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SHARED MEMORY IS  the dominant low-level 
communication paradigm in today’s mainstream 
multicore processors. In a shared-memory system, 
the (processor) cores communicate via loads and 
stores to a shared address space. The cores use caches 
to reduce the average memory latency and memory 
traffic. Caches are thus beneficial, but private caches 
lead to the possibility of cache incoherence. The 
mainstream solution is to provide shared memory 
and prevent incoherence through a hardware cache 
coherence protocol, making caches functionally 
invisible to software. The incoherence problem and 
basic hardware coherence solution are outlined in  
the sidebar, “The Problem of Incoherence,” page 86. 

Cache-coherent shared memory is provided by 
mainstream servers, desktops, laptops, and mobile 
devices and is available from all major vendors, 
including AMD, ARM, IBM, Intel, and Oracle (Sun). 

Cache coherence has come to domi-
nate the market for technical, as well as 
for legacy, reasons. Technically, hard-
ware cache coherence provides per-
formance generally superior to what is 
achievable with software-implemented 
coherence. Cache coherence’s legacy 
advantage is that it provides backward 
compatibility for a long history of soft-
ware, including operating systems, 
written for cache-coherent shared-
memory systems. 

Although coherence delivers value 
in today’s multicore systems, the con-
ventional wisdom is that on-chip cache 
coherence will not scale to the large 
number of cores expected to be found 
on future processor chips.5,10,13 Coher-
ence’s alleged lack of scalability aris-
es from claims of unscalable storage 
and interconnection network traffic 
and concerns over latency and energy. 
Such claims lead to the conclusion that 
cores in future multicore chips will not 
employ coherence but instead commu-
nicate with software-managed coher-
ence, explicitly managed scratchpad 
memories, and/or message passing 
(without shared memory). 

Here, we seek to refute this con-
ventional wisdom by presenting one 
way to scale on-chip cache coherence 
in which coherence overheads—traf-
fic, storage, latency, and energy—grow 
slowly with core count and are similar 
to the overheads deemed acceptable in 
today’s systems. To do this, we syner-
gistically combine known techniques, 
including shared caches augmented 
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 key insights
    The approach taken here scales on-chip 

hardware cache coherence to many 
cores with bounded traffic, storage, 
latency, and energy overheads. 

    For the same reason system designers 
will not abandon compatibility for 
the sake of eliminating minor costs, 
they likewise will not abandon cache 
coherence.

    Continued coherence support lets 
programmers concentrate on what 
matters for parallel speedups: finding 
work to do in parallel with no undo 
communication and synchronization. 
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to track cached copies, explicit cache 
eviction notifications, and hierarchi-
cal design. Using amortized analysis, 
we show that interconnection network 
traffic per miss need not grow with 
core count and that coherence uses at 
most 20% more traffic per miss than a 
system with caches but not coherence. 
Using hierarchical design, we show 
that storage overhead can be made 
to grow as the root of core count and 
stay small (such as 2% of total cache 
size for even 512 cores). We find neg-
ligible energy and latency overheads 
for cache misses to data that is not 
actively shared; our analysis suggests 
the relative miss penalty and energy 

overheads of accessing shared data do 
not increase appreciably with increas-
ing core count. Consequently, on-chip 
coherence is here to stay. Computer 
systems tend not to abandon compat-
ibility to eliminate small costs (such as 
those found for scaling coherence). In 
particular, system designers will not 
likely replace conventional operat-
ing systems now that they have been 
shown to scale using cache coher-
ence.2,3 Boyd-Wickizer et al.2 concur, 
writing “There is no scalability reason 
to give up on traditional operating sys-
tem organizations just yet.” 

Some architects and software devel-
opers might object to retaining coher-

ence because many applications do 
not scale well with coherence. True, 
but is the root cause the algorithm, 
program implementation, or coher-
ence? If, for example, an algorithm 
requires frequent updates to be com-
municated to many readers, coher-
ence and most alternatives do poorly. 
At least with hardware coherence, 
programmers can concentrate on cho-
reographing independent work rather 
than on low-level mechanics. 

Our claim for the continued viabil-
ity of on-chip cache coherence does 
not imply other communication para-
digms will disappear. There will still be 
applications for which message pass-
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We anticipate 
alternatives to 
cache-coherent 
shared memory will 
continue to exist 
and thrive in certain 
domains but that 
on-chip coherence 
will continue 
to dominate in 
mainstream 
multicore chips. 

ing is appropriate (such as to scale-out 
high-performance computing) or for 
which incoherent scratchpad memo-
ries are appropriate (such as real-time 
systems), and so those communication 
paradigms will persist. However, they 
are likely to continue to coexist with 
on-chip cache-coherent shared memo-
ry for the foreseeable future. 

Cache Coherence Today 
Before investigating the issues in-
volved in coherence’s future, we first 
describe today’s cache coherence 
protocols. Rather than survey coher-
ence protocol design, we focus on 
one concrete coherence protocol 
loosely based on the on-chip cache 
coherence protocol used by Intel’s 
Core i7,17 which represents the state 
of the art and can scale to a moder-
ate number of cores (such as 16). In 
such a system, the cores on the chip 
communicate via loads and stores to 
the shared memory. Each core has its 
own private cache hierarchy (referred 
to hereafter as “private cache”). There 
is a single shared last-level cache (re-
ferred to hereafter as “shared cache”). 
Such shared caches typically employ 
address-interleaved banking with one 
bank per core, thus proportionally 
scaling the bandwidth of the shared 
cache as the number of cores increas-
es; this system model is outlined in 
the sidebar figure. 

To make our analysis simpler and 
more concrete, we assume for now that 
the shared cache is inclusive with re-
spect to all the private caches. Inclusion 
means, at all times, the shared cache 
contains a superset of the blocks in the 
private caches. Intel’s Core i7 is an ex-
ample of a chip with inclusive caches. 
Because inclusion is not a universally 
adopted design decision, we discuss 
extending our results to non-inclusive 
shared caches later. 

