
78 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

contributed articles

SHARED MEMORY IS the dominant low-level
communication paradigm in today’s mainstream
multicore processors. In a shared-memory system,
the (processor) cores communicate via loads and
stores to a shared address space. The cores use caches
to reduce the average memory latency and memory
traffic. Caches are thus beneficial, but private caches
lead to the possibility of cache incoherence. The
mainstream solution is to provide shared memory
and prevent incoherence through a hardware cache
coherence protocol, making caches functionally
invisible to software. The incoherence problem and
basic hardware coherence solution are outlined in
the sidebar, “The Problem of Incoherence,” page 86.

Cache-coherent shared memory is provided by
mainstream servers, desktops, laptops, and mobile
devices and is available from all major vendors,
including AMD, ARM, IBM, Intel, and Oracle (Sun).

Cache coherence has come to domi-
nate the market for technical, as well as
for legacy, reasons. Technically, hard-
ware cache coherence provides per-
formance generally superior to what is
achievable with software-implemented
coherence. Cache coherence’s legacy
advantage is that it provides backward
compatibility for a long history of soft-
ware, including operating systems,
written for cache-coherent shared-
memory systems.

Although coherence delivers value
in today’s multicore systems, the con-
ventional wisdom is that on-chip cache
coherence will not scale to the large
number of cores expected to be found
on future processor chips.5,10,13 Coher-
ence’s alleged lack of scalability aris-
es from claims of unscalable storage
and interconnection network traffic
and concerns over latency and energy.
Such claims lead to the conclusion that
cores in future multicore chips will not
employ coherence but instead commu-
nicate with software-managed coher-
ence, explicitly managed scratchpad
memories, and/or message passing
(without shared memory).

Here, we seek to refute this con-
ventional wisdom by presenting one
way to scale on-chip cache coherence
in which coherence overheads—traf-
fic, storage, latency, and energy—grow
slowly with core count and are similar
to the overheads deemed acceptable in
today’s systems. To do this, we syner-
gistically combine known techniques,
including shared caches augmented

Why On-Chip
Cache
Coherence Is
Here to Stay

DOI:10.1145/2209249.2209269

On-chip hardware coherence can scale
gracefully as the number of cores increases.

BY MILO M.K. MARTIN, MARK D. HILL, AND DANIEL J. SORIN

 key insights
 The approach taken here scales on-chip

hardware cache coherence to many
cores with bounded traffic, storage,
latency, and energy overheads.

 For the same reason system designers
will not abandon compatibility for
the sake of eliminating minor costs,
they likewise will not abandon cache
coherence.

 Continued coherence support lets
programmers concentrate on what
matters for parallel speedups: finding
work to do in parallel with no undo
communication and synchronization.

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 79

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 D
A

V
E

 B
O

L
L

I
N

G
E

R

to track cached copies, explicit cache
eviction notifications, and hierarchi-
cal design. Using amortized analysis,
we show that interconnection network
traffic per miss need not grow with
core count and that coherence uses at
most 20% more traffic per miss than a
system with caches but not coherence.
Using hierarchical design, we show
that storage overhead can be made
to grow as the root of core count and
stay small (such as 2% of total cache
size for even 512 cores). We find neg-
ligible energy and latency overheads
for cache misses to data that is not
actively shared; our analysis suggests
the relative miss penalty and energy

overheads of accessing shared data do
not increase appreciably with increas-
ing core count. Consequently, on-chip
coherence is here to stay. Computer
systems tend not to abandon compat-
ibility to eliminate small costs (such as
those found for scaling coherence). In
particular, system designers will not
likely replace conventional operat-
ing systems now that they have been
shown to scale using cache coher-
ence.2,3 Boyd-Wickizer et al.2 concur,
writing “There is no scalability reason
to give up on traditional operating sys-
tem organizations just yet.”

Some architects and software devel-
opers might object to retaining coher-

ence because many applications do
not scale well with coherence. True,
but is the root cause the algorithm,
program implementation, or coher-
ence? If, for example, an algorithm
requires frequent updates to be com-
municated to many readers, coher-
ence and most alternatives do poorly.
At least with hardware coherence,
programmers can concentrate on cho-
reographing independent work rather
than on low-level mechanics.

Our claim for the continued viabil-
ity of on-chip cache coherence does
not imply other communication para-
digms will disappear. There will still be
applications for which message pass-

80 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

contributed articles

We anticipate
alternatives to
cache-coherent
shared memory will
continue to exist
and thrive in certain
domains but that
on-chip coherence
will continue
to dominate in
mainstream
multicore chips.

ing is appropriate (such as to scale-out
high-performance computing) or for
which incoherent scratchpad memo-
ries are appropriate (such as real-time
systems), and so those communication
paradigms will persist. However, they
are likely to continue to coexist with
on-chip cache-coherent shared memo-
ry for the foreseeable future.

