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This Unit: Pipelining 

•  Single-cycle & multi-cycle datapaths 
•  Latency vs throughput & performance 
•  Basic pipelining 
•  Data hazards 

•  Bypassing 
•  Load-use stalling 

•  Pipelined multi-cycle operations 
•  Control hazards 

•  Branch prediction 

CPU Mem I/O 

System software 

App App App 



In-Class Exercise 

•  You have a washer, dryer, and “folder” 
•  Each takes 30 minutes per load 
•  How long for one load in total? 
•  How long for two loads of laundry? 
•  How long for 100 loads of laundry?  

•  Now assume: 
•  Washing takes 30 minutes, drying 60 minutes, and folding 15 min 
•  How long for one load in total? 
•  How long for two loads of laundry? 
•  How long for 100 loads of laundry?  
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[spacer] 
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In-Class Exercise Answers 

•  You have a washer, dryer, and “folder” 
•  Each takes 30 minutes per load 
•  How long for one load in total?   90 minutes 
•  How long for two loads of laundry?  90 + 30 = 120 minutes 
•  How long for 100 loads of laundry?  90 + 30*99 = 3060 min 

•  Now assume: 
•  Washing takes 30 minutes, drying 60 minutes, and folding 15 min 
•  How long for one load in total?   105 minutes 
•  How long for two loads of laundry?  105 + 60 = 165 minutes 
•  How long for 100 loads of laundry?  105 + 60*99 = 6045 min 
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Datapath Background 
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Recall: The Sequential Model 

•  Basic structure of all modern ISAs 
•  Often called VonNeuman, but in ENIAC before 

•  Program order: total order on dynamic insns 
•  Order and named storage define computation 

•  Convenient feature: program counter (PC) 
•  Insn itself stored in memory at location pointed to by PC 
•  Next PC is next insn unless insn says otherwise  

•  Processor logically executes loop at left 

•  Atomic: insn finishes before next insn starts 
•  Implementations can break this constraint physically 
•  But must maintain illusion to preserve correctness 

Recall: Maximizing Performance 

•  Instructions per program: 
•  Determined by program, compiler, instruction set architecture (ISA) 

•  Cycles per instruction: “CPI” 
•  Typical range today: 2 to 0.5 
•  Determined by program, compiler, ISA, micro-architecture 

•  Seconds per cycle: “clock period”  - same each cycle 
•  Typical range today: 2ns to 0.25ns 
•  Reciprocal is frequency: 0.5 Ghz to 4 Ghz (1 Htz = 1 cycle per sec) 
•  Determined by micro-architecture, technology parameters 

•  For minimum execution time, minimize each term 
•  Difficult: often pull against one another 
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(1 billion instructions) * (1ns per cycle) * (1 cycle per insn)  
= 1 second 

Execution time =  
(instructions/program) * (seconds/cycle) * (cycles/instruction) 
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Single-Cycle Datapath 

•  Single-cycle datapath: true “atomic” fetch/execute loop 
•  Fetch, decode, execute one complete instruction every cycle 
+  Takes 1 cycle to execution any instruction by definition (“CPI” is 1)  
–  Long clock period: to accommodate slowest instruction 

(worst-case delay through circuit, must wait this long every time) 

PC Insn 
Mem 

Register 
File 

s1 s2 d 
Data 
Mem 

+ 
4 

Tsinglecycle 
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Multi-Cycle Datapath 

•  Multi-cycle datapath: attacks slow clock 
•  Fetch, decode, execute one complete insn over multiple cycles 
•  Allows insns to take different number of cycles 
+ Opposite of single-cycle: short clock period (less “work” per cycle) 
-  Multiple cycles per instruction (higher “CPI”) 

PC 
Register 

File 
s1 s2 d 
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Tinsn-mem Tregfile TALU Tdata-mem Tregfile 

IR 
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Recap: Single-cycle vs. Multi-cycle  

•  Single-cycle datapath: 
•  Fetch, decode, execute one complete instruction every cycle 
+  Low CPI: 1 by definition 
–  Long clock period: to accommodate slowest instruction 

•  Multi-cycle datapath: attacks slow clock 
•  Fetch, decode, execute one complete insn over multiple cycles 
•  Allows insns to take different number of cycles 
±  Opposite of single-cycle: short clock period, high CPI (think: CISC) 

insn0.fetch, dec, exec 
Single-cycle 

Multi-cycle 

insn1.fetch, dec, exec 

insn0.dec insn0.fetch 
insn1.dec insn1.fetch 

insn0.exec 
insn1.exec 
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Single-cycle vs. Multi-cycle Performance 
•  Single-cycle 

•  Clock period = 50ns, CPI = 1 
•  Performance = 50ns/insn 

•  Multi-cycle has opposite performance split of single-cycle 
+  Shorter clock period 
–  Higher CPI 

•  Multi-cycle 
•  Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)  
•  Clock period = 11ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4 

•  Why is clock period 11ns and not 10ns?  overheads 
•  Performance = 44ns/insn 

•  Aside: CISC makes perfect sense in multi-cycle datapath 



Pipelined Datapath 
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Performance: Latency vs. Throughput 

•  Latency (execution time): time to finish a fixed task 
•  Throughput (bandwidth): number of tasks in fixed time 

•  Different: exploit parallelism for throughput, not latency (e.g., bread) 
•  Often contradictory (latency vs. throughput) 

•  Will see many examples of this 
•  Choose definition of performance that matches your goals 

•  Scientific program? Latency, web server: throughput? 

