -incr
vsim -L simprims_ver testfixture glbl

The -incr option enables incremental compilation. The -L compiled_lib_dir option
provides VSIM with a library to search for design units instantiated from Verilog.

IBIS I/O Buffer Information Specification (IBIS)

The Xilinx IBIS models provide information on I/O characteristics. In particular, I/O
Buffer Information Specification (IBIS) models provide information about I/O driver and
receiver characteristics without disclosing proprietary knowledge of the IC design (as
unencrypted SPICE models do). However, there are some limitations on the information
that IBIS models can provide. These are limitations imposed by the IBIS specification itself.

IBIS models can be used for the following;:

1. Model best-case and worst-case conditions (best-case = strong transistors, low
temperature, high voltage; worst-case = weak transistors, high temperature, low
voltage). Best-case conditions are represented by the "fast/strong"” model, while worst-

Synthesis and Simulation Design Guide www.xilinx.com 283
8.1i

http://www.xilinx.com

Chapter 6: Simulating Your Design 27 XILINX®

case conditions are represented by the "slow/weak" model. Typical behavior is
represented by the "typical” model.

2. Model varying drive strength and slew rate conditions for Xilinx I/Os that support
such variation.

IBIS cannot be used for any of the following:

1. Provide internal timing information (propagation delays and skew).

2. Model power and ground structures.

3. Model pin-to-pin coupling.

4. Provide detailed package parasitic information. Package parasitics are provided in the

form of lumped RLC data. This is typically not a significant limitation, as package
parasitics have an almost negligible effect on signal transitions.

The implications of (2) and (3) above are that ground bounce, power supply droop, and
simultaneous switching output (SSO) noise CANNOT be simulated with IBIS models. To
ensure that these effects do not harm the functionality of your design, Xilinx provides
device/package-dependent SSO guidelines based on extensive lab measurements. The
locations of these guidelines are:

o Virtex-II
Virtex-1I Platform FPGA User Guide, “Design Considerations”

e Virtex-II Pro

Virtex-1I Pro Platform FPGA User Guide, “PCB Design Considerations”
o Virtex, Virtex-E

Xilinx Application Note XAPP133, "Using the Virtex Select I/O Resource"
e Spartan-Il, Spartan-IIE

Xilinx Application Note XAPP179, “Using Select I/O Interfaces in Spartan-II FPGA
Devices”

e IBIS models for Xilinx devices.

e For more information about the IBIS specification, see the IBIS Home Page.

e The Xilinx IBIS models are available for download.

284

www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://support.xilinx.com/support/sw_ibis.htm
http://www.xilinx.com/support/sw_ibis.htm
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp179.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp133.pdf
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+application+notes
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+application+notes
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+application+notes
http://support.xilinx.com/support/sw_ibis.htm
http://support.xilinx.com/support/sw_ibis.htm
http://www.eigroup.org/ibis/
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=hardware+user+guides

$7 XILINX®
Chapter 7

Equivalency Checking

Information on equivalency checking is no longer included in the Synthesis and Simulation
Design Guide. See the following web page for the latest information on running formal
verification with Xilinx devices:

http:/ /www.xilinx.com /xInx/xil_tt_product.jsp?BV_UseBVCookie=yes&sProduct=form
al

Synthesis and Simulation Design Guide www.xilinx.com 285
8.1i

http://www.xilinx.com/xlnx/xil_tt_product.jsp?BV_UseBVCookie=yes&sProduct=formal
http://www.xilinx.com

Chapter 7: Equivalency Checking 27 XILINX®

286 www.xilinx.com Synthesis and Simulation Design Guide
8.1i

http://www.xilinx.com

	Software Manuals
	Synthesis and Simulation Design Guide
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Table of Contents
	1. Introduction
	Device Support
	Hardware Description Languages
	Advantages of Using HDLs to Design FPGA Devices
	Top-Down Approach for Large Projects
	Functional Simulation Early in the Design Flow
	Synthesis of HDL Code to Gates
	Early Testing of Various Design Implementations
	Reuse of RTL Code

	Designing FPGA Devices with HDLs
	Designing FPGA Devices with Verilog
	Designing FPGA Devices with VHDL
	Designing FPGA Devices with Synthesis Tools
	Using FPGA System Features
	Designing Hierarchy
	Specifying Speed Requirements

