Evaluating Non-deterministic
Multi-threaded Commercial
Workloads

Alaa R. Alameldeen, Carl J. Mauer, Min Xu,
Pacia J. Harper, Milo M.K. Martin, Daniel J. Sorin,
Mark D. Hill, and David A. Wood

Computer Sciences Department
University of Wisconsin—Madison
http://www.cs.wisc.edu/multifacet

Introduction

» Short measurements on real machines require
multiple runs
— Uncontrolled factors
— Want to separate random from systematic effects

Simulation measurements use a single run
— Simulators are deterministic
— No uncontrolled factors

Wrong!
— Multi-threaded workloads can be unstable
— Small changes in timing cause large changes in results

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Introduction

+ Instability may affect conclusions
— Comparing Direct Mapped to Set-Associative Caches

330.00

320.00 -

310.00

300.00

—to—{

oo ot mmel

290.00

280.00
' I
270.00 I T
260.00
Direct DM 4-Way SA
250.00 - Mapped Mean SA Mean

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Cycles (Thousands)

Overview

* Introduction

* Methods

» Workloads

» Result I: Process scheduling
» Result Il: Workload Variability
+ Conclusion

» Future Work

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Methods

* Real machine
— Setup, tune, validate on a 16-processor Sun E6000
— 8 — 16 X speed-up for each application

+ Simulator
— Simics, Full-system simulator running Solaris 8
— Ruby, Memory timing simulator

+ Experiments
— Start from a warm checkpoint
— Measure throughput (transactions completed / time)

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Workloads

OLTP

— TPC-C-like benchmark using a 1 GB database
SPECjbb

— Server-side Java-based middleware workload
Apache

— Static web serving: Apache driven by SURGE
Slashcode

— Dynamic web serving message board, using code and data
similar to slashdot.org

Evaluating Non-deterministic Multi-threaded Commercial Workloads




Why unstable?

« Different paths are executed
* Hypotheses

— Process scheduling
— Order of lock acquisition

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Result I: Process scheduling

Deterministic simulation of OLTP on uniprocessor
Artificially injected misses to I-cache

— Run1:0, 100, 200 ...

— Run2: 50, 150, 250 ...

Measured equivalent to 3-5 seconds in real system
Run time difference of 9%

Is process scheduling a factor?

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Result I: Process scheduling

+ Traced process groups scheduled on CPU

Methods, part Il

Pseudo-random perturbations

— Run multiple runs from same checkpoint

— All runs have same average memory latency
— Misses to main memory perturbed by 0-4%

Calculate mean, standard deviation

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Run2!
Runl
15 152 154 156 158 16
Time (Million Cycles)
BKernel WProcess group 1 WProcess group 2
Evaluating Non-deterministic Multi-threaded Commercial Workloads
Result II: Variability
+ Variability

— 16-processor system running 8,000 OLTP transactions
— 20 runs from same checkpoint
— 12 -20 seconds in real system

* 1/ Throughput (cycles per transaction)

,_.
1)
=3
S
S

Cycles (in Thousands)

2000 4000 6000
Transactions

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Result II: Variability

[

o w e

Misses (in Thousands)

(

@

Miss rate (misses per transaction)

2000 6000

4000
Transactions

Evaluating Non-deterministic Multi-threaded Commercial Workloads




)

Thousands,
©

Result II: Variability

Result II: Variability

0000

{20000

s (i

Ctio!

Instru

£10000

Instructions executed (per transaction)
Hypothesis

— “Spin-waiting” hypothesis

— Lock-acquisition, idle loop, device activity

2000 ' 6000

2000
Transactions

Evaluating Non-deterministic Multi-threaded Commercial Workloads

»%:‘
Z10000
Z 5000
£ 6000
& 4000
2 2000
ERR 2000 4000 6000
Transactions
g
20 W\'\V‘\FFH\—H—H~H-+H~I—H—W~HA\H
EIS
=10
5
22% 2000 4000 6000
El Transactions
g
230000:
&
20000
0000
00 2000 4000 6000

Transactions

Conclusion

Multi-threaded commercial workloads can be
unstable even on uniprocessors

Instability can affect conclusions in short runs
Pseudo-random methodology can help
Even within one workload variations exist

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Future Work

* Root cause(s)?
* Methodology improvements

* Quantify instability further

Evaluating Non-deterministic Multi-threaded Commercial Workloads

Questions

Evaluating Non-deterministic Multi-threaded Commercial Workloads




