
Computer Architecture | Prof. Milo Martin | Pipelining 1

Computer Architecture

Unit 6: Pipelining

Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania''
with'sources'that'included'University'of'Wisconsin'slides'

by'Mark'Hill,'Guri'Sohi,'Jim'Smith,'and'David'Wood'

Computer Architecture | Prof. Milo Martin | Pipelining 2

This Unit: Pipelining

•  Single-cycle & multi-cycle datapaths
•  Latency vs throughput & performance
•  Basic pipelining
•  Data hazards

•  Bypassing
•  Load-use stalling

•  Pipelined multi-cycle operations
•  Control hazards

•  Branch prediction

CPU Mem I/O

System software

App App App

In-Class Exercise

•  You have a washer, dryer, and “folder”
•  Each takes 30 minutes per load
•  How long for one load in total?
•  How long for two loads of laundry?
•  How long for 100 loads of laundry?

•  Now assume:
•  Washing takes 30 minutes, drying 60 minutes, and folding 15 min
•  How long for one load in total?
•  How long for two loads of laundry?
•  How long for 100 loads of laundry?

Computer Architecture | Prof. Milo Martin | Pipelining 3

[spacer]

Computer Architecture | Prof. Milo Martin | Pipelining 4

In-Class Exercise Answers

•  You have a washer, dryer, and “folder”
•  Each takes 30 minutes per load
•  How long for one load in total? 90 minutes
•  How long for two loads of laundry? 90 + 30 = 120 minutes
•  How long for 100 loads of laundry? 90 + 30*99 = 3060 min

•  Now assume:
•  Washing takes 30 minutes, drying 60 minutes, and folding 15 min
•  How long for one load in total? 105 minutes
•  How long for two loads of laundry? 105 + 60 = 165 minutes
•  How long for 100 loads of laundry? 105 + 60*99 = 6045 min

Computer Architecture | Prof. Milo Martin | Pipelining 5

Datapath Background

Computer Architecture | Prof. Milo Martin | Pipelining 6

Computer Architecture | Prof. Milo Martin | Pipelining 7

Recall: The Sequential Model

•  Basic structure of all modern ISAs
•  Often called VonNeuman, but in ENIAC before

•  Program order: total order on dynamic insns
•  Order and named storage define computation

•  Convenient feature: program counter (PC)
•  Insn itself stored in memory at location pointed to by PC
•  Next PC is next insn unless insn says otherwise

•  Processor logically executes loop at left

•  Atomic: insn finishes before next insn starts
•  Implementations can break this constraint physically
•  But must maintain illusion to preserve correctness

Recall: Maximizing Performance

•  Instructions per program:
•  Determined by program, compiler, instruction set architecture (ISA)

•  Cycles per instruction: “CPI”
•  Typical range today: 2 to 0.5
•  Determined by program, compiler, ISA, micro-architecture

•  Seconds per cycle: “clock period” - same each cycle
•  Typical range today: 2ns to 0.25ns
•  Reciprocal is frequency: 0.5 Ghz to 4 Ghz (1 Htz = 1 cycle per sec)
•  Determined by micro-architecture, technology parameters

•  For minimum execution time, minimize each term
•  Difficult: often pull against one another

Computer Architecture | Prof. Milo Martin | Pipelining 8

(1 billion instructions) * (1ns per cycle) * (1 cycle per insn)
= 1 second

Execution time =
(instructions/program) * (seconds/cycle) * (cycles/instruction)

Computer Architecture | Prof. Milo Martin | Pipelining 9

Single-Cycle Datapath

•  Single-cycle datapath: true “atomic” fetch/execute loop
•  Fetch, decode, execute one complete instruction every cycle
+  Takes 1 cycle to execution any instruction by definition (“CPI” is 1)
–  Long clock period: to accommodate slowest instruction

(worst-case delay through circuit, must wait this long every time)

PC Insn
Mem

Register
File

s1 s2 d
Data
Mem

+
4

Tsinglecycle

Computer Architecture | Prof. Milo Martin | Pipelining 10

Multi-Cycle Datapath

•  Multi-cycle datapath: attacks slow clock
•  Fetch, decode, execute one complete insn over multiple cycles
•  Allows insns to take different number of cycles
+ Opposite of single-cycle: short clock period (less “work” per cycle)
-  Multiple cycles per instruction (higher “CPI”)

PC
Register

File
s1 s2 d

+
4

D O
B

A
Insn
Mem Data

Mem

Tinsn-mem Tregfile TALU Tdata-mem Tregfile

IR

Computer Architecture | Prof. Milo Martin | Pipelining 11

Recap: Single-cycle vs. Multi-cycle

•  Single-cycle datapath:
•  Fetch, decode, execute one complete instruction every cycle
+  Low CPI: 1 by definition
–  Long clock period: to accommodate slowest instruction

•  Multi-cycle datapath: attacks slow clock
•  Fetch, decode, execute one complete insn over multiple cycles
•  Allows insns to take different number of cycles
±  Opposite of single-cycle: short clock period, high CPI (think: CISC)

insn0.fetch, dec, exec
Single-cycle

Multi-cycle

insn1.fetch, dec, exec

insn0.dec insn0.fetch
insn1.dec insn1.fetch

insn0.exec
insn1.exec

Computer Architecture | Prof. Milo Martin | Pipelining 12

Single-cycle vs. Multi-cycle Performance
•  Single-cycle

•  Clock period = 50ns, CPI = 1
•  Performance = 50ns/insn

•  Multi-cycle has opposite performance split of single-cycle
+  Shorter clock period
–  Higher CPI

•  Multi-cycle
•  Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)
•  Clock period = 11ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4

•  Why is clock period 11ns and not 10ns? overheads
•  Performance = 44ns/insn

•  Aside: CISC makes perfect sense in multi-cycle datapath

Pipelined Datapath

Computer Architecture | Prof. Milo Martin | Pipelining 13

Computer Architecture | Prof. Milo Martin | Pipelining 14

Performance: Latency vs. Throughput

•  Latency (execution time): time to finish a fixed task
•  Throughput (bandwidth): number of tasks in fixed time

•  Different: exploit parallelism for throughput, not latency (e.g., bread)
•  Often contradictory (latency vs. throughput)

•  Will see many examples of this
•  Choose definition of performance that matches your goals

•  Scientific program? Latency, web server: throughput?