•  Example: move people 10 miles 
•  Car: capacity = 5, speed = 60 miles/hour 
•  Bus: capacity = 60, speed = 20 miles/hour 
•  Latency: car = 10 min, bus = 30 min 
•  Throughput: car = 15 PPH (count return trip), bus = 60 PPH 

•  Fastest way to send 10TB of data?  (at 1+ gbits/second) 



Amazon Does This…  
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Latency versus Throughput 

•  Can we have both low CPI and short clock period? 
•  Not if datapath executes only one insn at a time 

•  Latency and throughput: two views of performance …  
•  (1) at the program level and (2) at the instructions level 

•  Single instruction latency 
•  Doesn’t matter: programs comprised of billions of instructions 
•  Difficult to reduce anyway 

•  Goal is to make programs, not individual insns, go faster 
•  Instruction throughput → program latency  
•  Key: exploit inter-insn parallelism 

insn0.fetch, dec, exec 
Single-cycle 

Multi-cycle 

insn1.fetch, dec, exec 

insn0.dec insn0.fetch 
insn1.dec insn1.fetch 

insn0.exec 
insn1.exec 
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Pipelining 

•  Important performance technique 
•  Improves instruction throughput rather instruction latency 

•  Begin with multi-cycle design 
•  When insn advances from stage 1 to 2, next insn enters at stage 1 
•  Form of parallelism: “insn-stage parallelism” 
•  Maintains illusion of sequential fetch/execute loop 
•  Individual instruction takes the same number of stages 
+  But instructions enter and leave at a much faster rate 

•  Laundry analogy 

insn0.dec insn0.fetch 
insn1.dec insn1.fetch Multi-cycle 

Pipelined 

insn0.exec 
insn1.exec 

insn0.dec insn0.fetch 
insn1.dec insn1.fetch 
insn0.exec 

insn1.exec 
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5 Stage Multi-Cycle Datapath 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 
Data 
Mem 

a 

d 

+ 
4 

<< 
2 

I 
R D O 

B 

A 



Computer Architecture  |  Prof. Milo Martin  |  Pipelining 19 

5 Stage Pipeline: Inter-Insn Parallelism 

•  Pipelining: cut datapath into N stages (here 5) 
•  One insn in each stage in each cycle 
+  Clock period = MAX(Tinsn-mem, Tregfile, TALU, Tdata-mem) 
+  Base CPI = 1: insn enters and leaves every cycle 
–  Actual CPI > 1: pipeline must often “stall” 
•  Individual insn latency increases (pipeline overhead), not the point 

PC Insn 
Mem 

Register 
File 

s1 s2 d 
Data 
Mem 

+ 
4 

Tinsn-mem Tregfile TALU Tdata-mem Tregfile 

Tsinglecycle 

Computer Architecture  |  Prof. Milo Martin  |  Pipelining 20 

5 Stage Pipelined Datapath 

•  Five stage: Fetch, Decode, eXecute, Memory, Writeback 
•  Nothing magical about 5 stages (Pentium 4 had 22 stages!) 

•  Latches (pipeline registers) named by stages they begin 
•  PC, D, X, M, W 

PC Insn 
Mem 

Register 
File 

s1 s2 d 
Data 
Mem 

+ 
4 

PC 

IR 

PC 

A 

B 

IR 

O 

B 
IR 

O 

D 

IR PC 
D X M W 
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More Terminology & Foreshadowing  

•  Scalar pipeline: one insn per stage per cycle 
•  Alternative: “superscalar” (later) 

•  In-order pipeline: insns enter execute stage in order 
•  Alternative: “out-of-order” (later) 

•  Pipeline depth: number of pipeline stages 
•  Nothing magical about five 
•  Contemporary high-performance cores have ~15 stage pipelines 
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Instruction Convention 

•  Different ISAs use inconsistent register orders 

•  Some ISAs (for example MIPS) 
•  Instruction destination (i.e., output) on the left 
•  add $1, $2, $3 means $1$2+$3 

•  Other ISAs 
•  Instruction destination (i.e., output) on the right 
add r1,r2,r3 means r1+r2�r3 
ld 8(r5),r4 means mem[r5+8]�r4 
st r4,8(r5) means r4�mem[r5+8] 

•  Will try to specify to avoid confusion, next slides MIPS style 
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Pipeline Example: Cycle 1 

•  3 instructions 

PC Insn 
Mem 

Register 
File 
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s1 s2 d 
Data 
Mem 

a 

d 

+ 
4 

<< 
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PC 

IR 

PC 

A 

B 

IR 
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B 

IR 

O 

D 

IR 

PC 

D X M W 

add $3,$2,$1 
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Pipeline Example: Cycle 2 

PC Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 
Data 
Mem 

a 

d 

+ 
4 

<< 
2 

PC 

IR 

PC 

A 

B 

IR 

O 

B 

IR 

O 

D 

IR 

PC 

lw $4,8($5) add $3,$2,$1 
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Pipeline Example: Cycle 3 

PC Insn 
Mem 

Register 
File 
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s1 s2 d 
Data 
Mem 
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PC 

IR 
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sw $6,4($7) lw $4,8($5) add $3,$2,$1 