	2. Understanding High-Density Design Flow
	Design Flow
	Entering Your Design and Selecting Hierarchy
	Design Entry Recommendations
	Use RTL Code
	Select the Correct Design Hierarchy

	Architecture Wizard
	Opening Architecture Wizard
	Architecture Wizard Components

	CORE Generator
	CORE Generator Templates
	CORE Generator Files

	Functional Simulation
	Simulation Recommendations
	Perform Separate Simulations
	Create a Test Bench

	ModelSim Simulators

	Synthesizing and Optimizing
	Creating an Initialization File
	Creating a Compile Run Script
	DCFPGA
	LeonardoSpectrum
	Precision RTL Synthesis
	Synplify
	XST

	Synthesizing Your Design
	Modifying Your Design
	Synthesizing Large Designs
	Saving Compiled Design as EDIF or NGC

	Reading Cores
	XST
	LeonardoSpectrum
	Synplify Pro
	Precision RTL Synthesis

	Setting Constraints
	Setting Constraints Using a Synthesis Tool Constraints Editor
	Setting Constraints in the UCF File
	Setting Constraints Using the Xilinx Constraints Editor
	Setting Constraints Using PACE

	Evaluating Design Size and Performance
	Estimating Device Utilization and Performance
	Determining Actual Device Utilization and Pre-routed Performance
	Using Project Navigator to Map Your Design
	Using the Command Line to Map Your Design

	Evaluating Coding Style and System Features
	Modifying Your Code
	Using FPGA System Features
	Using Xilinx-Specific Features of Your Synthesis Tool

	Incremental Design
	Modular Design
	Placing and Routing
	Decreasing Implementation Time
	Improving Implementation Results
	Map Timing
	Extra Effort Mode in PAR
	Turns Engine Option
	Reentrant Routing Option
	Guide Option

	Timing Simulation

	3. General HDL Coding Styles
	Introduction
	Naming, Labeling, and General Coding Styles
	Using Xilinx Naming Conventions
	Naming Guidelines for Signals and Instances
	General
	Recommendations for VHDL and Verilog Capitalization

	Matching File Names to Entity and Module Names
	Naming Identifiers
	Guidelines for Instantiation of Sub-Modules
	VHDL Example
	Verilog Example

	Recommended Length of Line
	Using a Common File Header
	Use of Indentation and Spacing in the Code
	VHDL Example
	Verilog Example

	Use of TRANSLATE_OFF and TRANSLATE_ON in Source Code
	Attributes and Constraints
	Attributes
	Synthesis Constraints
	Implementation Constraints

	Passing Attributes
	VHDL Primitive Attribute Example
	Verilog Primitive Attribute Example
	VHDL Synthesis Attribute Examples
	Verilog Synthesis Attribute Examples

	Synthesis Tool Naming Conventions
	LeonardoSpectrum and Precision Synthesis Naming Styles
	Synplify Naming Styles

	Specifying Constants
	Using Constants and Parameters to Clarify Code
	VHDL Example
	Verilog Example

	Using Generics and Parameters to Specify Dynamic Bus and Array Widths
	VHDL Example
	Verilog Example

	Choosing Data Type
	Declaring Ports
	Using Arrays in Port Declarations
	Incompatibility with Verilog
	Inability to Store and Re-Create Original Declaration of the Array
	Mis-Correlation of Software Pin Names

	Minimizing the Use of Ports Declared as Buffers
	Comparing Signals and Variables (VHDL only)
	Using Signals (VHDL)
	Using Variables (VHDL)

	Using `timescale

	Coding for Synthesis
	Omit the Use of Delays in Synthesis Code
	Order and Group Arithmetic Functions
	Use of Resets and Synthesis Optimization
	VHDL Example One
	Verilog Example One
	VHDL Example Two
	Verilog Example Two
	VHDL Example Three
	Verilog Example Three
	VHDL Example Four
	Verilog Example Four

	Considerations When Not Using Asynchronous Resets in a Design
	Comparing If Statement and Case Statement
	4–to–1 Multiplexer Design with If Construct
	4–to–1 Multiplexer Design with Case Construct

	Implementing Latches and Registers
	Latch Inference
	Converting Latch to D Register