With inclusion, cache coherence 
can be maintained with a coherence 
protocol that tracks copies of blocks in 
private caches using state embedded 
in the shared cache; that is, each block 
in the shared cache is augmented with 
a few bits of coherence state (such as 
to denote if the block is writable by 
any core) and per-core tracking bits 
that denote which cores are privately 
caching the block (one bit per core). 
As outlined in the sidebar figure, in-

clusion requires that block A (cached 
by core 0) and block B (cached by cores 
1 and 2) must be present in the shared 
cache with appropriate tracking bits 
{1000} and {0110}, respectively. If the 
block size of the shared cache is larger 
than the private cache’s block size, 
each entry in the shared cache main-
tains coherence state and tracking 
bits at the granularity of the private 
cache block size. 

When a core issues a load or store 
that misses in its private cache, it is-
sues a coherence request message 
to the shared cache. Based on the 
block’s coherence state and per-core 
tracking bits, the shared cache either 
responds directly or forwards the re-
quest to the one or more cores that 
need to respond to the request. For ex-
ample, if the request is for read/write 
access, and one or more cores is pri-
vately caching the block in a read-only 
state, then the shared cache forwards 
the request to all private caches in the 
tracking list, and these private caches 
invalidate their copies of the block. If 
no cores are caching the block, then 
a request has the negligible overhead 
of looking up only the coherence state 
bits in the shared cache. This protocol 
is essentially a directory-based cache 
coherence protocol in which the di-
rectory entries are co-located with the 
tags of the shared cache. Inclusion 
ensures that each private block has a 
corresponding shared block to hold its 
coherence tracking bits. 

To maintain inclusion, when the 
shared cache evicts a block for which 
some per-core tracking bits are set, 
the shared cache first issues a recall 
request (also known as a back-invalida-
tion or notification) to any core current-
ly caching that block as determined 
by the per-core tracking state. Upon 
receipt of a recall message, the private 
cache is forced to evict the block. 

This approach to coherence has 
many attractive features, helping ex-
plain why current Intel systems re-
semble it. This protocol avoids the 
need for a snooping bus and avoids 
broadcasting; communication in-
volves only point-to-point messages. 
Because the protocol embeds the 
per-core tracking bits in the shared 
cache, it avoids adding additional 
structures dedicated solely to coher-
ence. For small-scale systems (such 
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as four cores to 16 cores), the stor-
age cost is negligible; a 16-core sys-
tem adds just 16b for each 64B cache 
block in the shared cache, or approxi-
mately 3% more bits. For a miss to a 
block not cached by other private 
caches, the miss latency and energy 
consumed incur the negligible over-
head of checking a couple of state bits 
in the shared cache rather than just a 
single valid bit. As we show later, even 
when blocks are shared, the traffic per 
miss is limited and independent of 
the number of cores. Overall, this ap-
proach is reasonably low cost in terms 
of traffic, storage, latency, and energy, 
and its design complexity is tractable. 
Nevertheless, the question for archi-
tects is: Does this system model scale 
to future manycore chips? 

Scalability 
Some prognosticators forecast that 
the era of cache coherence is nearing 
its end5,10,13 due primarily to an alleged 
lack of scalability. However, when we 
examined state-of-the-art coherence 
mechanisms, we found them to be 
more scalable than we expected. 

We view a coherent system as “scal-
able” when the cost of providing co-
herence grows (at most) slowly as core 
count increases. We focus exclusively 
on the cache-coherence aspects of 
multicore scaling, whereas a fully scal-
able system (coherent or otherwise) 
also requires scalability from other 
hardware (such as memory and on-
chip interconnection network) and 
software (operating system and appli-
cations) components. 

Here, we examine five potential con-
cerns when scaling on-chip coherence: 

 ! Traffic on the on-chip interconnec-
tion network; 

 ! Storage cost for tracking sharers; 
 ! Inefficiencies caused by maintain-

ing inclusion (as inclusion is assumed 
by our base system); 

 ! Latency of cache misses; and 
 ! Energy overheads. 

The following five sections ad-
dress these concerns in sequence 
and present our analysis, indicating 
that existing design approaches can 
be employed such that none of these 
concerns would present a fundamen-
tal barrier to scaling coherence. We 
then discuss extending the analysis 
to noninclusive caches and address 

some caveats and potential criticisms 
of this work. 

Concern 1: Traffic 
Here we tackle the concerns regarding 
the scalability of coherence traffic on 
the on-chip interconnection network. 
To perform a traffic analysis, we con-
sider for each cache miss how many 
bytes must be transferred to obtain and 
relinquish the given block. We divide 
the analysis into two parts: in the ab-
sence of sharing and with sharing. This 
analysis shows that when sharers are 
tracked precisely, the traffic per miss 
is independent of the number of cores. 
Thus, if coherence’s traffic is accept-
able for today’s systems with relatively 
few cores, it will continue to be accept-
able as the number of cores scales up. 
We conclude with a discussion of how 
coherence’s per-miss traffic compares 
to that of a system without coherence. 

Without sharing. We first analyze 
the worst-case traffic in the absence 
of sharing. Each miss in a private 
cache requires at least two messages: 
a request from the private cache to the 
shared cache and a response from the 
shared cache to provide the data to the 
requestor. If the block is written during 
the time it is in the cache, the block is 
“dirty” and must be written explicitly 
back to the shared cache upon eviction. 