D X M W 
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Pipeline Example: Cycle 4 

•  3 instructions 

PC Insn 
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sw $6,4($7) lw $4,8($5) add $3,$2,$1 

D X M W 
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Pipeline Example: Cycle 5 
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Pipeline Example: Cycle 6 

PC Insn 
Mem 

Register 
File 
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Pipeline Example: Cycle 7 

PC Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 
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Pipeline Diagram 

•  Pipeline diagram: shorthand for what we just saw 
•  Across: cycles 
•  Down: insns 
•  Convention: X means lw $4,8($5) finishes execute stage and 

writes into M latch at end of cycle 4 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 
lw $4,8($5) F D X M W 
sw $6,4($7) F D X M W 
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Example Pipeline Perf. Calculation 
•  Single-cycle 

•  Clock period = 50ns, CPI = 1 
•  Performance = 50ns/insn 

•  Multi-cycle 
•  Branch: 20% (3 cycles), load: 20% (5 cycles), ALU: 60% (4 cycles)  
•  Clock period = 11ns, CPI = (20%*3)+(20%*5)+(60%*4) = 4 
•  Performance = 44ns/insn 

•  5-stage pipelined 
•  Clock period = 12ns    approx. (50ns / 5 stages) + overheads 
+  CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle) 

+ Performance = 12ns/insn 
–  Well actually … CPI = 1 + some penalty for pipelining (next) 

•  CPI = 1.5 (on average insn completes every 1.5 cycles) 
•  Performance = 18ns/insn 
•  Much higher performance than single-cycle or multi-cycle 
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Q1: Why Is Pipeline Clock Period …   

•  … > (delay thru datapath) / (number of pipeline stages)? 

•  Three reasons: 
•  Latches add delay 
•  Pipeline stages have different delays, clock period is max delay 
•  Extra datapaths for pipelining (bypassing paths) 

•  These factors have implications for ideal number pipeline stages 
•  Diminishing clock frequency gains for longer (deeper) pipelines 
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Q2: Why Is Pipeline CPI… 
•  … > 1? 

•  CPI for scalar in-order pipeline is 1 + stall penalties 
•  Stalls used to resolve hazards 

•  Hazard: condition that jeopardizes sequential illusion 
•  Stall: pipeline delay introduced to restore sequential illusion 

•  Calculating pipeline CPI 
•  Frequency of stall * stall cycles 
•  Penalties add (stalls generally don’t overlap in in-order pipelines) 
•  1 + (stall-freq1*stall-cyc1) + (stall-freq2*stall-cyc2) + … 

•  Correctness/performance/make common case fast 
•  Long penalties OK if they are rare, e.g., 1 + (0.01 * 10) = 1.1 
•  Stalls also have implications for ideal number of pipeline stages 

Data Dependences, Pipeline 
Hazards, and Bypassing 
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Dependences and Hazards 
•  Dependence: relationship between two insns 

•  Data: two insns use same storage location 
•  Control: one insn affects whether another executes at all 
•  Not a bad thing, programs would be boring without them 
•  Enforced by making older insn go before younger one 

•  Happens naturally in single-/multi-cycle designs 
•  But not in a pipeline 

•  Hazard: dependence & possibility of wrong insn order 
•  Effects of wrong insn order cannot be externally visible 

•  Stall: for order by keeping younger insn in same stage 
•  Hazards are a bad thing: stalls reduce performance 
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Data Hazards 

•  Let’s forget about branches and the control for a while 
•  The three insn sequence we saw earlier executed fine… 

•  But it wasn’t a real program 
•  Real programs have data dependences 

•  They pass values via registers and memory 
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Dependent Operations 

•  Independent operations 

 add $3,$2,$1 
 add $6,$5,$4 

•  Would this program execute correctly on a pipeline? 

 add $3,$2,$1 
 add $6,$5,$3 

•  What about this program? 

 add $3,$2,$1 
 lw $4,8($3) 
 addi $6,1,$3 
 sw $3,8($7) 
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Data Hazards 

•  Would this “program” execute correctly on this pipeline? 
•   Which insns would execute with correct inputs? 
•   add is writing its result into $3 in current cycle  
–   lw read $3 two cycles ago → got wrong value 
–   addi read $3 one cycle ago →  got wrong value 
•   sw is reading $3 this cycle → maybe (depending on regfile design) 

add $3,$2,$1 lw $4,8($3) sw $3,4($7) addi $6,1,$3 

Register 
File 
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s1 s2 d 
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IR 

D X M W 
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Observation! 

•  Technically, this situation is broken 
•   lw $4,8($3) has already read $3 from regfile 
•   add $3,$2,$1 hasn’t yet written $3 to regfile 

•  But fundamentally, everything is OK 
•   lw $4,8($3) hasn’t actually used $3 yet 
•   add $3,$2,$1 has already computed $3 

Register 
File 
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s1 s2 d 

IR 
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add $3,$2,$1 lw $4,8($3) 
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Bypassing 

•  Bypassing 
•  Reading a value from an intermediate (µarchitectural) source 
•  Not waiting until it is available from primary source 
•  Here, we are bypassing the register file 
•  Also called forwarding 
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WX Bypassing 

•  What about this combination? 
•  Add another bypass path and MUX (multiplexor) input 
•  First one was an MX bypass 
•  This one is a WX bypass 
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ALUinB Bypassing 

•  Can also bypass to ALU input B 
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WM Bypassing? 