•  Example: move people 10 miles
•  Car: capacity = 5, speed = 60 miles/hour
•  Bus: capacity = 60, speed = 20 miles/hour
•  Latency: car = 10 min, bus = 30 min
•  Throughput: car = 15 PPH (count return trip), bus = 60 PPH

•  Fastest way to send 10TB of data? (at 1+ gbits/second)

Amazon Does This…

CIS 501: Comp. Arch. | Prof. Milo Martin | Performance 15

Computer Architecture | Prof. Milo Martin | Pipelining 16

Latency versus Throughput

•  Can we have both low CPI and short clock period?
•  Not if datapath executes only one insn at a time

•  Latency and throughput: two views of performance …
•  (1) at the program level and (2) at the instructions level

•  Single instruction latency
•  Doesn’t matter: programs comprised of billions of instructions
•  Difficult to reduce anyway

•  Goal is to make programs, not individual insns, go faster
•  Instruction throughput → program latency
•  Key: exploit inter-insn parallelism

insn0.fetch, dec, exec
Single-cycle

Multi-cycle

insn1.fetch, dec, exec

insn0.dec insn0.fetch
insn1.dec insn1.fetch

insn0.exec
insn1.exec

Computer Architecture | Prof. Milo Martin | Pipelining 17

Pipelining

•  Important performance technique
•  Improves instruction throughput rather instruction latency

•  Begin with multi-cycle design
•  When insn advances from stage 1 to 2, next insn enters at stage 1
•  Form of parallelism: “insn-stage parallelism”
•  Maintains illusion of sequential fetch/execute loop
•  Individual instruction takes the same number of stages
+  But instructions enter and leave at a much faster rate

•  Laundry analogy

insn0.dec insn0.fetch
insn1.dec insn1.fetch Multi-cycle

Pipelined

insn0.exec
insn1.exec

insn0.dec insn0.fetch
insn1.dec insn1.fetch
insn0.exec

insn1.exec

Computer Architecture | Prof. Milo Martin | Pipelining 18

5 Stage Multi-Cycle Datapath

P
C

Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

I
R D O

B

A

Computer Architecture | Prof. Milo Martin | Pipelining 19

5 Stage Pipeline: Inter-Insn Parallelism

•  Pipelining: cut datapath into N stages (here 5)
•  One insn in each stage in each cycle
+  Clock period = MAX(Tinsn-mem, Tregfile, TALU, Tdata-mem)
+  Base CPI = 1: insn enters and leaves every cycle
–  Actual CPI > 1: pipeline must often “stall”
•  Individual insn latency increases (pipeline overhead), not the point

PC Insn
Mem

Register
File

s1 s2 d
Data
Mem

+
4

Tinsn-mem Tregfile TALU Tdata-mem Tregfile

Tsinglecycle

Computer Architecture | Prof. Milo Martin | Pipelining 20

5 Stage Pipelined Datapath

•  Five stage: Fetch, Decode, eXecute, Memory, Writeback
•  Nothing magical about 5 stages (Pentium 4 had 22 stages!)

•  Latches (pipeline registers) named by stages they begin
•  PC, D, X, M, W

PC Insn
Mem

Register
File

s1 s2 d
Data
Mem

+
4

PC

IR

PC

A

B

IR

O

B
IR

O

D

IR PC
D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 21

More Terminology & Foreshadowing

•  Scalar pipeline: one insn per stage per cycle
•  Alternative: “superscalar” (later)

•  In-order pipeline: insns enter execute stage in order
•  Alternative: “out-of-order” (later)

•  Pipeline depth: number of pipeline stages
•  Nothing magical about five
•  Contemporary high-performance cores have ~15 stage pipelines

Computer Architecture | Prof. Milo Martin | Pipelining 22

Instruction Convention

•  Different ISAs use inconsistent register orders

•  Some ISAs (for example MIPS)
•  Instruction destination (i.e., output) on the left
•  add $1, $2, $3 means $1$2+$3

•  Other ISAs
•  Instruction destination (i.e., output) on the right
add r1,r2,r3 means r1+r2�r3
ld 8(r5),r4 means mem[r5+8]�r4
st r4,8(r5) means r4�mem[r5+8]

•  Will try to specify to avoid confusion, next slides MIPS style

Computer Architecture | Prof. Milo Martin | Pipelining 23

Pipeline Example: Cycle 1

•  3 instructions

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

D X M W

add $3,$2,$1

Computer Architecture | Prof. Milo Martin | Pipelining 24

Pipeline Example: Cycle 2

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

lw $4,8($5) add $3,$2,$1

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 25

Pipeline Example: Cycle 3

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4($7) lw $4,8($5) add $3,$2,$1

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 26

Pipeline Example: Cycle 4

•  3 instructions

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4($7) lw $4,8($5) add $3,$2,$1