	Converting Latch to a Logic Gate
	VHDL Example
	Verilog Example

	Resource Sharing
	Using Clock Enable Pin Instead of Gated Clocks
	Converting the Gated Clock to a Clock Enable

	4. Coding Styles for FPGA Devices
	Applicable Architectures
	FPGA HDL Coding Features
	Instantiating Components
	Instantiating FPGA Primitives
	VHDL Example
	Verilog Example

	Passing Generics and Parameters
	VHDL Example
	Verilog Example

	Instantiating CORE Generator Modules

	Using Boundary Scan
	Using Global Clock Buffers
	Inserting Global Clock Buffers
	LeonardoSpectrum and Precision Synthesis
	Synplify
	XST

	Instantiating Global Clock Buffers
	Instantiating Buffers Driven from a Port
	Instantiating Buffers Driven from Internal Logic

	Using Advanced Clock Management
	Virtex-II, Virtex-II Pro, Virtex-II Pro X, and Spartan-3 DCMs
	Virtex-4 DCMs
	Using CLKDLL in Virtex, Virtex-E and Spartan-II
	Using the Additional CLKDLL in Virtex-E
	Using DCM_ADV in Virtex-4
	VHDL Example
	Verilog Example

	Using DCM in Other Devices
	VHDL Example
	Verilog Example

	Using Dedicated Global Set/Reset Resource
	Recommendations
	Advantages to Implicitly Coding
	Initial State of the Registers and Latches
	VHDL Example
	Verilog Example

	Implementing Inputs and Outputs
	I/O Standards
	Specifying I/O Standards
	LeonardoSpectrum
	Synplify
	Precision Synthesis, Synplify and XST

	Outputs
	Using IOB Register and Latch
	Virtex, Virtex-E, and Spartan-II IOBs
	Virtex-II and Newer IOBs
	Inferring Usage of Flip-Flops
	Pulling Flip-Flops into the IOB

	Using Dual Data Rate IOB Registers
	VHDL Example
	Verilog Example
	Using Output Enable IOB Register
	VHDL Example
	Verilog Example
	Using the Pack Registers Option with Map

	Virtex-E and Spartan-IIE IOBs
	Additional I/O Standards for Virtex-E Devices
	Coding Examples for LVDS I/O Standards
	Coding Examples Using the IOSTANDARD Generic or Parameter

	Virtex-II and Newer IOBs
	Differential Signaling
	Differential Signaling Coding Examples

	Encoding State Machines
	Using Binary Encoding
	Binary Encoded State Machine VHDL Example
	Binary Encoded State Machine Verilog Example

	Using Enumerated Type Encoding
	Enumerated Type Encoded State Machine VHDL Example
	Enumerated Type Encoded State Machine Verilog Example

	Using One-Hot Encoding
	One-Hot Encoded State Machine VHDL Example
	One-Hot Encoded State Machine Verilog Example

	Accelerating FPGA Macros with One-Hot Approach
	Summary of Encoding Styles
	Initializing the State Machine
	Initializing the State Machine VHDL Example
	Initializing the State Machine Verilog Example

	Implementing Operators and Generating Modules
	Using the DSP48 Block
	Resources
	VHDL Code Examples
	Verilog Code Examples

	Adder and Subtractor
	Multiplier
	VHDL Example One: Pipelined Multiplier
	VHDL Example Two: Synchronous Multiplier
	Verilog Example One: Pipelined Multiplier
	Verilog Example Two: Synchronous Multiplier

	Counters
	VHDL Example: Loadable Binary Counter
	Verilog Example: Loadable Binary Counter

	Comparator
	VHDL Example: Unsigned 16-Bit Greater or Equal Comparator
	Verilog Example: Unsigned 8-Bit Greater Or Equal Comparator

	Encoder and Decoders
	VHDL Example: LeonardoSpectrum Priority Encoding
	Verilog Example: LeonardoSpectrum Priority Encoding

	Implementing Memory
	Implementing Block RAM
	Instantiating Block SelectRAM
	Instantiating Block SelectRAM VHDL Example
	Instantiating Block SelectRAM Verilog Examples

	Inferring Block SelectRAM VHDL Examples
	LeonardoSpectrum
	Synplify
	XST

	Inferring Block SelectRAM Verilog Examples
	LeonardoSpectrum
	Synplify
	XST

	Block SelectRAM in Virtex-4
	VHDL Example
	Verilog Example
	Single Port VHDL Examples
	Single Port Verilog Examples
	Dual Port Block SelectRAM VHDL Examples
	Dual Port Verilog Examples