Cache Coherence Today
Before investigating the issues in-
volved in coherence’s future, we first
describe today’s cache coherence
protocols. Rather than survey coher-
ence protocol design, we focus on
one concrete coherence protocol
loosely based on the on-chip cache
coherence protocol used by Intel’s
Core i7,17 which represents the state
of the art and can scale to a moder-
ate number of cores (such as 16). In
such a system, the cores on the chip
communicate via loads and stores to
the shared memory. Each core has its
own private cache hierarchy (referred
to hereafter as “private cache”). There
is a single shared last-level cache (re-
ferred to hereafter as “shared cache”).
Such shared caches typically employ
address-interleaved banking with one
bank per core, thus proportionally
scaling the bandwidth of the shared
cache as the number of cores increas-
es; this system model is outlined in
the sidebar figure.

To make our analysis simpler and
more concrete, we assume for now that
the shared cache is inclusive with re-
spect to all the private caches. Inclusion
means, at all times, the shared cache
contains a superset of the blocks in the
private caches. Intel’s Core i7 is an ex-
ample of a chip with inclusive caches.
Because inclusion is not a universally
adopted design decision, we discuss
extending our results to non-inclusive
shared caches later.

With inclusion, cache coherence
can be maintained with a coherence
protocol that tracks copies of blocks in
private caches using state embedded
in the shared cache; that is, each block
in the shared cache is augmented with
a few bits of coherence state (such as
to denote if the block is writable by
any core) and per-core tracking bits
that denote which cores are privately
caching the block (one bit per core).
As outlined in the sidebar figure, in-

clusion requires that block A (cached
by core 0) and block B (cached by cores
1 and 2) must be present in the shared
cache with appropriate tracking bits
{1000} and {0110}, respectively. If the
block size of the shared cache is larger
than the private cache’s block size,
each entry in the shared cache main-
tains coherence state and tracking
bits at the granularity of the private
cache block size.

When a core issues a load or store
that misses in its private cache, it is-
sues a coherence request message
to the shared cache. Based on the
block’s coherence state and per-core
tracking bits, the shared cache either
responds directly or forwards the re-
quest to the one or more cores that
need to respond to the request. For ex-
ample, if the request is for read/write
access, and one or more cores is pri-
vately caching the block in a read-only
state, then the shared cache forwards
the request to all private caches in the
tracking list, and these private caches
invalidate their copies of the block. If
no cores are caching the block, then
a request has the negligible overhead
of looking up only the coherence state
bits in the shared cache. This protocol
is essentially a directory-based cache
coherence protocol in which the di-
rectory entries are co-located with the
tags of the shared cache. Inclusion
ensures that each private block has a
corresponding shared block to hold its
coherence tracking bits.

To maintain inclusion, when the
shared cache evicts a block for which
some per-core tracking bits are set,
the shared cache first issues a recall
request (also known as a back-invalida-
tion or notification) to any core current-
ly caching that block as determined
by the per-core tracking state. Upon
receipt of a recall message, the private
cache is forced to evict the block.

This approach to coherence has
many attractive features, helping ex-
plain why current Intel systems re-
semble it. This protocol avoids the
need for a snooping bus and avoids
broadcasting; communication in-
volves only point-to-point messages.
Because the protocol embeds the
per-core tracking bits in the shared
cache, it avoids adding additional
structures dedicated solely to coher-
ence. For small-scale systems (such

contributed articles

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 81

as four cores to 16 cores), the stor-
age cost is negligible; a 16-core sys-
tem adds just 16b for each 64B cache
block in the shared cache, or approxi-
mately 3% more bits. For a miss to a
block not cached by other private
caches, the miss latency and energy
consumed incur the negligible over-
head of checking a couple of state bits
in the shared cache rather than just a
single valid bit. As we show later, even
when blocks are shared, the traffic per
miss is limited and independent of
the number of cores. Overall, this ap-
proach is reasonably low cost in terms
of traffic, storage, latency, and energy,
and its design complexity is tractable.
Nevertheless, the question for archi-
tects is: Does this system model scale
to future manycore chips?

Scalability
Some prognosticators forecast that
the era of cache coherence is nearing
its end5,10,13 due primarily to an alleged
lack of scalability. However, when we
examined state-of-the-art coherence
mechanisms, we found them to be
more scalable than we expected.

We view a coherent system as “scal-
able” when the cost of providing co-
herence grows (at most) slowly as core
count increases. We focus exclusively
on the cache-coherence aspects of
multicore scaling, whereas a fully scal-
able system (coherent or otherwise)
also requires scalability from other
hardware (such as memory and on-
chip interconnection network) and
software (operating system and appli-
cations) components.

