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Introduction

» Short measurements on real machines require
multiple runs
— Uncontrolled factors
— Want to separate random from systematic effects

Simulation measurements use a single run
— Simulators are deterministic
— No uncontrolled factors

Wrong!
— Multi-threaded workloads can be unstable
— Small changes in timing cause large changes in results
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Introduction

+ Instability may affect conclusions
— Comparing Direct Mapped to Set-Associative Caches
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Overview

* Introduction

* Methods

» Workloads

» Result I: Process scheduling
» Result Il: Workload Variability
+ Conclusion

» Future Work
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Methods

* Real machine
— Setup, tune, validate on a 16-processor Sun E6000
— 8 — 16 X speed-up for each application

+ Simulator
— Simics, Full-system simulator running Solaris 8
— Ruby, Memory timing simulator

+ Experiments
— Start from a warm checkpoint
— Measure throughput (transactions completed / time)
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Workloads

OLTP

— TPC-C-like benchmark using a 1 GB database
SPECjbb

— Server-side Java-based middleware workload
Apache

— Static web serving: Apache driven by SURGE
Slashcode

— Dynamic web serving message board, using code and data
similar to slashdot.org
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Why unstable?

« Different paths are executed
* Hypotheses

— Process scheduling
— Order of lock acquisition
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Result I: Process scheduling

Deterministic simulation of OLTP on uniprocessor
Artificially injected misses to I-cache

— Run1:0, 100, 200 ...

— Run2: 50, 150, 250 ...

Measured equivalent to 3-5 seconds in real system
Run time difference of 9%

Is process scheduling a factor?
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Result I: Process scheduling

+ Traced process groups scheduled on CPU

Methods, part Il

Pseudo-random perturbations

— Run multiple runs from same checkpoint

— All runs have same average memory latency
— Misses to main memory perturbed by 0-4%

Calculate mean, standard deviation
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Result II: Variability
+ Variability

— 16-processor system running 8,000 OLTP transactions
— 20 runs from same checkpoint
— 12 -20 seconds in real system

* 1/ Throughput (cycles per transaction)
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Result II: Variability

[

o w e

Misses (in Thousands)

(

@

Miss rate (misses per transaction)

2000 6000

4000
Transactions

Evaluating Non-deterministic Multi-threaded Commercial Workloads




)

Thousands,
©

Result II: Variability

Result II: Variability
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Conclusion

Multi-threaded commercial workloads can be
unstable even on uniprocessors

Instability can affect conclusions in short runs
Pseudo-random methodology can help
Even within one workload variations exist
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Future Work

* Root cause(s)?
* Methodology improvements

* Quantify instability further
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Questions
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