Even without sharing, the traffic de-
pends on the specific coherence proto-
col implementation. In particular, we 
consider protocols that require a pri-
vate cache to send an explicit eviction 
notification message to the shared 
cache whenever it evicts a block, even 
when evicting a clean block. (This de-
cision to require explicit eviction noti-
fications benefits implementation of 
inclusive caching, as discussed later 
in the section on maintaining inclu-
sion.) We also conservatively assume 
that coherence requires the shared 

cache to send an acknowledgment 
message in response to each eviction 
notification. Fortunately, clean evic-
tion messages are small (enough to, 
say, hold a 8B address) and can oc-
cur only subsequent to cache misses, 
transferring, say, a 64B cache block. 
Coherence’s additional traffic per 
miss is thus modest and, most im-
portant, independent of the number 
of cores. Based on 64B cache blocks, 
the table here shows that coherence’s 
traffic is 96B/miss for clean blocks 
and 160B/miss for dirty blocks.

With sharing. In a coherent sys-
tem, when a core reads a block that is 
shared, the coherence protocol might 
need to forward the request but to at 
most only one core; thus the traffic 
for each read miss is independent of 
the number of cores. However, when 
a core incurs a write miss to a block 
that is cached by one or more other 
cores, the coherence protocol gener-
ates extra messages to invalidate the 
block from the other cores. These in-
validation messages are often used to 
argue for the nonscalability of cache 
coherence, because when all cores 
are sharing a block, a coherent system 
must send an invalidation message to 
all other cores. However, our analysis 
shows that when sharers are tracked 
precisely, the overall traffic per miss 
of cache coherence is independent of 
the number of cores; the storage cost 
of precise tracking is addressed later, 
in the section on storage. 

Consider an access pattern in which 
a block is read by all cores and then 
written by one core. The writer core is 
indeed forced to send an invalidation 
message to all cores, and each core 
will respond with an acknowledgment 
message, or a cost of 2N messages for 
N sharers. However, such an expen-
sive write operation can occur only 
after a read miss by each of the cores. 

Traffic cost of cache misses. 

Clean block Dirty block

Without coherence (Req+Data) + 0 = 80B/miss (Req+Data) + Data = 152B/miss

With coherence (Req+Data) + (Evict+Ack) = 96B/miss (Req+Data) + (Data+Ack)= 160B/miss

Per-miss traffic overhead 20% 5%

To calculate traffic, we must assume values for the size of addresses and cache blocks (such as 8B 
physical addresses and 64B cache blocks). Request and acknowledgment messages are typically 
short (such as 8B) because they contain mainly a block address and a message type field. A data  
message is significantly larger because it contains both an entire data block plus a block address 
(such as 64B + 8B = 72B). 
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More generally, for every write that 
invalidates N caches, the write must 
have been preceded by N read misses. 
The traffic cost of a read miss is inde-
pendent of the number of cores; a read 
miss is forwarded to a single core, at 
most. Thus, through amortized analy-

sis, the overall average traffic per miss 
is constant; a write miss that causes N 
messages can occur at most only once 
every Nth miss. 

In support of this general analysis, 
Figure 1a shows the traffic (in average 
bytes per miss) over a range of core 

counts for an access pattern param-
eterized by the number of read misses 
to a block between each write miss to 
the block. A workload consisting of 
all write misses (zero read misses per 
write miss; far left of Figure 1a) has 
the highest traffic per miss because 
all blocks are dirty. Traffic per miss is 
independent of the number of cores 
because the shared cache forwards the 
write misses to at most one core, the 
most recent writer. With an increasing 
number of read misses per write miss 
(moving to the right in Figure 1a), the 
average traffic per miss actually de-
creases slightly because fewer writes 
lead to fewer dirty blocks. More impor-
tant, the traffic is independent of the 
number of cores in the system, because 
each write miss that causes N messages 
is offset by N previous read misses. 

Traffic overhead of coherence. We 
have shown that coherence’s per-miss 
traffic scales because it is indepen-
dent of the number of cores. We now 
consider coherence’s traffic overhead 
per miss with respect to a hypothetical 
design with caches but no hardware co-
herence (such as when software knows 
precisely when cached data is stale 
without extra traffic). We continue to 
measure traffic in terms of bytes of traf-
fic on the interconnection network per 
cache miss, thus assuming that coher-
ence does not change the number of 
cache misses. However, this assump-
tion is potentially compromised by 
false sharing and inefficient synchro-
nization, which can cause nonscalable 
increases in the number of cache miss-
es. Both of these phenomena are well-
known challenges with well-known 
techniques for their mitigation; we 
cannot completely eliminate their im-
pact nor cleanly incorporate them into 
our intentionally simplistic models. 

The table lists the traffic per miss 
for this system without coherence. We 
now compare this traffic to the system 
with coherence. For a clean block, the 
system without coherence eliminates 
the need for the eviction notification 
and the acknowledgment of this noti-
fication. For a dirty block, the system 
without coherence avoids the acknowl-
edgment of the dirty eviction message. 
The key is that none of these three extra 
messages contain the data block, and 
such “control” messages are signifi-
cantly smaller than “data” messages. 

Figure 1. Communication traffic for shared blocks. 
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Coherence’s overhead is small, bound-
ed, and—most important—indepen-
dent of the number of cores. Based on 
64B cache blocks, the table shows that 
coherence adds a 20% traffic overhead 
for clean blocks and a 5% overhead for 
dirty blocks. 

Conclusion. Coherence’s intercon-
nection network traffic per miss scales 
when precisely tracking sharers. 

Concern 2: Storage 
The scalable per-miss traffic result as-
sumed a precise tracking of sharing 
state in the shared cache, requiring N 
bits of state for a system with N cores. 
This assumption leads to the reason-
able concern that such an increase in 
tracking state for systems with more 
cores could pose a fundamental bar-
rier to scalability. Here, we show that 
the storage cost scales gracefully by 
quantifying the storage cost and de-
scribing two approaches for bounding 
this cost: the first is the traditional use 
of inexact encoding of sharers,1,8 which 
we discard in favor of often-overlooked 
use of on-chip hierarchy to efficiently 
maintain an exact encoding of sharers. 
The storage cost at the private caches 
is negligible; supporting coherence in 
the private caches adds just a few state 
bits for each cache block, which is less 
than 1% storage overhead and inde-
pendent of the number of cores, so our 
analysis focuses on additional storage 
in the shared cache. 