•  Does WM bypassing make sense? 
•  Not to the address input (why not?) 

•  But to the store data input, yes 
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X 
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Bypass Logic 

•  Each multiplexor has its own, here it is for “ALUinA” 
(X.IR.RegSrc1 == M.IR.RegDest) => 0 
(X.IR.RegSrc1 == W.IR.RegDest) => 1 
Else => 2 
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Pipeline Diagrams with Bypassing 

•  If bypass exists, “from”/“to” stages execute in same cycle 
•  Example: MX bypass 

1 2 3 4 5 6 7 8 9 10 
add r2,r3r1 F D X M W 
sub r1,r4r2 F D X M W 

•  Example: WX bypass  
1 2 3 4 5 6 7 8 9 10 

add r2,r3r1 F D X M W 
ld [r7+4]r5 F D X M W 
sub r1,r4r2 F D X M W 

1 2 3 4 5 6 7 8 9 10 
add r2,r3r1 F D X M W 
? F D X M W 

•  Example: WM bypass  

•  Can you think of a code example that uses the WM bypass? 
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Have We Prevented All Data Hazards? 
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•  No.  Consider a “load” followed by a dependent “add” insn 
•  Bypassing alone isn’t sufficient! 
•  Hardware solution: detect this situation and inject a stall cycle 
•  Software solution: ensure compiler doesn’t generate such code 

D X M W 
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Stalling on Load-To-Use Dependences 

•  Prevent “D insn” from advancing this cycle 
•  Write nop into X.IR (effectively, insert nop in hardware) 
•  Keep same “D insn”, same PC next cycle 

•  Re-evaluate situation next cycle 
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lw $3,4($2) add $4,$2,$3 

Computer Architecture  |  Prof. Milo Martin  |  Pipelining 48 

Stalling on Load-To-Use Dependences 

Stall = (X.IR.Operation == LOAD) && 
          (   (D.IR.RegSrc1 == X.IR.RegDest) ||  
               ((D.IR.RegSrc2 == X.IR.RegDest) && (D.IR.Op != STORE)) 

      )  
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Stalling on Load-To-Use Dependences 
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(stall bubble) add $4,$2,$3 lw $3,4($2) 

D X M W 

Stall = (X.IR.Operation == LOAD) && 
          (   (D.IR.RegSrc1 == X.IR.RegDest) ||  
               ((D.IR.RegSrc2 == X.IR.RegDest) && (D.IR.Op != STORE)) 

      )  
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Stalling on Load-To-Use Dependences 
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Stall = (X.IR.Operation == LOAD) && 
          (   (D.IR.RegSrc1 == X.IR.RegDest) ||  
               ((D.IR.RegSrc2 == X.IR.RegDest) && (D.IR.Op != STORE)) 

      )  
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Performance Impact of Load/Use Penalty 

•  Assume 
•  Branch: 20%, load: 20%, store: 10%, other: 50% 
•  50% of loads are followed by dependent instruction 

•  require 1 cycle stall (I.e., insertion of 1 nop) 

•  Calculate CPI 
•  CPI = 1 + (1 * 20% * 50%) = 1.1 
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Reducing Load-Use Stall Frequency  

•  Use compiler scheduling to reduce load-use stall frequency 
•  More on compiler scheduling later 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 
lw $4,4($3) F D X M W 
addi $6,$4,1 F D d* X M W 
sub $8,$3,$1 F d* D X M W 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 
lw $4,4($3) F D X M W 
sub $8,$3,$1 F D X M W 
addi $6,$4,1 F D X M W 
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Dependencies Through Memory 

•  Are “load to store” memory dependencies a problem?  No 
•   lw following sw to same address in next cycle, gets right value 
•   Why? Data mem read/write always take place in same stage 

•  Are there any other sort of hazards to worry about? 

sw $5,8($1) lw $4,8($1) 

Register 
File 

S 
X 

s1 s2 d 

IR 

A 

B 

IR 

O 

B 

IR 

Data 
Mem 

a 

d 

O 

D 

IR 

D X M W 
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Structural Hazards 

•  Structural hazards 
•  Two insns trying to use same circuit at same time 

•  E.g., structural hazard on register file write port 

•  To avoid structural hazards 
•  Avoided if: 

•  Each insn uses every structure exactly once 
•  For at most one cycle 
•  All instructions travel through all stages 

•  Add more resources: 
•  Example: two memory accesses per cycle (Fetch & Memory) 
•  Split instruction & data memories allows simultaneous access 

•  Tolerate structure hazards 
•  Add stall logic to stall pipeline when hazards occur 
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Why Does Every Insn Take 5 Cycles? 