	Implementing Distributed SelectRAM
	Instantiating Distributed SelectRAM in VHDL
	Instantiating Distributed SelectRAM in Verilog
	Inferring Distributed SelectRAM in VHDL
	Inferring Distributed SelectRAM in Verilog

	Implementing ROMs
	RTL Description of a Distributed ROM VHDL Example
	RTL Description of a Distributed ROM Verilog Example

	Implementing ROMs Using Block SelectRAM
	LeonardoSpectrum
	Synplify
	RTL Description of a ROM VHDL Example Using Block SelectRAM
	RTL Description of a ROM Verilog Example using Block SelectRAM

	Implementing FIFOs
	Implementing CAM
	Using CORE Generator to Implement Memory

	Implementing Shift Registers
	Inferring SRL16 in VHDL
	Inferring SRL16 in Verilog
	Inferring Dynamic SRL16 in VHDL
	Inferring Dynamic SRL16 in Verilog

	Implementing LFSR
	Implementing Multiplexers
	Virtex, Virtex-E, and Spartan-II Families
	Virtex-II Parts and Newer
	Mux Implemented with Gates VHDL Example
	MUX Implemented with Gates Verilog Example
	Wide MUX Mapped to MUXFs

	Using Pipelining
	Before Pipelining
	After Pipelining

	Design Hierarchy
	Advantages of Hierarchical Designs
	Disadvantages of Hierarchical Designs
	Using Synthesis Tools with Hierarchical Designs
	Restrict Shared Resources to the Same Hierarchy Level
	Compile Multiple Instances Together
	Restrict Related Combinatorial Logic to the Same Hierarchy Level
	Separate Speed Critical Paths from Non-Critical Paths
	Restrict Combinatorial Logic that Drives a Register to the Same Hierarchy Level
	Restrict Module Size
	Register All Outputs
	Restrict One Clock to Each Module or to Entire Design

	5. Using SmartModels
	Using SmartModels to Simulate Designs
	SmartModel Simulation Flow
	About SmartModels
	Supported Simulators
	Installing SmartModels
	Method One
	Method One on Linux
	Method One on Windows
	Method One on Solaris

	Method Two
	Method Two on Linux
	Method Two on Windows
	Method Two on Solaris

	Setting Up and Running Simulation
	MTI ModelSim SE and ModelSim PE
	MTI ModelSim SE and ModelSim PE on Linux
	MTI ModelSim SE and ModelSim PE on Windows
	MTI ModelSim SE and ModelSim PE on Solaris

	Cadence NC-Verilog
	Cadence NC-Verilog on Linux
	Cadence NC-Verilog on Windows
	Cadence NC-Verilog on Solaris

	Cadence NC-VHDL
	Cadence NC-VHDL on Linux
	Cadence NC-VHDL on Windows
	Cadence NC-VHDL on Solaris

	Synopsys VCS-MX
	Synopsys VCS-MX on Linux
	Synopsys VCS-MX on Solaris

	Synopsys VCS-MXi
	Synopsys VCS-MXi on Linux
	Synopsys VCS-MXi on Solaris

	6. Simulating Your Design
	Introduction
	Adhering to Industry Standards
	Standards Supported by Xilinx Simulation Flow
	Xilinx Supported Simulators
	Xilinx Libraries

	Simulation Points
	Primary Simulation Points for HDL Designs
	Register Transfer Level (RTL)
	Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation
	Post-NGDBuild (Pre-Map) Gate-Level Simulation
	Post-Map Partial Timing (Block Delays)
	Timing Simulation Post-Place and Route

	Providing Stimulus
	Test Benches
	Creating a Test Bench
	Creating a Test Bench in ISE Tools
	Creating a Test Bench in Waveform Editor
	Creating a Test Bench in NetGen

	Test Bench Recommendations

	VHDL and Verilog Libraries and Models
	Required Libraries
	First Simulation Point
	Second Simulation Point
	Third, Fourth, and Fifth Simulation Points