Conventional approach: Inexact 
encoding of sharers. The conventional 
approach to limiting storage—inexact 
encoding of sharers—can work well 
but has poor worst-case behavior. It 
represents a conservative superset 
of sharers using fewer bits than one 
bit per potential sharer and was well-
studied in the early 1990s.1,8 As a con-
crete example, the SGI Origin 200014 
used a fixed number of bits per block, 
regardless of the number of cores. For 
small systems, the Origin used these 
bits as a bit-vector that tracks shar-
ers exactly. For larger systems, the 
Origin alternated between two uses 
of these tracking bits. If there were 
only a few sharers, the bits would be 
used as a limited number of pointers 
(each of which requires log2N bits to 
encode) that can exactly track sharers. 
If the number of sharers exceeds this 
limited number of pointers, the Ori-

gin would use the bits as an inexact, 
coarse-vector encoding, in which each 
bit represents multiple cores. Though 
the storage can be bounded, the traf-
fic of such schemes could suffer due to 
unnecessary invalidations. 

To quantify the traffic impact of such 
inexact encodings, Figure 1b shows the 
result of applying the analysis from the 
previous section on traffic when using 
the Origin’s inexact encoding scheme 
to bound the storage at 32b per block 
in the shared cache (approximately 6% 
overhead for 64B blocks). When the 
32b is enough for exact tracking (up 
to 32 cores) or when the number of 
sharers is smaller than the number of 
limited pointers (far left of Figure 1b), 
the sharers are encoded exactly, result-
ing in the same traffic-per-miss as the 
exact encoding. When the number of 
sharers is large (far right of Figure 1b), 
the write invalidations must be sent to 
all cores (independent of encoding), so 
the inexact encoding incurs no traffic 
penalty. However, when the number of 
cores grows and the number of sharers 
is in the middle of the range, the traffic 
overheads spike. With 1,024 cores, the 
spike reaches almost six times the traf-

fic of the exact encoding cases. Though 
conventional wisdom might have pre-
dicted an even larger traffic spike for 
1,024 cores, we next describe an alter-
native design that eliminates any such 
spike in traffic. 

Less conventional approach: On-
chip hierarchy for exact tracking. To 
avoid a spike in traffic for some sharing 
patterns, an alternative is to overcome 
this scalability problem through an 
on-chip hierarchy of inclusive caches. 
Hierarchy is a natural design meth-
odology for scalable systems. With 
many cores, the size of private caches 
is limited, and the miss latency from 
a private cache to the chipwide shared 
cache is likely large. As such, many-
core systems,4,16 GPUs,15 and proposed 
manycore architectures12 cluster some 
number of cores/threads to share an 
intermediate level of cache. For exam-
ple, Sun/Oracle’s T2 systems16 share a 
small L1 cache between two pipelines, 
each with four threads. NVIDIA’s Fermi 
GPU15 clusters 32 execution pipelines 
into a “shared multiprocessor.” In 
AMD’s Bulldozer architecture,4 each 
pair of cores has per-core private L0 
caches and shares an L1 cache. Such 

Figure 2. Hierarchical system model; additions for coherence are shaded. 
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systems fill the gap between a private 
cache and a large, distributed shared 
cache, allowing the cluster cache to de-
liver faster access to data shared within 
the cluster. An additional benefit is 
that coherence requests may be satis-
fied entirely within the cluster (such 
as by a sibling node caching the block) 
that can be significant if the software is 
aware of the hierarchy. 

The same techniques described 
earlier—inclusion, integrating track-
ing state with caches, recall messages, 
and explicit eviction notifications—are 
straightforward to apply recursively to 
provide coherence across a hierarchi-
cal system. Rather than just embed 
tracking state at a single shared cache, 
each intermediate shared cache also 
tracks sharers—but just for the caches 
included by it in the hierarchy. Con-
sider a chip (see Figure 2) in which 
each core has its own private cache, 
each cluster of cores has a cluster 
cache, and the chip has a single shared 
last-level cache. Each cluster cache is 
shared among the cores in the cluster 
and serves the same role for coherence 
as the shared cache in nonhierarchi-
cal systems; that is, the cluster cache 
tracks which private caches within 
the cluster have the block. The shared 
last-level cache tracks which cluster 
caches are caching the block but not 
which specific private cache(s) within 
the cluster are caching it. For exam-
ple, a balanced 256-core system might 
consist of 16 clusters of 16 cores each 
with a 16KB first-level cache, a 512KB 
second-level shared cluster cache, and 
a 16MB third-level (last-level) cache 
shared among all clusters. 

Such a hierarchical organization 
has some disadvantages—extra com-
plexity and layers of cache lookups—
but also two key benefits for coherence: 
First, the hierarchy naturally provides 
a simple form of fan-out invalidation 
and acknowledgment combining. For 
example, consider a block cached by all 
cores; when a core issues a write miss 
to this block, the cluster cache lacks 
write permission for the block, so it for-
wards it to the shared last-level cache. 
The shared last-level cache then sends 
an invalidation message to each cluster 
(not to each core), triggering the clus-
ter cache to perform an analogous in-
validation operation within the cluster. 
The cluster then sends a single invali-

dation acknowledgment independent 
of the number of cores in the cluster 
that were caching the block. Compared 
to a flat protocol, which must send ac-
knowledgments to every requestor, 
the total cross-chip traffic is reduced, 
and the protocol avoids the bottleneck 
of sequentially injecting hundreds or 
thousands of invalidation messages 
and later sequentially processing the 
same number of acknowledgments. 