•  Could/should we allow add to skip M and go to W? No 
–  It wouldn’t help: peak fetch still only 1 insn per cycle 
–  Structural hazards: imagine add after lw (only 1 reg. write port) 

PC Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 
Data 
Mem 

a 

d 

+ 
4 

<< 
2 

PC 

IR 

PC 

A 

B 

IR 

O 

B 

IR 

O 

D 

IR 

PC 

add $3,$2,$1 lw $4,8($5) 

D X M W 

Multi-Cycle Operations 
(if time permits) 
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Pipelining and Multi-Cycle Operations 

•  What if you wanted to add a multi-cycle operation? 
•  E.g., 4-cycle multiply 
•  P: separate output latch connects to W stage 
•  Controlled by pipeline control finite state machine (FSM) 

Register 
File 

s1 s2 d 

IR 

A 

B 

IR 
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IR 

D X M 
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Mem 
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IR 
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IR 
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P 

Xctrl 
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A Pipelined Multiplier 

•  Multiplier itself is often pipelined, what does this mean? 
•  Product/multiplicand register/ALUs/latches replicated 
•  Can start different multiply operations in consecutive cycles 
•  But still takes 4 cycles to generate output value 

Register 
File 

s1 s2 d 

IR 
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B 

IR 
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P3 W 

D X M 

P0 
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Pipeline Diagram with Multiplier 
•  Allow independent instructions 

•  Even allow independent multiplies 

•  But must stall subsequent dependent instructions: 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
addi $6,$7,1 F D X M W 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
addi $6,$4,1 F D d* d* d* X M W 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
mul $6,$7,$8 F D P0 P1 P2 P3 W 

Computer Architecture  |  Prof. Milo Martin  |  Pipelining 60 

What about Stall Logic? 

Register 
File 

s1 s2 d 

IR 

A 

B 

IR 

O 

B 

IR 

Data 
Mem 
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d 
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D 

IR 

P 

M 
IR 

P1 

P 

M 
IR 

P2 

P 

M 
IR 

P 

M 
IR 

P3 W 

D X M 

P0 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
addi $6,$4,1 F D d* d* d* X M W 
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What about Stall Logic? 

 Stall = (OldStallLogic) || 
(D.IR.RegSrc1 == P0.IR.RegDest) || (D.IR.RegSrc2 == P0.IR.RegDest) || 
(D.IR.RegSrc1 == P1.IR.RegDest) || (D.IR.RegSrc2 == P1.IR.RegDest) || 
(D.IR.RegSrc1 == P2.IR.RegDest) || (D.IR.RegSrc2 == P2.IR.RegDest) 

Register 
File 

s1 s2 d 

IR 
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B 

IR 

O 

B 

IR 

Data 
Mem 
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IR 
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D X M 

P1 P2 P3 W P0 
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Multiplier Write Port Structural Hazard 
•  What about… 

•  Two instructions trying to write register file in same cycle? 
•  Structural hazard! 

•  Must prevent: 

•  Solution? stall the subsequent instruction 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
addi $6,$1,1 F D X M W 
add $5,$6,$10 F D X M W 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
addi $6,$1,1 F D X M W 
add $5,$6,$10 F d* D X M W 
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Preventing Structural Hazard 

•  Fix to problem on previous slide: 
Stall = (OldStallLogic) ||  
   (D.IR.RegDest “is valid” &&  
    D.IR.Operation != MULT && P0.IR.RegDest “is valid”)  

Register 
File 

s1 s2 d 

IR 
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IR 
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More Multiplier Nasties 
•  What about… 

•  Mis-ordered writes to the same register 
•  Software thinks add gets $4 from addi, actually gets it from mul 

•  Common? Not for a 4-cycle multiply with 5-stage pipeline 
•  More common with deeper pipelines 
•  In any case, must be correct 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
addi $4,$1,1 F D X M W 
… 

… 

add $10,$4,$6 F D X M W 
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Preventing Mis-Ordered Reg. Write 

•  Fix to problem on previous slide: 
Stall = (OldStallLogic) ||  
   ((D.IR.RegDest == X.IR.RegDest) && (X.IR.Operation == MULT))  

Register 
File 

s1 s2 d 

IR 
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B 

IR 
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IR 

Data 
Mem 
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IR 
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M 
IR 
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IR 

P 

M 
IR 

P 

M 
IR 

P1 P2 P3 W P0 

D X M 
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Corrected Pipeline Diagram 

•  With the correct stall logic 
•  Prevent mis-ordered writes to the same register 
•  Why two cycles of delay? 

•  Multi-cycle operations complicate pipeline logic 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
addi $4,$1,1 F d* d* D X M W 
… 

… 

add $10,$4,$6 F D X M W
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Pipelined Functional Units 

•  Almost all multi-cycle functional units are pipelined 
•  Each operation takes N cycles 
•  But can start initiate a new (independent) operation every cycle 
•  Requires internal latching and some hardware replication 
+  A cheaper way to add bandwidth than multiple non-pipelined units 

1 2 3 4 5 6 7 8 9 10 11 
mulf f0,f1,f2 F D E* E* E* E* W 
mulf f3,f4,f5 F D E* E* E* E* W 

1 2 3 4 5 6 7 8 9 10 11 
divf f0,f1,f2 F D E/ E/ E/ E/ W 
divf f3,f4,f5 F D s* s* s* E/ E/ E/ E/ W 

•  One exception: int/FP divide: difficult to pipeline and not worth it 

•  s* = structural hazard, two insns need same structure 
•  ISAs and pipelines designed to have few of these 
•  Canonical example: all insns forced to go through M stage 

Control Dependences and  
Branch Prediction 

Computer Architecture  |  Prof. Milo Martin  |  Pipelining 68 



Computer Architecture  |  Prof. Milo Martin  |  Pipelining 69 

What About Branches? 