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 27

Pipeline Example: Cycle 5

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4($7) lw $4,8($5) add

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 28

Pipeline Example: Cycle 6

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw $6,4(7) lw

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 29

Pipeline Example: Cycle 7

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

sw

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 30

Pipeline Diagram

•  Pipeline diagram: shorthand for what we just saw
•  Across: cycles
•  Down: insns
•  Convention: X means lw $4,8($5) finishes execute stage and

writes into M latch at end of cycle 4

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W
lw $4,8($5) F D X M W
sw $6,4($7) F D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 31

Example Pipeline Perf. Calculation
•  Single-cycle

•  Clock period = 50ns, CPI = 1
•  Performance = 50ns/insn

•  Multi-cycle
•  Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)
•  Clock period = 11ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4
•  Performance = 44ns/insn

•  5-stage pipelined
•  Clock period = 12ns approx. (50ns / 5 stages) + overheads
+  CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)

+ Performance = 12ns/insn
–  Well actually … CPI = 1 + some penalty for pipelining (next)

•  CPI = 1.5 (on average insn completes every 1.5 cycles)
•  Performance = 18ns/insn
•  Much higher performance than single-cycle or multi-cycle

Computer Architecture | Prof. Milo Martin | Pipelining 32

Q1: Why Is Pipeline Clock Period …

•  … > (delay thru datapath) / (number of pipeline stages)?

•  Three reasons:
•  Latches add delay
•  Pipeline stages have different delays, clock period is max delay
•  Extra datapaths for pipelining (bypassing paths)

•  These factors have implications for ideal number pipeline stages
•  Diminishing clock frequency gains for longer (deeper) pipelines

Computer Architecture | Prof. Milo Martin | Pipelining 33

Q2: Why Is Pipeline CPI…
•  … > 1?

•  CPI for scalar in-order pipeline is 1 + stall penalties
•  Stalls used to resolve hazards

•  Hazard: condition that jeopardizes sequential illusion
•  Stall: pipeline delay introduced to restore sequential illusion

•  Calculating pipeline CPI
•  Frequency of stall * stall cycles
•  Penalties add (stalls generally don’t overlap in in-order pipelines)
•  1 + (stall-freq1*stall-cyc1) + (stall-freq2*stall-cyc2) + …

•  Correctness/performance/make common case fast
•  Long penalties OK if they are rare, e.g., 1 + (0.01 * 10) = 1.1
•  Stalls also have implications for ideal number of pipeline stages

Data Dependences, Pipeline
Hazards, and Bypassing

Computer Architecture | Prof. Milo Martin | Pipelining 34

Computer Architecture | Prof. Milo Martin | Pipelining 35

Dependences and Hazards
•  Dependence: relationship between two insns

•  Data: two insns use same storage location
•  Control: one insn affects whether another executes at all
•  Not a bad thing, programs would be boring without them
•  Enforced by making older insn go before younger one

•  Happens naturally in single-/multi-cycle designs
•  But not in a pipeline

•  Hazard: dependence & possibility of wrong insn order
•  Effects of wrong insn order cannot be externally visible

•  Stall: for order by keeping younger insn in same stage
•  Hazards are a bad thing: stalls reduce performance

Computer Architecture | Prof. Milo Martin | Pipelining 36

Data Hazards

•  Let’s forget about branches and the control for a while
•  The three insn sequence we saw earlier executed fine…

•  But it wasn’t a real program
•  Real programs have data dependences

•  They pass values via registers and memory

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

add $3,$2,$1 lw $4,8($5) sw $6,0($7)

Data
Mem

a

d

O

D

IR

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 37

Dependent Operations

•  Independent operations

 add $3,$2,$1
 add $6,$5,$4

•  Would this program execute correctly on a pipeline?

 add $3,$2,$1
 add $6,$5,$3

•  What about this program?

 add $3,$2,$1
 lw $4,8($3)
 addi $6,1,$3
 sw $3,8($7)

Computer Architecture | Prof. Milo Martin | Pipelining 38

Data Hazards

•  Would this “program” execute correctly on this pipeline?
•  Which insns would execute with correct inputs?
•  add is writing its result into $3 in current cycle
–  lw read $3 two cycles ago → got wrong value
–  addi read $3 one cycle ago → got wrong value
•  sw is reading $3 this cycle → maybe (depending on regfile design)

add $3,$2,$1 lw $4,8($3) sw $3,4($7) addi $6,1,$3

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

Data
Mem

a

d

O

D

IR

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 39

Observation!

•  Technically, this situation is broken
•  lw $4,8($3) has already read $3 from regfile
•  add $3,$2,$1 hasn’t yet written $3 to regfile

•  But fundamentally, everything is OK
•  lw $4,8($3) hasn’t actually used $3 yet
•  add $3,$2,$1 has already computed $3

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

add $3,$2,$1 lw $4,8($3)

Data
Mem

a

d

O

D

IR

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 40

Bypassing

•  Bypassing
•  Reading a value from an intermediate (µarchitectural) source
•  Not waiting until it is available from primary source
•  Here, we are bypassing the register file
•  Also called forwarding

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

add $3,$2,$1 lw $4,8($3)

Data
Mem

a

d

O

D

IR

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 41

WX Bypassing

•  What about this combination?
•  Add another bypass path and MUX (multiplexor) input
•  First one was an MX bypass
•  This one is a WX bypass

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

add $3,$2,$1 lw $4,8($3)

Data
Mem

a

d

O

D

IR

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 42

ALUinB Bypassing

•  Can also bypass to ALU input B

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

add $3,$2,$1 add $4,$2,$3

Data
Mem

a

d

O

D

IR

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 43

WM Bypassing?