The second benefit is that a hierar-
chical system that enforces inclusion 
at each level reduces the storage cost 
of coherence. Recall from the previous 
section on traffic that using an exact 
encoding of sharers allows for scalable 
communication for coherence but 
that we deferred the seeming problem 
of the storage cost of exact encoding. 
Now we show that by using hierarchy 
we can also make the storage cost scale 
gracefully. Consider first a two-level 
system (three levels of cache) consist-
ing of K clusters of K cores each (K2 = C 
total cores). Each cluster cache is in-
clusive with respect to all private cach-
es within the cluster, and the shared 
last-level cache is inclusive with re-
spect to all cluster caches. Each cluster 
cache block uses one bit for each of the 
K private caches it includes, plus a few 
bits of state. Likewise, each shared 
last-level cache block consumes a bit 
for each of the K cluster caches it in-
cludes, plus a few bits of state. Impor-
tantly, these storage costs grow as a 
linear function of K and thus propor-
tional to √—C. Even if C increases great-
ly, √—C grows more slowly. 

This storage cost at the cluster 
caches and last-level cache could be re-
duced even further by extending the hi-
erarchy by one level. Consider a system 
with K level-2 clusters, each consisting 
of K level-1 clusters, with each level-1 
cluster consisting of K cores. This sys-
tem has C = K3 cores and a storage cost 
proportional to cube root of C.

In Figure 3, we plot coherence’s stor-
age overhead (coherence’s storage as 
a fraction of the total cache storage) 
in terms of the bits needed to provide 
precise tracking of sharers, for conven-
tional flat (nonhierarchical) systems, 
2-level systems, and 3-level systems. As 
a very large example, a 1,024-core 2-lev-
el system might have 32 clusters of 32 
cores, thus 32b per 64B cache block at 
each level, which is just 6%. An extreme 

4,096-core 3-level system would have 16 
clusters, each with 16 subclusters of 16 
cores, with storage overhead of only 3%. 

Conclusion. Hierarchy combined 
with inclusion enables efficient scaling 
of the storage cost for exact encoding 
of sharers. 

Concern 3: Maintaining Inclusion 
In the system model covered here, 
we initially choose to require that the 
shared cache maintain inclusion with 
respect to the private caches. Main-
taining an inclusive shared cache 
allows efficient tracking of blocks 
in private caches by embedding the 
tracking information in the tags of the 
shared cache, and is why we use this 
design point. Inclusion also simpli-
fied our earlier analysis of communi-
cation and storage. 

Inclusion requires that if a block is 
cached in any private cache, it must also 
be cached in the shared cache. When 
the shared cache evicts a block with 
nonempty tracking bits, it is required 
to send a recall message to each private 
cache that is caching the block, adding 
to system traffic. More insidiously, such 
recalls can increase the cache miss rate 
by forcing cores to evict hot blocks they 
are actively using.11 To ensure scalabil-
ity, we seek a system that makes recall 
messages vanishingly rare. 

Recalls occur when the shared cache 
is forced to evict a block with one or 
more sharers. To reduce the number 
of recalls, the shared cache always 
chooses to evict nonshared blocks over 
shared blocks. Because the capacity 
of an inclusive shared cache often ex-
ceeds the aggregate capacity of the pri-
vate caches (for example, the ratio is 8 
for the four-core Intel Core i7 with 8MB 
shared cache and four 256KB second-
level private caches), it is highly likely 
that a nonshared block will be available 
to evict whenever an eviction occurs. 

Unfortunately, the shared cache 
sometimes lacks sufficient informa-
tion to differentiate between a block 
possibly being cached and certainly 
being cached by a core. That is, the 
tracking bits in the shared cache are 
updated when a block is requested, but 
the shared cache in some systems does 
not always know when a private cache 
has evicted the block. In such systems, 
clean blocks (those not written during 
their lifetime in the cache) are evicted 
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silently from the private caches, intro-
ducing ambiguity at the shared cache 
as to what is still being cached and what 
has already been evicted. This lack of 
information manifests as poor replace-
ment decisions at the shared cache. 

To remedy this lack of information, 
a system can instead require the pri-
vate caches to send explicit notification 
messages whenever a block is evicted, 
even when evicting clean blocks. For 
example, AMD’s HT-Assist protocol 
uses explicit eviction notifications on 
clean-exclusive block replacements to 
improve sharer state encoding.6 If such 
eviction notifications occur on every 
cache eviction, the protocol enables 
the shared cache to maintain precise 
up-to-date tracking of private caches 
that hold each block, transforming the 
tracking information from conserva-
tive to exact. When an eviction deci-
sion does occur, the shared cache thus 
knows which blocks are no longer be-
ing cached and likely have a choice to 
evict a nonshared block to avoid a re-
call. However, this precision comes at a 
cost in the form of increased traffic for 
evictions of clean blocks, the overhead 
of which was already included in the 
traffic analysis. 

Explicit eviction notifications can 
potentially eliminate all recalls, but 
only if the associativity, or number of 
places in which a specific block may 
be cached, of the shared cache ex-
ceeds the aggregate associativity of 
the private caches. With sufficient as-
sociativity, whenever the shared cache 
looks for a nonshared block to evict, if 
it has exact sharing information, it is 
guaranteed to find a nonshared block 
and thus avoid a recall. Without this 
worst-case associativity, a pathological 
cluster of misses could lead to a situa-
tion in which all blocks in a set of the 
shared cache are truly shared. Unfortu-
nately, even with a modest number of 
cores, the required associativity is pro-
hibitive, as reported by Ferdman et al.7 
For example, eight cores with eight-way 
set-associative private caches require a 
64-way set-associative shared cache, 
and the required associativity doubles 
for each doubling of the number of 
cores. 