•  Branch speculation 
•  Could just stall to wait for branch outcome (two-cycle penalty)  
•  Fetch past branch insns before branch outcome is known 

•  Default: assume “not-taken” (at fetch, can’t tell it’s a branch) 

PC Insn 
Mem 

Register 
File 

s1 s2 d 
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Branch Recovery  

PC Insn 
Mem 

Register 
File 

s1 s2 d 

+ 
4 

<< 
2 

D X 

M 

nop nop 

PC 

A 

B 

IR 

O 

B 

IR 

PC 

IR 

S 
X 

•  Branch recovery: what to do when branch is actually taken 
•  Insns that will be written into D and X are wrong 
•  Flush them, i.e., replace them with nops 
+  They haven’t had written permanent state yet (regfile, DMem)  
–  Two cycle penalty for taken branches 
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Branch Speculation and Recovery 

•  Mis-speculation recovery: what to do on wrong guess 
•  Not too painful in an short, in-order pipeline 
•  Branch resolves in X 
+  Younger insns (in F, D) haven’t changed permanent state 
•  Flush insns currently in D and X (i.e., replace with nops) 

1 2 3 4 5 6 7 8 9 
     addi r1,1r3 F D X M W 
     bnez r3,targ F D X M W 
     st r6[r7+4] F D X M W 

mul r8,r9r10 F D X M W 

1 2 3 4 5 6 7 8 9 
     addi r1,1r3 F D X M W 
     bnez r3,targ F D X M W 
     st r6[r7+4] F D -- -- -- 

mul r8,r9r10 F -- -- -- -- 
targ:add r4,r5r4 F D X M W 

Correct: 

Recovery: 

speculative 

Computer Architecture  |  Prof. Milo Martin  |  Pipelining 72 

Branch Performance 

•  Back of the envelope calculation 
•  Branch: 20%, load: 20%, store: 10%, other: 50% 
•  Say, 75% of branches are taken 

•  CPI = 1 + 20% * 75% * 2 = 
         1 + 0.20 * 0.75 * 2 = 1.3 
–  Branches cause 30% slowdown 

•  Worse with deeper pipelines (higher mis-prediction penalty) 

•  Can we do better than assuming branch is not taken? 
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Big Idea: Speculative Execution 

•  Speculation: “risky transactions on chance of profit” 

•  Speculative execution 
•  Execute before all parameters known with certainty 
•  Correct speculation 

+ Avoid stall, improve performance 
•  Incorrect speculation (mis-speculation) 

– Must abort/flush/squash incorrect insns 
– Must undo incorrect changes (recover pre-speculation state) 

•  Control speculation: speculation aimed at control hazards 
•  Unknown parameter: are these the correct insns to execute next? 
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Control Speculation Mechanics 
•  Guess branch target, start fetching at guessed position 

•  Doing nothing is implicitly guessing target is PC+4 
•  Can actively guess other targets: dynamic branch prediction 

•  Execute branch to verify (check) guess 
•  Correct speculation? keep going 
•  Mis-speculation? Flush mis-speculated insns 

•  Hopefully haven’t modified permanent state (Regfile, DMem) 
+ Happens naturally in in-order 5-stage pipeline 
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Dynamic Branch Prediction 

•  Dynamic branch prediction: hardware guesses outcome 
•  Start fetching from guessed address 
•  Flush on mis-prediction 

PC 
Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

+ 
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TG 
PC 

IR 

TG 
PC 
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B 

IR 
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IR 

D X M 

nop nop 

BP 

<> 
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Dynamic Branch Prediction Components 

•  Step #1: is it a branch? 
•  Easy after decode... 

•  Step #2: is the branch taken or not taken? 
•  Direction predictor (applies to conditional branches only) 
•  Predicts taken/not-taken 

•  Step #3: if the branch is taken, where does it go? 
•  Easy after decode… 

regfile 

D$ I$ 
B 
P 
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Branch Direction Prediction 
•  Learn from past, predict the future 

•  Record the past in a hardware structure 
•  Direction predictor (DIRP) 

•  Map conditional-branch PC to taken/not-taken (T/N) decision 
•  Individual conditional branches often biased or weakly biased 

•  90%+ one way or the other considered “biased” 
•  Why?  Loop back edges, checking for uncommon conditions 

•  Branch history table (BHT): simplest predictor 
•  PC indexes table of bits (0 = N, 1 = T), no tags 
•  Essentially: branch will go same way it went last time 

•  What about aliasing? 
•  Two PC with the same lower bits? 
•  No problem, just a prediction! 

T or NT 

[9:2] 1:0 [31:10] 

T or NT 

PC BHT 

Prediction (taken or  
not taken) 
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Branch History Table (BHT) 

•  Branch history table (BHT): 
simplest direction predictor 
•  PC indexes table of bits (0 = N, 1 = T), 

no tags 
•  Essentially: branch will go same way it 

went last time 
•  Problem: inner loop branch below 

for (i=0;i<100;i++) 
   for (j=0;j<3;j++) 
      // whatever 
–  Two “built-in” mis-predictions per 

inner loop iteration 
–  Branch predictor “changes its mind 

too quickly” 

Tim
e   

State 

Prediction 

O
utcom

e  

Result? 