	Simulation Phase Library Information
	Locating Library Source Files
	Using the Libraries
	Using the UNISIM Library
	Using the VHDL UNISIM Library
	Using the Verilog UNISIM Library
	Using the CORE Generator XilinxCoreLib Library
	Using the SIMPRIM Library
	Using the SmartModel Library

	Compiling Xilinx Simulation Libraries (COMPXLIB)
	Compiling Simulation Libraries
	Compiling Simulation Libraries from Project Navigator
	Project Navigator Options
	Compiling Simulation Libraries from the Command Line

	COMPXLIB Support
	Libraries
	Device Families
	Simulators

	COMPXLIB Syntax
	COMPXLIB Command Line Options
	COMPXLIB Command Line Examples

	Specifying Run Time Options
	Sample Configuration File (Windows Version)

	Running NetGen
	Running NetGen from Project Navigator
	Running NetGen from XFLOW
	Creating a Simulation Netlist from XFLOW
	Changing Options

	Running NetGen from the Command Line or a Script File
	Post-NGD simulation
	Post-Map Simulation
	Post-PAR simulation

	Disabling X Propagation
	Using the ASYNC_REG Constraint

	SIM_COLLISION_CHECK
	Use With Care
	SIM_COLLISION_CHECK Strings

	MIN/TYP/MAX Simulation
	Definitions
	Maximum (MAX)
	Typical (TYP)
	Minimum (MIN)

	Obtaining Accurate Results
	Using NetGen
	Using the VOLTAGE and TEMPERATURE Constraints

	Understanding the Global Reset and 3-state for Simulation
	Simulating VHDL
	Emulating the Global GSR Pulse in VHDL in Functional Simulation
	Using VHDL Reset-On-Configuration (ROC) Cell
	Using VHDL ROCBUF Cell

	Simulating Special Components in VHDL
	Simulating CORE Generator Components in VHDL
	Differential I/O (LVDS, LVPECL)

	Simulating Verilog
	Defining Global Signals in Verilog
	Using the glbl.v Module
	Defining GSR/GTS in a Test Bench
	Emulating the Global GSR in a Verilog Functional Simulation
	Code Example

	Simulating Special Components in Verilog
	Defparam Support Considerations
	Differential I/O (LVDS, LVPECL)
	Simulation CORE Generator Components

	Design Hierarchy and Simulation
	Advantages of Hierarchy
	Improving Design Utilization and Performance
	Good Design Practices
	Maintaining the Hierarchy
	Using the KEEP_HIERARCHY Constraint
	Example File

	RTL Simulation Using Xilinx Libraries
	Simulating Certain Xilinx Components
	CLKDLL, DCM and DCM_ADV
	CLKDLL/DCM Clocks Do Not Appear De-Skewed
	TRACE/Simulation Model Differences
	Non-LVTTL Input Drivers
	Viewer Considerations
	Attributes for Simulation and Implementation
	Simulating the DCM in Digital Frequency Synthesis Mode Only
	JTAG / BSCAN (Boundary Scan) Simulation

	Timing Simulation
	Glitches in Your Design
	Debugging Timing Problems
	Identifying Timing Violations
	Verilog System Timing Tasks
	VITAL Timing Checks

	Timing Problem Root Causes
	Design Not Constrained
	Path Not or Improperly Constrained
	Design Does Not Meet Timespec
	Simulation Clock Does Not Meet Timespec
	Unaccounted Clock Skew
	Asynchronous Inputs, Asynchronous Clock Domains, Crossing Out-of-Phase
	Debugging Tips

	Special Considerations for Setup and Hold Violations
	Zero Hold Time Considerations
	Negative Hold Times
	RAM Considerations

	$Width Violations
	$Recovery Violations

	Simulation Flows
	ModelSim SE/PE/XE VHDL
	Using Shared Precompiled Libraries

	VCS-MX VHDL
	Using Shared Precompiled Libraries

	NC-SIM VHDL
	Using Shared Precompiled Libraries

	NC-SIM Verilog
	Using Library Source Files With Compile Time Options
	Using Shared Precompiled Libraries

	VCS-MX Verilog
	Using Library Source Files With Compile Time Options
	Using Shared Precompiled Libraries

	ModelSim Verilog
	Using Library Source Files With Compile Time Options
	Using Shared Precompiled Libraries

	IBIS I/O Buffer Information Specification (IBIS)

	7. Equivalency Checking

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