•  Does WM bypassing make sense?
•  Not to the address input (why not?)

•  But to the store data input, yes

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

lw $3,8($2) sw $3,4($4)

D X M W

lw $3,8($2) sw $3,4($4)

lw $3,8($2) sw $4,4($3)

X

Computer Architecture | Prof. Milo Martin | Pipelining 44

Bypass Logic

•  Each multiplexor has its own, here it is for “ALUinA”
(X.IR.RegSrc1 == M.IR.RegDest) => 0
(X.IR.RegSrc1 == W.IR.RegDest) => 1
Else => 2

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

Data
Mem

a

d

O

D

IR

bypass

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 45

Pipeline Diagrams with Bypassing

•  If bypass exists, “from”/“to” stages execute in same cycle
•  Example: MX bypass

1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
sub r1,r4r2 F D X M W

•  Example: WX bypass
1 2 3 4 5 6 7 8 9 10

add r2,r3r1 F D X M W
ld [r7+4]r5 F D X M W
sub r1,r4r2 F D X M W

1 2 3 4 5 6 7 8 9 10
add r2,r3r1 F D X M W
? F D X M W

•  Example: WM bypass

•  Can you think of a code example that uses the WM bypass?

Computer Architecture | Prof. Milo Martin | Pipelining 46

Have We Prevented All Data Hazards?

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

lw $3,4($2)
stall

nop

add $4,$2,$3

•  No. Consider a “load” followed by a dependent “add” insn
•  Bypassing alone isn’t sufficient!
•  Hardware solution: detect this situation and inject a stall cycle
•  Software solution: ensure compiler doesn’t generate such code

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 47

Stalling on Load-To-Use Dependences

•  Prevent “D insn” from advancing this cycle
•  Write nop into X.IR (effectively, insert nop in hardware)
•  Keep same “D insn”, same PC next cycle

•  Re-evaluate situation next cycle

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

stall

nop

D X M W

lw $3,4($2) add $4,$2,$3

Computer Architecture | Prof. Milo Martin | Pipelining 48

Stalling on Load-To-Use Dependences

Stall = (X.IR.Operation == LOAD) &&
 ((D.IR.RegSrc1 == X.IR.RegDest) ||
 ((D.IR.RegSrc2 == X.IR.RegDest) && (D.IR.Op != STORE))

)

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

stall

nop

lw $3,4($2) add $4,$2,$3

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 49

Stalling on Load-To-Use Dependences

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

stall

nop

(stall bubble) add $4,$2,$3 lw $3,4($2)

D X M W

Stall = (X.IR.Operation == LOAD) &&
 ((D.IR.RegSrc1 == X.IR.RegDest) ||
 ((D.IR.RegSrc2 == X.IR.RegDest) && (D.IR.Op != STORE))

)

Computer Architecture | Prof. Milo Martin | Pipelining 50

Stalling on Load-To-Use Dependences

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

stall

nop

(stall bubble) add $4,$2,$3 lw $3,…

D X M W

Stall = (X.IR.Operation == LOAD) &&
 ((D.IR.RegSrc1 == X.IR.RegDest) ||
 ((D.IR.RegSrc2 == X.IR.RegDest) && (D.IR.Op != STORE))

)

Computer Architecture | Prof. Milo Martin | Pipelining 51

Performance Impact of Load/Use Penalty

•  Assume
•  Branch: 20%, load: 20%, store: 10%, other: 50%
•  50% of loads are followed by dependent instruction

•  require 1 cycle stall (I.e., insertion of 1 nop)

•  Calculate CPI
•  CPI = 1 + (1 * 20% * 50%) = 1.1

Computer Architecture | Prof. Milo Martin | Pipelining 52

Reducing Load-Use Stall Frequency

•  Use compiler scheduling to reduce load-use stall frequency
•  More on compiler scheduling later

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W
lw $4,4($3) F D X M W
addi $6,$4,1 F D d* X M W
sub $8,$3,$1 F d* D X M W

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W
lw $4,4($3) F D X M W
sub $8,$3,$1 F D X M W
addi $6,$4,1 F D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 53

Dependencies Through Memory

•  Are “load to store” memory dependencies a problem? No
•  lw following sw to same address in next cycle, gets right value
•  Why? Data mem read/write always take place in same stage

•  Are there any other sort of hazards to worry about?

sw $5,8($1) lw $4,8($1)

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

Data
Mem

a

d

O

D

IR

D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 54

Structural Hazards

•  Structural hazards
•  Two insns trying to use same circuit at same time

•  E.g., structural hazard on register file write port

•  To avoid structural hazards
•  Avoided if:

•  Each insn uses every structure exactly once
•  For at most one cycle
•  All instructions travel through all stages

•  Add more resources:
•  Example: two memory accesses per cycle (Fetch & Memory)
•  Split instruction & data memories allows simultaneous access

•  Tolerate structure hazards
•  Add stall logic to stall pipeline when hazards occur

Computer Architecture | Prof. Milo Martin | Pipelining 55

Why Does Every Insn Take 5 Cycles?