Rather than eliminate all recalls, 
we focus on a system in which recalls 
are possible but rare. To estimate the 
effect of limited shared cache associa-

tivity on recall rate, we performed a 
simulation modeling recalls due to en-
forcing inclusion in such a system. We 
pessimistically configured the private 
caches to be fully associative. To factor 
out the effect of any particular bench-
mark, we generated a miss-address 
stream to random sets of the shared 
cache that prior work found accurately 
approximates conflict rates.9 We also 
pessimistically assumed no data shar-
ing among the cores that would reduce 
the inclusive capacity pressure on the 
shared cache. 

Fortunately, recalls can be made 
rare in the expected design space. 

Figure 4 shows the recall rate, or per-
centage of misses that cause a recall, 
for shared caches of various sizes (as 
a ratio of aggregate per-core capacity) 
for several shared cache associativi-
ties. When the capacity of the shared 
cache is less than the aggregate per-
core capacity (ratio < 1.0), almost every 
request causes a recall, because the 
private caches are constantly contend-
ing for an unrealistically underprovi-
sioned shared cache. As the size of the 
shared cache increases, the recall rate 
drops quickly. When the capacity ratio 
reaches four times, even an eight-way 
set-associative shared cache keeps 

Figure 3. Storage overhead in shared caches. 
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the recall rate below 0.1%. For com-
parison, the Intel Core i7 has a 16-way 
set-associative cache with eight times 
capacity ratio. Based on this analysis, 
we conclude that the traffic overhead 
of enforcing inclusion is negligible for 
systems with explicit eviction notifi-
cations and reasonable shared cache 
sizes and associativities. 

Conclusion. Chip architects can de-

sign a system with an inclusive shared 
cache with negligible recall rate, and 
thus can efficiently embed the tracking 
state in the shared cache. 

Concern 4: Latency 
In a non-coherent system, a miss in a 
private cache sends a request to the 
shared cache. As discussed earlier, to 
provide sufficient bandwidth, shared 

caches are typically interleaved by ad-
dresses with banks physically distrib-
uted across the chip (see the sidebar 
figure), so the expected best-case la-
tency of a miss that hits in the shared 
cache is the access latency of the cache 
bank plus the round-trip traversal of 
the on-chip interconnect to reach the 
appropriate bank of the shared cache. 
Requests that miss in the shared cache 

Incoherence. To illustrate the problem 
of incoherence, consider the multiple 
cores and corresponding private 
caches in the upper-right of the figure 
here. If core 1 writes the block labeled 
B by updating its private cache only, 
subsequent reads by core 2 would 
see the old value indefinitely. This 
incoherence can lead to incorrect 
behavior; for example, if the block 
holds a synchronization variable 
for implementing mutual exclusion 
using a lock, such incoherent 
behavior could allow multiple cores 
into a critical section or prevent cores 
waiting for the release of the lock 
from making forward progress. 

The coherence invariant. The 
mainstream solution to preventing 

incoherence is a hardware cache-
coherence protocol. Though there 
are many possible coherence 
protocols, all maintain coherence by 
ensuring the single-writer, multiple-
reader invariant; that is, for a given 
block at any given moment in time, 
there is either: 

 ! Only a single core with write (and 
read) permission to the block (in 
state M for  modified); or 

 ! Zero or more cores with read 
permission to the block (in state S for 
shared). 

Enforcing coherence. The figure 
here outlines core 0 caching block A 
with read/write permission (state M) 
and cores 1 and 2 caching block B 
with read-only permission (state S). 

A write to block B by core 1 (which 
in our example led to incoherence) 
is not allowed to update its read-
only copy of the block. Instead, 
core 1 must first obtain write 
permission to the block. Obtaining 
write permission without violating 
the single-writer, multiple-reader 
invariant requires invalidating any 
copies of the block in other caches 
(core 2 in this case, as encoded 
by the tracking bits in the shared 
cache). Such actions are handled in 
hardware by cache-coherence logic 
integrated into the cache controllers. 
The section on cache coherence 
today presents a protocol (and 
describes the rest of the diagram); for 
more, see Sorin et al.18 

The Problem of Incoherence

System model; additions for coherence are shaded. 
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are in turn routed to the next level of 
the memory hierarchy (such as off-
chip memory). 

In a coherent system with private 
caches and a shared cache, four cases 
are worth consideration with regard to 
miss latency: a hit in the private cache; 
a direct miss in which the shared 
cache can fully satisfy the request, that 
is, to a block not cached in other pri-
vate caches; an indirect miss, in which 
the shared cache must contact one or 
more other caches; and a miss in the 
shared cache, incurring a long-latency 
access to off-chip memory. Coherence 
adds no latency to perhaps the two 
most performance-critical cases: pri-
vate cache hits (the first case) and off-
chip misses (the fourth case). Coher-
ence also adds no appreciable latency 
to direct misses because the coher-
ence state bits in the tags of the shared 
cache can be extended to unambigu-
ously distinguish between direct and 
indirect misses. 