1 N N T Wrong 

2 T T T Correct 

3 T T T Correct 

4 T  T N Wrong 

5 N  N T Wrong 

6 T T T Correct 

7 T T T Correct 

8 T  T N Wrong 

9 N  N T Wrong 

10 T T T Correct 

11 T T T Correct 

12 T  T N Wrong 
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Two-Bit Saturating Counters (2bc) 

•  Two-bit saturating counters (2bc) 
[Smith 1981] 
•  Replace each single-bit prediction 

•  (0,1,2,3) = (N,n,t,T) 
•  Adds “hysteresis” 

•  Force predictor to mis-predict twice 
before “changing its mind” 

•  One mispredict each loop execution  
(rather than two) 

+ Fixes this pathology (which is not 
contrived, by the way) 

•  Can we do even better? 

Tim
e   

State 

Prediction 

O
utcom

e  
Result? 

1 N N T Wrong 

2 n N T Wrong 

3 t T T Correct 

4 T  T N Wrong 

5 t  T T Correct 

6 T T T Correct 

7 T T T Correct 

8 T  T N Wrong 

9 t  T T Correct 

10 T T T Correct 

11 T T T Correct 

12 T  T N Wrong 
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Correlated Predictor 
•  Correlated (two-level) 

predictor [Patt 1991] 
•  Exploits observation that branch 

outcomes are correlated 
•  Maintains separate prediction per 

(PC, BHR) pairs 
•  Branch history register 

(BHR): recent branch 
outcomes 

•  Simple working example: assume 
program has one branch 

•  BHT: one 1-bit DIRP entry 
•  BHT+2BHR: 22 = 4 1-bit DIRP 

entries 
–  Why didn’t we do better? 

•  BHT not long enough to 
capture pattern  

Tim
e   

“Pattern” 

State 

Prediction 

O
utcom

e  

Result? NN NT TN TT 

1 NN N  N N N N T Wrong 

2 NT T N N N N T Wrong 

3 TT T T N N  N T Wrong 

4 TT T T N T  T N Wrong 

5 TN T T N N N T Wrong 

6 NT T T T N T T Correct 

7 TT T T T N N T Wrong 

8 TT T T T T T N Wrong 

9 TN T T T  N T T Correct 

10 NT T T T N T T Correct 

11 TT T T T N N T Wrong 

12 TT T T T T T N Wrong 
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Correlated Predictor – 3 Bit Pattern 

Tim
e   

“Pattern” 

State 

Prediction 

O
utcom

e  

Result? NNN NNT NTN NTT TNN TNT TTN TTT 

1 NNN N N N N N N N N N T Wrong 

2 NNT T N N N N N N N N T Wrong 

3 NTT T T N N  N N N N N T Wrong 

4 TTT T T N T N N N N  N N Correct 

5 TTN T T N T N N N  N N T Wrong 

6 TNT T T N T N N  T N N T Wrong 

7 NTT T T N T  N T T N T T Correct 

8 TTT T T N T N T T N  N N Correct 

9 TTN T T N T N T T  N T T Correct 

10 TNT T T N T N T  T N T T Correct 

11 NTT T T N T  N T T N T T Correct 

12 TTT T T N T N T T N N N Correct 

•  Try 3 bits  
of history 

•  23 DIRP 
entries 
per 
pattern 

+  No mis-predictions after predictor learns all the relevant patterns! 
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Correlated Predictor Design 
•  Design choice: how many history bits (BHR size)? 

•  Tricky one 
+  Given unlimited resources, longer BHRs are better, but… 
–  BHT utilization decreases 

– Many history patterns are never seen 
– Many branches are history independent (don’t care) 
•  PC xor BHR allows multiple PCs to dynamically share BHT 
•  BHR length < log2(BHT size) 

–  Predictor takes longer to train 
•  Typical length: 8–12 
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Hybrid Predictor 

•  Hybrid (tournament) predictor [McFarling 1993] 
•  Attacks correlated predictor BHT capacity problem 
•  Idea: combine two predictors 

•  Simple BHT predicts history independent branches 
•  Correlated predictor predicts only branches that need history 
•  Chooser assigns branches to one predictor or the other 
•  Branches start in simple BHT, move mis-prediction threshold 

+  Correlated predictor can be made smaller, handles fewer branches 
+  90–95% accuracy 

PC 

BHR B
H

T 

B
H

T 

ch
oo

se
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When to Perform Branch Prediction? 
•  Option #1: During Decode 

•  Look at instruction opcode to determine branch instructions 
•  Can calculate next PC from instruction (for PC-relative branches) 
–  One cycle “mis-fetch” penalty even if branch predictor is correct 

•  Option #2: During Fetch? 
•  How do we do that? 

1 2 3 4 5 6 7 8 9 
     bnez r3,targ F D X M W 
targ:add r4,r5,r4 F D X M W 
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Revisiting Branch Prediction Components 

•  Step #1: is it a branch? 
•  Easy after decode... during fetch: predictor 

•  Step #2: is the branch taken or not taken? 
•  Direction predictor (as before) 

•  Step #3: if the branch is taken, where does it go? 
•  Branch target predictor (BTB) 
•  Supplies target PC if branch is taken 

regfile 

D$ I$ 
B 
P 
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Branch Target Buffer (BTB) 
•  As before: learn from past, predict the future 

•  Record the past branch targets in a hardware structure 

•  Branch target buffer (BTB): 
•  “guess” the future PC based on past behavior 
•  “Last time the branch X was taken, it went to address Y” 

•  “So, in the future, if address X is fetched, fetch address Y next”  

•  Operation 
•  A small RAM: address = PC, data = target-PC 
•  Access at Fetch in parallel with instruction memory 