•  Could/should we allow add to skip M and go to W? No
–  It wouldn’t help: peak fetch still only 1 insn per cycle
–  Structural hazards: imagine add after lw (only 1 reg. write port)

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

add $3,$2,$1 lw $4,8($5)

D X M W

Multi-Cycle Operations
(if time permits)

Computer Architecture | Prof. Milo Martin | Pipelining 56

Computer Architecture | Prof. Milo Martin | Pipelining 57

Pipelining and Multi-Cycle Operations

•  What if you wanted to add a multi-cycle operation?
•  E.g., 4-cycle multiply
•  P: separate output latch connects to W stage
•  Controlled by pipeline control finite state machine (FSM)

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

D X M
Data
Mem

a

d

O

D

IR

P

IR

X

P

Xctrl

Computer Architecture | Prof. Milo Martin | Pipelining 58

A Pipelined Multiplier

•  Multiplier itself is often pipelined, what does this mean?
•  Product/multiplicand register/ALUs/latches replicated
•  Can start different multiply operations in consecutive cycles
•  But still takes 4 cycles to generate output value

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

Data
Mem

a

d

O

D

IR

P

M
IR

P1

P

M
IR

P2

P

M
IR

P

M
IR

P3 W

D X M

P0

Computer Architecture | Prof. Milo Martin | Pipelining 59

Pipeline Diagram with Multiplier
•  Allow independent instructions

•  Even allow independent multiplies

•  But must stall subsequent dependent instructions:

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
addi $6,$7,1 F D X M W

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
addi $6,$4,1 F D d* d* d* X M W

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
mul $6,$7,$8 F D P0 P1 P2 P3 W

Computer Architecture | Prof. Milo Martin | Pipelining 60

What about Stall Logic?

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

Data
Mem

a

d

O

D

IR

P

M
IR

P1

P

M
IR

P2

P

M
IR

P

M
IR

P3 W

D X M

P0

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
addi $6,$4,1 F D d* d* d* X M W

Computer Architecture | Prof. Milo Martin | Pipelining 61

What about Stall Logic?

 Stall = (OldStallLogic) ||
(D.IR.RegSrc1 == P0.IR.RegDest) || (D.IR.RegSrc2 == P0.IR.RegDest) ||
(D.IR.RegSrc1 == P1.IR.RegDest) || (D.IR.RegSrc2 == P1.IR.RegDest) ||
(D.IR.RegSrc1 == P2.IR.RegDest) || (D.IR.RegSrc2 == P2.IR.RegDest)

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

Data
Mem

a

d

O

D

IR

P

M
IR

P

M
IR

P

M
IR

P

M
IR

D X M

P1 P2 P3 W P0

Computer Architecture | Prof. Milo Martin | Pipelining 62

Multiplier Write Port Structural Hazard
•  What about…

•  Two instructions trying to write register file in same cycle?
•  Structural hazard!

•  Must prevent:

•  Solution? stall the subsequent instruction

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
addi $6,$1,1 F D X M W
add $5,$6,$10 F D X M W

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
addi $6,$1,1 F D X M W
add $5,$6,$10 F d* D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 63

Preventing Structural Hazard

•  Fix to problem on previous slide:
Stall = (OldStallLogic) ||
 (D.IR.RegDest “is valid” &&
 D.IR.Operation != MULT && P0.IR.RegDest “is valid”)

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

Data
Mem

a

d

O

D

IR

P

M
IR

P

M
IR

P

M
IR

P

M
IR

P1 P2 P3 W P0

D X M

Computer Architecture | Prof. Milo Martin | Pipelining 64

More Multiplier Nasties
•  What about…

•  Mis-ordered writes to the same register
•  Software thinks add gets $4 from addi, actually gets it from mul

•  Common? Not for a 4-cycle multiply with 5-stage pipeline
•  More common with deeper pipelines
•  In any case, must be correct

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
addi $4,$1,1 F D X M W
…

…

add $10,$4,$6 F D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 65

Preventing Mis-Ordered Reg. Write

•  Fix to problem on previous slide:
Stall = (OldStallLogic) ||
 ((D.IR.RegDest == X.IR.RegDest) && (X.IR.Operation == MULT))

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

Data
Mem

a

d

O

D

IR

P

M
IR

P

M
IR

P

M
IR

P

M
IR

P1 P2 P3 W P0

D X M

Computer Architecture | Prof. Milo Martin | Pipelining 66

Corrected Pipeline Diagram

•  With the correct stall logic
•  Prevent mis-ordered writes to the same register
•  Why two cycles of delay?

•  Multi-cycle operations complicate pipeline logic

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
addi $4,$1,1 F d* d* D X M W
…

…

add $10,$4,$6 F D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 67

Pipelined Functional Units

•  Almost all multi-cycle functional units are pipelined
•  Each operation takes N cycles
•  But can start initiate a new (independent) operation every cycle
•  Requires internal latching and some hardware replication
+  A cheaper way to add bandwidth than multiple non-pipelined units

1 2 3 4 5 6 7 8 9 10 11
mulf f0,f1,f2 F D E* E* E* E* W
mulf f3,f4,f5 F D E* E* E* E* W

1 2 3 4 5 6 7 8 9 10 11
divf f0,f1,f2 F D E/ E/ E/ E/ W
divf f3,f4,f5 F D s* s* s* E/ E/ E/ E/ W

•  One exception: int/FP divide: difficult to pipeline and not worth it

•  s* = structural hazard, two insns need same structure
•  ISAs and pipelines designed to have few of these
•  Canonical example: all insns forced to go through M stage

Control Dependences and
Branch Prediction

Computer Architecture | Prof. Milo Martin | Pipelining 68

Computer Architecture | Prof. Milo Martin | Pipelining 69

What About Branches?