However, indirect misses do incur 
the extra latency of sending a mes-
sage on the on-chip interconnection 
network to the specified private cores. 
Such messages are sent in parallel, and 
responses are typically sent directly to 
the original requester, resulting in a 
“three-hop protocol.” Thus, the criti-
cal path latency of direct and indirect 
misses can be approximated by the fol-
lowing formulas: 

Non-coherent 
   tnoncoherent = tinterconnect + tcache + tinterconnect 
Coherent 
   tdirect = tinterconnect + tcache + tinterconnect

    tindirect = tinterconnect + tcache + tinterconnect + tcache 
+ tinterconnect

The indirect miss latency for coher-
ence is from 1.5 to two times larger 
than the latency of a non-coherent 
miss; the exact ratio depends on the 
relative latencies of cache lookup (tcache) 
and interconnect traversal (tinterconnect). 
This ratio is considered acceptable in 
today’s multicore systems, in part be-
cause indirect misses are generally in 
the minority for well-tuned software. 
The ratio also indicates scalability, as 
the ratio is independent of the num-
ber of cores. Even if the absolute inter-
connect latency increases with more 
cores, such increases will generally 
increase the latency of all misses (even 

in a non-coherent system) roughly pro-
portionally, keeping the ratio largely 
unchanged. Moreover, if latency is still 
deemed too great, for either coherent 
or non-coherent systems, these sys-
tems can use prefetching to hide the 
latency of anticipated accesses. 

Similar reasoning can be applied re-
cursively to calculate the latency ratio 
for a system with more layers of hier-
archy. Though the effect of hierarchy 
may hurt absolute latency (such as due 
to additional layers of lookup), we see 
no reason why hierarchy should signifi-
cantly affect the ratio of the latencies of 
direct to indirect misses. Furthermore, 
the cluster caches introduced by hier-
archy may help mitigate the growing 
cross-chip latency by providing a closer 
mid-size cache that allows faster shar-
ing within a cluster and reducing the 
number of longer-latency accesses to 
the chipwide distributed shared last-
level cache. Modeling the full effect of 
hierarchy on latency (and traffic) is be-
yond the reach of the simple models we 
use here. 

Conclusion. Though misses to ac-
tively shared blocks have greater la-
tency than other misses, the latency ra-
tio is tolerated, and the ratio need not 
grow as the number of cores increases. 

Concern 5: Energy 
Though a detailed energy analysis is 
perhaps not as straightforward as the 
analyses we have reported here, we can 
use these analyses to support the con-
clusion that the energy cost of coher-
ence is also not a barrier to scalabil-
ity. Energy overheads generally come 
from both doing more work (dynamic/
switching energy) and from additional 
transistors (static/leakage energy). 

For dynamic energy, the primary 
concerns are extra messages and ad-
ditional cache lookups. However, we 
have shown that interconnect traffic 
and message count per-miss do not 
increase with the number of cores, in-
dicating the protocol state transitions 
and number of extra cache lookups are 
likewise bounded and scalable. 

For static energy, the primary con-
cerns are the extra tracking state we 
have also shown scales gracefully and 
leakage due to any extra logic for pro-
tocol processing. Protocol process-
ing logic is added per core and/or per 
cache bank and thus should also add 

at most a fixed per-core, thus scalable, 
leakage energy overhead. 

Furthermore, many energy-inten-
sive parts of the system—the cores 
themselves, the cache data arrays, off-
chip DRAM, and storage—are largely 
unaffected by coherence, so energy 
overheads incurred by coherence are 
relatively smaller when weighed against 
the context of the overall system. 

Conclusion. Based on these traffic 
and storage scalability analyses, we 
find no reason the energy overheads 
of coherence must increase with the 
number of cores.

Non-Inclusive Shared Caches 
So far we have assumed an inclusive 
shared cache, like that of Intel’s Core 
i7, but this choice is not universal. 
Rather than require a private cache 
block to be present in the shared cache 
(inclusion), a system can forbid it from 
being present (exclusion) or allow but 
not require it to be present (neither in-
clusion nor exclusion). Not enforcing 
inclusion reduces redundant caching 
(less important for the Core i7 whose 
shared cache size is eight times the 
sum of its private cache sizes) but has 
implications for coherence. 

A non-inclusive system can retain 
the coherence benefits of an inclusive 
shared cache by morphing it into two 
structures: a new noninclusive shared 
cache that holds tags and data, but not 
tracking state, and is free to be of any 
size and associativity; and a “directory” 
that holds tags and per-core tracking 
state, but not data blocks, and uses 
inclusion to operate like a dataless ver-
sion of the previous inclusive shared 
cache; this design roughly resembles 
some systems from AMD.6 

To the first order, the communi-
cation between the directory and its 
private caches is the same as with the 
original inclusive shared cache, provid-
ed the directory continues to be large 
enough to keep recalls rare. Moreover, 
designers now have more freedom in 
setting the new non-inclusive shared 
cache configuration to trade off cost 
and memory traffic. Though the direc-
tory-tracking state is the same as with 
an inclusive shared cache (total direc-
tory size is proportional to the sum of 
private cache sizes), the storage effect 
is more significant because the directo-
ry must also include tags (there for free 
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in the original inclusive shared cache), 
and the relative overhead becomes 
larger if the hardware designer opts for 
a smaller shared cache. 

To be concrete, let S1 be the sum 
of private cache sizes, S2 the shared 
cache size, D the directory entry size 
relative to the size of a private cache 
block and tag, and R, the ratio of the 
number of directory entries to the to-
tal number of private cache blocks. R 
should be greater than 1 to keep recalls 
rare, as discussed earlier in the section 
on maintaining inclusion. Directory 
storage adds R×S1×D to cache storage 
S1+S2 for a relative overhead of (R×D)/
(1+S2/S1). Assume that R=2 and D=64b/
(48b+512b). If S2/S1 is 8, as in Core i7, 
then directory storage overhead is only 
2.5%. Shrinking S2/S1 to 4, 2, and 1 in-
creases relative overhead to 4.6%, 7.6%, 
and 11%, respectively. 

The use of hierarchy adds another 
level of directory and an L3 cache. With-
out inclusion, the new directory level 
must point to an L2 bank if a block is 
either in the L2 bank or in its co-locat-
ed directory. For cache size ratio Z = S3/
S2 = S2/S1 = 8, the storage overhead for 
reaching 256 cores is 3.1%. Shrinking Z 
to 4, 2, or 1 at most doubles the relative 
overhead to 6.5%, 13%, or 23%, respec-
tively. Furthermore, such storage over-
heads translate into relatively lower 
overheads in terms of overall chip area, 
as caches are only part of the chip area. 
Overall, we find that directory storage 
is still reasonable when the cache size 
ratio Z > 1. 