Here, we examine five potential con-
cerns when scaling on-chip coherence:

 ! Traffic on the on-chip interconnec-
tion network;

 ! Storage cost for tracking sharers;
 ! Inefficiencies caused by maintain-

ing inclusion (as inclusion is assumed
by our base system);

 ! Latency of cache misses; and
 ! Energy overheads.

The following five sections ad-
dress these concerns in sequence
and present our analysis, indicating
that existing design approaches can
be employed such that none of these
concerns would present a fundamen-
tal barrier to scaling coherence. We
then discuss extending the analysis
to noninclusive caches and address

some caveats and potential criticisms
of this work.

Concern 1: Traffic
Here we tackle the concerns regarding
the scalability of coherence traffic on
the on-chip interconnection network.
To perform a traffic analysis, we con-
sider for each cache miss how many
bytes must be transferred to obtain and
relinquish the given block. We divide
the analysis into two parts: in the ab-
sence of sharing and with sharing. This
analysis shows that when sharers are
tracked precisely, the traffic per miss
is independent of the number of cores.
Thus, if coherence’s traffic is accept-
able for today’s systems with relatively
few cores, it will continue to be accept-
able as the number of cores scales up.
We conclude with a discussion of how
coherence’s per-miss traffic compares
to that of a system without coherence.

Without sharing. We first analyze
the worst-case traffic in the absence
of sharing. Each miss in a private
cache requires at least two messages:
a request from the private cache to the
shared cache and a response from the
shared cache to provide the data to the
requestor. If the block is written during
the time it is in the cache, the block is
“dirty” and must be written explicitly
back to the shared cache upon eviction.

Even without sharing, the traffic de-
pends on the specific coherence proto-
col implementation. In particular, we
consider protocols that require a pri-
vate cache to send an explicit eviction
notification message to the shared
cache whenever it evicts a block, even
when evicting a clean block. (This de-
cision to require explicit eviction noti-
fications benefits implementation of
inclusive caching, as discussed later
in the section on maintaining inclu-
sion.) We also conservatively assume
that coherence requires the shared

cache to send an acknowledgment
message in response to each eviction
notification. Fortunately, clean evic-
tion messages are small (enough to,
say, hold a 8B address) and can oc-
cur only subsequent to cache misses,
transferring, say, a 64B cache block.
Coherence’s additional traffic per
miss is thus modest and, most im-
portant, independent of the number
of cores. Based on 64B cache blocks,
the table here shows that coherence’s
traffic is 96B/miss for clean blocks
and 160B/miss for dirty blocks.

With sharing. In a coherent sys-
tem, when a core reads a block that is
shared, the coherence protocol might
need to forward the request but to at
most only one core; thus the traffic
for each read miss is independent of
the number of cores. However, when
a core incurs a write miss to a block
that is cached by one or more other
cores, the coherence protocol gener-
ates extra messages to invalidate the
block from the other cores. These in-
validation messages are often used to
argue for the nonscalability of cache
coherence, because when all cores
are sharing a block, a coherent system
must send an invalidation message to
all other cores. However, our analysis
shows that when sharers are tracked
precisely, the overall traffic per miss
of cache coherence is independent of
the number of cores; the storage cost
of precise tracking is addressed later,
in the section on storage.

Consider an access pattern in which
a block is read by all cores and then
written by one core. The writer core is
indeed forced to send an invalidation
message to all cores, and each core
will respond with an acknowledgment
message, or a cost of 2N messages for
N sharers. However, such an expen-
sive write operation can occur only
after a read miss by each of the cores.

Traffic cost of cache misses.

Clean block Dirty block

Without coherence (Req+Data) + 0 = 80B/miss (Req+Data) + Data = 152B/miss

With coherence (Req+Data) + (Evict+Ack) = 96B/miss (Req+Data) + (Data+Ack)= 160B/miss

Per-miss traffic overhead 20% 5%

To calculate traffic, we must assume values for the size of addresses and cache blocks (such as 8B
physical addresses and 64B cache blocks). Request and acknowledgment messages are typically
short (such as 8B) because they contain mainly a block address and a message type field. A data
message is significantly larger because it contains both an entire data block plus a block address
(such as 64B + 8B = 72B).

82 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

contributed articles

More generally, for every write that
invalidates N caches, the write must
have been preceded by N read misses.
The traffic cost of a read miss is inde-
pendent of the number of cores; a read
miss is forwarded to a single core, at
most. Thus, through amortized analy-

sis, the overall average traffic per miss
is constant; a write miss that causes N
messages can occur at most only once
every Nth miss.