•  Branch speculation
•  Could just stall to wait for branch outcome (two-cycle penalty)
•  Fetch past branch insns before branch outcome is known

•  Default: assume “not-taken” (at fetch, can’t tell it’s a branch)

PC Insn
Mem

Register
File

s1 s2 d

+
4

<<
2

D X

M

PC

A

B

IR

O

B

IR

PC

IR

S
X

Computer Architecture | Prof. Milo Martin | Pipelining 70

Branch Recovery

PC Insn
Mem

Register
File

s1 s2 d

+
4

<<
2

D X

M

nop nop

PC

A

B

IR

O

B

IR

PC

IR

S
X

•  Branch recovery: what to do when branch is actually taken
•  Insns that will be written into D and X are wrong
•  Flush them, i.e., replace them with nops
+  They haven’t had written permanent state yet (regfile, DMem)
–  Two cycle penalty for taken branches

Computer Architecture | Prof. Milo Martin | Pipelining 71

Branch Speculation and Recovery

•  Mis-speculation recovery: what to do on wrong guess
•  Not too painful in an short, in-order pipeline
•  Branch resolves in X
+  Younger insns (in F, D) haven’t changed permanent state
•  Flush insns currently in D and X (i.e., replace with nops)

1 2 3 4 5 6 7 8 9
 addi r1,1r3 F D X M W
 bnez r3,targ F D X M W
 st r6[r7+4] F D X M W

mul r8,r9r10 F D X M W

1 2 3 4 5 6 7 8 9
 addi r1,1r3 F D X M W
 bnez r3,targ F D X M W
 st r6[r7+4] F D -- -- --

mul r8,r9r10 F -- -- -- --
targ:add r4,r5r4 F D X M W

Correct:

Recovery:

speculative

Computer Architecture | Prof. Milo Martin | Pipelining 72

Branch Performance

•  Back of the envelope calculation
•  Branch: 20%, load: 20%, store: 10%, other: 50%
•  Say, 75% of branches are taken

•  CPI = 1 + 20% * 75% * 2 =
 1 + 0.20 * 0.75 * 2 = 1.3
–  Branches cause 30% slowdown

•  Worse with deeper pipelines (higher mis-prediction penalty)

•  Can we do better than assuming branch is not taken?

Computer Architecture | Prof. Milo Martin | Pipelining 73

Big Idea: Speculative Execution

•  Speculation: “risky transactions on chance of profit”

•  Speculative execution
•  Execute before all parameters known with certainty
•  Correct speculation

+ Avoid stall, improve performance
•  Incorrect speculation (mis-speculation)

– Must abort/flush/squash incorrect insns
– Must undo incorrect changes (recover pre-speculation state)

•  Control speculation: speculation aimed at control hazards
•  Unknown parameter: are these the correct insns to execute next?

Computer Architecture | Prof. Milo Martin | Pipelining 74

Control Speculation Mechanics
•  Guess branch target, start fetching at guessed position

•  Doing nothing is implicitly guessing target is PC+4
•  Can actively guess other targets: dynamic branch prediction

•  Execute branch to verify (check) guess
•  Correct speculation? keep going
•  Mis-speculation? Flush mis-speculated insns

•  Hopefully haven’t modified permanent state (Regfile, DMem)
+ Happens naturally in in-order 5-stage pipeline

Computer Architecture | Prof. Milo Martin | Pipelining 75

Dynamic Branch Prediction

•  Dynamic branch prediction: hardware guesses outcome
•  Start fetching from guessed address
•  Flush on mis-prediction

PC
Insn
Mem

Register
File

S
X

s1 s2 d

+
4

<<
2

TG
PC

IR

TG
PC

A

B

IR

O

B

IR

D X M

nop nop

BP

<>

Computer Architecture | Prof. Milo Martin | Pipelining 76

Dynamic Branch Prediction Components

•  Step #1: is it a branch?
•  Easy after decode...

•  Step #2: is the branch taken or not taken?
•  Direction predictor (applies to conditional branches only)
•  Predicts taken/not-taken

•  Step #3: if the branch is taken, where does it go?
•  Easy after decode…

regfile

D$ I$
B
P

Computer Architecture | Prof. Milo Martin | Pipelining 77

Branch Direction Prediction
•  Learn from past, predict the future

•  Record the past in a hardware structure
•  Direction predictor (DIRP)

•  Map conditional-branch PC to taken/not-taken (T/N) decision
•  Individual conditional branches often biased or weakly biased

•  90%+ one way or the other considered “biased”
•  Why? Loop back edges, checking for uncommon conditions

•  Branch history table (BHT): simplest predictor
•  PC indexes table of bits (0 = N, 1 = T), no tags
•  Essentially: branch will go same way it went last time

•  What about aliasing?
•  Two PC with the same lower bits?
•  No problem, just a prediction!

T or NT

[9:2] 1:0 [31:10]

T or NT

PC BHT

Prediction (taken or
not taken)

Computer Architecture | Prof. Milo Martin | Pipelining 78

Branch History Table (BHT)

•  Branch history table (BHT):
simplest direction predictor
•  PC indexes table of bits (0 = N, 1 = T),

no tags
•  Essentially: branch will go same way it

went last time
•  Problem: inner loop branch below

for (i=0;i<100;i++)
 for (j=0;j<3;j++)
 // whatever
–  Two “built-in” mis-predictions per

inner loop iteration
–  Branch predictor “changes its mind

too quickly”

Tim
e

State

Prediction

O
utcom

e

Result?