•  predicted-target = BTB[hash(PC)] 
•  Updated at X whenever target != predicted-target 

•  BTB[hash(PC)] = target 
•  Hash function is just typically just extracting lower bits (as before) 
•  Aliasing?  No problem, this is only a prediction 
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Branch Target Buffer (continued) 
•  At Fetch, how does insn know it’s a branch & should read 

BTB?   It doesn’t have to… 
•  …all insns access BTB in parallel with Imem Fetch 

•  Key idea: use BTB to predict which insn are branches 
•  Implement by “tagging” each entry with its corresponding PC 
•  Update BTB on every taken branch insn, record target PC: 

•  BTB[PC].tag = PC, BTB[PC].target = target of branch 
•  All insns access at Fetch in parallel with Imem 

•  Check for tag match, signifies insn at that PC is a branch 
•  Predicted PC = (BTB[PC].tag == PC) ? BTB[PC].target : PC+4 

PC 

+ 
4 

BTB 
tag 

== 
target 

predicted target 
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Why Does a BTB Work? 

•  Because most control insns use direct targets 
•  Target encoded in insn itself → same “taken” target every time 

•  What about indirect targets? 
•  Target held in a register → can be different each time 
•  Two indirect call idioms 

+ Dynamically linked functions (DLLs): target always the same 
•  Dynamically dispatched (virtual) functions: hard but uncommon 

•  Also two indirect unconditional jump idioms 
•  Switches: hard but uncommon 
–  Function returns: hard and common but… 
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Return Address Stack (RAS) 

•  Return address stack (RAS) 
•  Call instruction? RAS[TopOfStack++] = PC+4 
•  Return instruction? Predicted-target = RAS[--TopOfStack] 

PC 

+ 
4 

BTB 
tag 

== 

target 
predicted target 

RAS 

Putting It All Together 

•  BTB & branch direction predictor during fetch 

•  If branch prediction correct, no taken branch penalty 
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PC 
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predicted target 
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BHT 
taken/not-taken 
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Branch Prediction Performance 
•  Dynamic branch prediction 

•  20% of instruction branches 
•  Simple predictor: branches predicted with 75% accuracy 

•  CPI = 1 + (20% * 25% * 2) = 1.1 
•  More advanced predictor: 95% accuracy 

•  CPI = 1 + (20% *  5% * 2) = 1.02 

•  Branch mis-predictions still a big problem though 
•  Pipelines are long: typical mis-prediction penalty is 10+ cycles 
•  For cores that do more per cycle, predictions more costly (later) 
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Research: Perceptron Predictor 
•  Perceptron predictor [Jimenez] 

•  Attacks predictor size problem using machine learning approach 
•  History table replaced by table of function coefficients Fi (signed) 

•  Predict taken if ∑(BHRi*Fi)> threshold 

+  Table size #PC*|BHR|*|F|  (can use long BHR: ~60 bits) 
–  Equivalent correlated predictor would be #PC*2|BHR| 

•  How does it learn? Update Fi when branch is taken 
•  BHRi == 1 ? Fi++ : Fi– –; 
•  “don’t care” Fi bits stay near 0, important Fi bits saturate 

+  Hybrid BHT/perceptron accuracy: 95–98% 

PC 

BHR 

F 

∑ Fi*BHRi > thresh 
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More Research: GEHL Predictor 

•  Problem with both correlated predictor and perceptron 
•  Same predictor area dedicated to 1st history bit (1 column) … 
•  … as to 2nd, 3rd, 10th, 60th… 
•  Not a good use of space: 1st bit much more important than 60th 

•  GEometric History-Length predictor [Seznec, ISCA’05] 
•  Multiple predictors, indexed with geometrically longer  

history (0, 4, 16, 32) 
•  Predictors are (partially) tagged, no separate “chooser” 
•  Predict: use matching entry from predictor with longest history 
•  Mis-predict: create entry in predictor with next-longest history 
•  Only 25% of predictor area used for bits 16-32 (not 50%) 
•  Helps amortize cost of tagging 

+  Trains quickly 
•  95-97% accurate 
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Pipeline Depth 
•  Trend had been to deeper pipelines 

•  486: 5 stages (50+ gate delays / clock) 
•  Pentium: 7 stages 
•  Pentium II/III: 12 stages 
•  Pentium 4: 22 stages (~10 gate delays / clock) “super-pipelining” 
•  Core1/2: 14 stages 

•  Increasing pipeline depth 
+  Increases clock frequency (reduces period) 

•  But double the stages reduce the clock period by less than 2x 
–  Decreases IPC (increases CPI) 

•  Branch mis-prediction penalty becomes longer 
•  Non-bypassed data hazard stalls become longer 

•  At some point, actually causes performance to decrease, but when? 
•  1GHz Pentium 4 was slower than 800 MHz PentiumIII 

•  “Optimal” pipeline depth is program and technology specific 



Computer Architecture  |  Prof. Milo Martin  |  Pipelining 95 

Summary 

•  Single-cycle & multi-cycle datapaths 
•  Latency vs throughput & performance 
•  Basic pipelining 
•  Data hazards 

•  Bypassing 
•  Load-use stalling 

•  Pipelined multi-cycle operations 
•  Control hazards 

•  Branch prediction 

CPU Mem I/O 

System software 

App App App 