Caveats and Criticisms 
We have described a coherence proto-
col based on known ideas to show the 
costs of on-chip coherence grow slowly 
with core count. Our design uses a hier-
archy of inclusive caches with embed-
ded coherence state whose tracking in-
formation is kept precise with explicit 
cache-replacement messages. Using 
amortized analysis, we have shown that 
for every cache miss request and data 
response, the interconnection network 
traffic per miss is independent of the 
number of cores and thus scales. Em-
bedding coherence state in an inclu-
sive cache hierarchy keeps coherence’s 
storage costs small; for example, 512 
cores can be supported with 5% extra 
cache area with two cache levels or 2% 
with three levels. Coherence adds neg-

ligible latency to cache hits, off-chip 
accesses, and misses to blocks not ac-
tively shared; miss latency for actively 
shared blocks is higher, but the ratio 
of the latencies for these misses is tol-
erable today and independent of the 
number of cores. Energy overheads of 
coherence are correlated with traffic 
and storage, so we find no reason for 
energy overheads to limit the scalabil-
ity of coherence. Extensions to a non-
inclusive shared cache show larger but 
manageable storage costs when shared 
cache size is larger than the sum of pri-
vate cache size. With coherence’s costs 
shown to scale, we expect on-chip co-
herence is here to stay due to the pro-
grammability and compatibility ben-
efits it delivers. 

Nevertheless, this work has limita-
tions and potential criticisms. First, we 
did not include detailed architectural 
simulations with specific benchmarks 
or consider difficult-to-model queuing 
effects due to cache and interconnect 
contention. Instead, we showed that 
coherence’s per-miss traffic is inde-
pendent of the miss pattern and num-
ber of cores. Though less precise than 
detailed simulation, our results are 
more robust, as they are not limited to 
the specific benchmarks studied. Fur-
thermore, we described our protocol 
as an existence proof of a scalable co-
herence protocol but do not claim it is 
the best. To this more modest end, less 
precision is required. 

Second, we did not compare our 
protocol against multicore chips with-
out caches or without a shared address 
space. Though these approaches have 
been successful in high-performance 
computing, they are not common in 
mainstream multicore systems. Given 
that coherence’s costs can be kept low 
and that some operating systems use 
hardware coherence to scale to many 
cores,2,3 we find no compelling reason 
to abandon coherence. We thus an-
ticipate alternatives to cache-coherent 
shared memory will continue to ex-
ist and thrive in certain domains but 
that on-chip coherence will continue 
to dominate in mainstream multicore 
chips. Furthermore, coherent systems 
can support legacy algorithms from 
these other domains, as any program 
that works for scratchpad systems 
(such as the Cell processor) or message 
passing systems (such as an MPI clus-

Forcing software 
to use software-
managed coherence 
or explicit message 
passing does not 
remove complexity 
but rather shifts 
complexity from 
hardware to 
software.
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ter) maps easily to a shared memory 
system with caches. 

Third, we are aware of the complexi-
ty challenge posed by coherence and do 
not underestimate the importance of 
managing complexity but also that the 
chip-design industry has a long history 
of managing complexity. Many com-
panies have sold many systems with 
hardware cache coherence. Designing 
and validating the coherence protocols 
in them is not easy, but industry con-
tinues to overcome these challenges. 
Moreover, the complexity of coherence 
protocols does not necessarily scale up 
with increasing numbers of cores. Add-
ing more cores to an existing multicore 
design has little effect on the conceptu-
al complexity of a coherence protocol, 
though it may increase the amount of 
time necessary to validate the protocol. 

However, even the validation effort 
may not pose a scalability problem; 
research shows it is possible to de-
sign hierarchical coherence protocols 
that can be formally verified with an 
amount of effort that is independent 
of the number of cores.19 Furthermore, 
the complexity of the alternative to 
hardware coherence—software imple-
mented coherence—is non-zero. As 
when assessing hardware coherence’s 
overheads—storage, traffic, latency, 
and energy—chip architects must be 
careful not to implicitly assume the 
alternative to coherence is free. Forc-
ing software to use software-managed 
coherence or explicit message passing 
does not remove the complexity but 
rather shifts the complexity from hard-
ware to software. 

Fourth, we assumed a single-chip 
(socket) system and did not explicitly 
address chip-to-chip coherence in to-
day’s multisocket servers. The same 
sort of tagged tracking structures can 
be applied to small-scale multisocket 
systems,6 essentially adding one more 
level to the coherence hierarchy. More-
over, providing coherence across mul-
tisocket systems may become less im-
portant, because single-chip solutions 
solve more needs, and “scale out” so-
lutions are required in any case (such 
as for data centers), but that is an argu-
ment for another article. 

Finally, even if coherence itself 
scales, we did not address other is-
sues that might prevent practical 
multicore scaling, such as die-area 

limitations, scalability of the on-chip 
interconnect, and critical problems 
of software non-scalability. Despite 
advances in scaling operating systems 
and applications, many applications 
do not (yet) effectively scale to many 
cores. This article does not improve 
that situation. Nevertheless, we have 
shown that on-chip hardware coher-
ence can be made to scale gracefully, 
freeing application and system soft-
ware developers from having to re-
implement coherence (such as know-
ing when to flush and refetch data) or 
orchestrating explicit communication 
via message passing. 

Conclusion. On-chip coherence can 
be made to scale gracefully, enabling 
programmers to concentrate on what 
matters for parallel speedups—find-
ing work to do in parallel without undo 
communication and synchronization. 
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