1 N N T Wrong

2 T T T Correct

3 T T T Correct

4 T T N Wrong

5 N N T Wrong

6 T T T Correct

7 T T T Correct

8 T T N Wrong

9 N N T Wrong

10 T T T Correct

11 T T T Correct

12 T T N Wrong

Computer Architecture | Prof. Milo Martin | Pipelining 79

Two-Bit Saturating Counters (2bc)

•  Two-bit saturating counters (2bc)
[Smith 1981]
•  Replace each single-bit prediction

•  (0,1,2,3) = (N,n,t,T)
•  Adds “hysteresis”

•  Force predictor to mis-predict twice
before “changing its mind”

•  One mispredict each loop execution
(rather than two)

+ Fixes this pathology (which is not
contrived, by the way)

•  Can we do even better?

Tim
e

State

Prediction

O
utcom

e
Result?

1 N N T Wrong

2 n N T Wrong

3 t T T Correct

4 T T N Wrong

5 t T T Correct

6 T T T Correct

7 T T T Correct

8 T T N Wrong

9 t T T Correct

10 T T T Correct

11 T T T Correct

12 T T N Wrong

Computer Architecture | Prof. Milo Martin | Pipelining 80

Correlated Predictor
•  Correlated (two-level)

predictor [Patt 1991]
•  Exploits observation that branch

outcomes are correlated
•  Maintains separate prediction per

(PC, BHR) pairs
•  Branch history register

(BHR): recent branch
outcomes

•  Simple working example: assume
program has one branch

•  BHT: one 1-bit DIRP entry
•  BHT+2BHR: 22 = 4 1-bit DIRP

entries
–  Why didn’t we do better?

•  BHT not long enough to
capture pattern

Tim
e

“Pattern”

State

Prediction

O
utcom

e

Result? NN NT TN TT

1 NN N N N N N T Wrong

2 NT T N N N N T Wrong

3 TT T T N N N T Wrong

4 TT T T N T T N Wrong

5 TN T T N N N T Wrong

6 NT T T T N T T Correct

7 TT T T T N N T Wrong

8 TT T T T T T N Wrong

9 TN T T T N T T Correct

10 NT T T T N T T Correct

11 TT T T T N N T Wrong

12 TT T T T T T N Wrong

Computer Architecture | Prof. Milo Martin | Pipelining 81

Correlated Predictor – 3 Bit Pattern

Tim
e

“Pattern”

State

Prediction

O
utcom

e

Result? NNN NNT NTN NTT TNN TNT TTN TTT

1 NNN N N N N N N N N N T Wrong

2 NNT T N N N N N N N N T Wrong

3 NTT T T N N N N N N N T Wrong

4 TTT T T N T N N N N N N Correct

5 TTN T T N T N N N N N T Wrong

6 TNT T T N T N N T N N T Wrong

7 NTT T T N T N T T N T T Correct

8 TTT T T N T N T T N N N Correct

9 TTN T T N T N T T N T T Correct

10 TNT T T N T N T T N T T Correct

11 NTT T T N T N T T N T T Correct

12 TTT T T N T N T T N N N Correct

•  Try 3 bits
of history

•  23 DIRP
entries
per
pattern

+  No mis-predictions after predictor learns all the relevant patterns!

Computer Architecture | Prof. Milo Martin | Pipelining 82

Correlated Predictor Design
•  Design choice: how many history bits (BHR size)?

•  Tricky one
+  Given unlimited resources, longer BHRs are better, but…
–  BHT utilization decreases

– Many history patterns are never seen
– Many branches are history independent (don’t care)
•  PC xor BHR allows multiple PCs to dynamically share BHT
•  BHR length < log2(BHT size)

–  Predictor takes longer to train
•  Typical length: 8–12

Computer Architecture | Prof. Milo Martin | Pipelining 83

Hybrid Predictor

•  Hybrid (tournament) predictor [McFarling 1993]
•  Attacks correlated predictor BHT capacity problem
•  Idea: combine two predictors

•  Simple BHT predicts history independent branches
•  Correlated predictor predicts only branches that need history
•  Chooser assigns branches to one predictor or the other
•  Branches start in simple BHT, move mis-prediction threshold

+  Correlated predictor can be made smaller, handles fewer branches
+  90–95% accuracy

PC

BHR B
H

T

B
H

T

ch
oo

se
r

Computer Architecture | Prof. Milo Martin | Pipelining 84

When to Perform Branch Prediction?
•  Option #1: During Decode

•  Look at instruction opcode to determine branch instructions
•  Can calculate next PC from instruction (for PC-relative branches)
–  One cycle “mis-fetch” penalty even if branch predictor is correct

•  Option #2: During Fetch?
•  How do we do that?

1 2 3 4 5 6 7 8 9
 bnez r3,targ F D X M W
targ:add r4,r5,r4 F D X M W

Computer Architecture | Prof. Milo Martin | Pipelining 85

Revisiting Branch Prediction Components

•  Step #1: is it a branch?
•  Easy after decode... during fetch: predictor

•  Step #2: is the branch taken or not taken?
•  Direction predictor (as before)

•  Step #3: if the branch is taken, where does it go?
•  Branch target predictor (BTB)
•  Supplies target PC if branch is taken

regfile

D$ I$
B
P

Computer Architecture | Prof. Milo Martin | Pipelining 86

Branch Target Buffer (BTB)
•  As before: learn from past, predict the future

•  Record the past branch targets in a hardware structure

•  Branch target buffer (BTB):
•  “guess” the future PC based on past behavior
•  “Last time the branch X was taken, it went to address Y”

•  “So, in the future, if address X is fetched, fetch address Y next”

•  Operation
•  A small RAM: address = PC, data = target-PC
•  Access at Fetch in parallel with instruction memory

•  predicted-target = BTB[hash(PC)]
•  Updated at X whenever target != predicted-target

•  BTB[hash(PC)] = target
•  Hash function is just typically just extracting lower bits (as before)
•  Aliasing? No problem, this is only a prediction

Computer Architecture | Prof. Milo Martin | Pipelining 87

Branch Target Buffer (continued)
•  At Fetch, how does insn know it’s a branch & should read

BTB? It doesn’t have to…
•  …all insns access BTB in parallel with Imem Fetch

•  Key idea: use BTB to predict which insn are branches
•  Implement by “tagging” each entry with its corresponding PC
•  Update BTB on every taken branch insn, record target PC:

•  BTB[PC].tag = PC, BTB[PC].target = target of branch
•  All insns access at Fetch in parallel with Imem

•  Check for tag match, signifies insn at that PC is a branch
•  Predicted PC = (BTB[PC].tag == PC) ? BTB[PC].target : PC+4

PC

+
4

BTB
tag

==
target

predicted target

Computer Architecture | Prof. Milo Martin | Pipelining 88

Why Does a BTB Work?

•  Because most control insns use direct targets
•  Target encoded in insn itself → same “taken” target every time

•  What about indirect targets?
•  Target held in a register → can be different each time
•  Two indirect call idioms

+ Dynamically linked functions (DLLs): target always the same
•  Dynamically dispatched (virtual) functions: hard but uncommon

•  Also two indirect unconditional jump idioms
•  Switches: hard but uncommon
–  Function returns: hard and common but…

Computer Architecture | Prof. Milo Martin | Pipelining 89

Return Address Stack (RAS)

•  Return address stack (RAS)
•  Call instruction? RAS[TopOfStack++] = PC+4
•  Return instruction? Predicted-target = RAS[--TopOfStack]

PC

+
4

BTB
tag

==

target
predicted target

RAS

Putting It All Together

•  BTB & branch direction predictor during fetch

•  If branch prediction correct, no taken branch penalty

Computer Architecture | Prof. Milo Martin | Pipelining 90

PC

+
4

BTB
tag

==

target
predicted target

RAS

BHT
taken/not-taken

Computer Architecture | Prof. Milo Martin | Pipelining 91

Branch Prediction Performance
•  Dynamic branch prediction

•  20% of instruction branches
•  Simple predictor: branches predicted with 75% accuracy

•  CPI = 1 + (20% * 25% * 2) = 1.1
•  More advanced predictor: 95% accuracy

•  CPI = 1 + (20% * 5% * 2) = 1.02

•  Branch mis-predictions still a big problem though
•  Pipelines are long: typical mis-prediction penalty is 10+ cycles
•  For cores that do more per cycle, predictions more costly (later)

Computer Architecture | Prof. Milo Martin | Pipelining 92

Research: Perceptron Predictor
•  Perceptron predictor [Jimenez]

•  Attacks predictor size problem using machine learning approach
•  History table replaced by table of function coefficients Fi (signed)

•  Predict taken if ∑(BHRi*Fi)> threshold

+  Table size #PC*|BHR|*|F| (can use long BHR: ~60 bits)
–  Equivalent correlated predictor would be #PC*2|BHR|

•  How does it learn? Update Fi when branch is taken
•  BHRi == 1 ? Fi++ : Fi– –;
•  “don’t care” Fi bits stay near 0, important Fi bits saturate

+  Hybrid BHT/perceptron accuracy: 95–98%

PC

BHR

F

∑ Fi*BHRi > thresh

Computer Architecture | Prof. Milo Martin | Pipelining 93

More Research: GEHL Predictor

•  Problem with both correlated predictor and perceptron
•  Same predictor area dedicated to 1st history bit (1 column) …
•  … as to 2nd, 3rd, 10th, 60th…
•  Not a good use of space: 1st bit much more important than 60th

•  GEometric History-Length predictor [Seznec, ISCA’05]
•  Multiple predictors, indexed with geometrically longer

history (0, 4, 16, 32)
•  Predictors are (partially) tagged, no separate “chooser”
•  Predict: use matching entry from predictor with longest history
•  Mis-predict: create entry in predictor with next-longest history
•  Only 25% of predictor area used for bits 16-32 (not 50%)
•  Helps amortize cost of tagging

+  Trains quickly
•  95-97% accurate

Computer Architecture | Prof. Milo Martin | Pipelining 94

Pipeline Depth
•  Trend had been to deeper pipelines

•  486: 5 stages (50+ gate delays / clock)
•  Pentium: 7 stages
•  Pentium II/III: 12 stages
•  Pentium 4: 22 stages (~10 gate delays / clock) “super-pipelining”
•  Core1/2: 14 stages

•  Increasing pipeline depth
+  Increases clock frequency (reduces period)

•  But double the stages reduce the clock period by less than 2x
–  Decreases IPC (increases CPI)

•  Branch mis-prediction penalty becomes longer
•  Non-bypassed data hazard stalls become longer

•  At some point, actually causes performance to decrease, but when?
•  1GHz Pentium 4 was slower than 800 MHz PentiumIII

•  “Optimal” pipeline depth is program and technology specific

Computer Architecture | Prof. Milo Martin | Pipelining 95

Summary

•  Single-cycle & multi-cycle datapaths
•  Latency vs throughput & performance
•  Basic pipelining
•  Data hazards

•  Bypassing
•  Load-use stalling

•  Pipelined multi-cycle operations
•  Control hazards

•  Branch prediction

CPU Mem I/O

System software

App App App