In support of this general analysis,
Figure 1a shows the traffic (in average
bytes per miss) over a range of core

counts for an access pattern param-
eterized by the number of read misses
to a block between each write miss to
the block. A workload consisting of
all write misses (zero read misses per
write miss; far left of Figure 1a) has
the highest traffic per miss because
all blocks are dirty. Traffic per miss is
independent of the number of cores
because the shared cache forwards the
write misses to at most one core, the
most recent writer. With an increasing
number of read misses per write miss
(moving to the right in Figure 1a), the
average traffic per miss actually de-
creases slightly because fewer writes
lead to fewer dirty blocks. More impor-
tant, the traffic is independent of the
number of cores in the system, because
each write miss that causes N messages
is offset by N previous read misses.

Traffic overhead of coherence. We
have shown that coherence’s per-miss
traffic scales because it is indepen-
dent of the number of cores. We now
consider coherence’s traffic overhead
per miss with respect to a hypothetical
design with caches but no hardware co-
herence (such as when software knows
precisely when cached data is stale
without extra traffic). We continue to
measure traffic in terms of bytes of traf-
fic on the interconnection network per
cache miss, thus assuming that coher-
ence does not change the number of
cache misses. However, this assump-
tion is potentially compromised by
false sharing and inefficient synchro-
nization, which can cause nonscalable
increases in the number of cache miss-
es. Both of these phenomena are well-
known challenges with well-known
techniques for their mitigation; we
cannot completely eliminate their im-
pact nor cleanly incorporate them into
our intentionally simplistic models.

The table lists the traffic per miss
for this system without coherence. We
now compare this traffic to the system
with coherence. For a clean block, the
system without coherence eliminates
the need for the eviction notification
and the acknowledgment of this noti-
fication. For a dirty block, the system
without coherence avoids the acknowl-
edgment of the dirty eviction message.
The key is that none of these three extra
messages contain the data block, and
such “control” messages are signifi-
cantly smaller than “data” messages.

Figure 1. Communication traffic for shared blocks.

1

4

16

64

256
1,024

100

0

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8

16 32 64

12
8

25
6

51
2

1,
02

4

Cores

B
yt

es
 p

er
 m

is
s

Read misses per write miss

1

4

16

64

256
1,024

100

0

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8

16 32 64

12
8

25
6

51
2

1,
02

4

Cores

B
yt

es
 p

er
 m

is
s

Read misses per write miss

(a) With exact tracking of sharers

(b) With inexact tracking of sharers

contributed articles

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 83

Coherence’s overhead is small, bound-
ed, and—most important—indepen-
dent of the number of cores. Based on
64B cache blocks, the table shows that
coherence adds a 20% traffic overhead
for clean blocks and a 5% overhead for
dirty blocks.

Conclusion. Coherence’s intercon-
nection network traffic per miss scales
when precisely tracking sharers.

Concern 2: Storage
The scalable per-miss traffic result as-
sumed a precise tracking of sharing
state in the shared cache, requiring N
bits of state for a system with N cores.
This assumption leads to the reason-
able concern that such an increase in
tracking state for systems with more
cores could pose a fundamental bar-
rier to scalability. Here, we show that
the storage cost scales gracefully by
quantifying the storage cost and de-
scribing two approaches for bounding
this cost: the first is the traditional use
of inexact encoding of sharers,1,8 which
we discard in favor of often-overlooked
use of on-chip hierarchy to efficiently
maintain an exact encoding of sharers.
The storage cost at the private caches
is negligible; supporting coherence in
the private caches adds just a few state
bits for each cache block, which is less
than 1% storage overhead and inde-
pendent of the number of cores, so our
analysis focuses on additional storage
in the shared cache.

Conventional approach: Inexact
encoding of sharers. The conventional
approach to limiting storage—inexact
encoding of sharers—can work well
but has poor worst-case behavior. It
represents a conservative superset
of sharers using fewer bits than one
bit per potential sharer and was well-
studied in the early 1990s.1,8 As a con-
crete example, the SGI Origin 200014
used a fixed number of bits per block,
regardless of the number of cores. For
small systems, the Origin used these
bits as a bit-vector that tracks shar-
ers exactly. For larger systems, the
Origin alternated between two uses
of these tracking bits. If there were
only a few sharers, the bits would be
used as a limited number of pointers
(each of which requires log2N bits to
encode) that can exactly track sharers.
If the number of sharers exceeds this
limited number of pointers, the Ori-

gin would use the bits as an inexact,
coarse-vector encoding, in which each
bit represents multiple cores. Though
the storage can be bounded, the traf-
fic of such schemes could suffer due to
unnecessary invalidations.

To quantify the traffic impact of such
inexact encodings, Figure 1b shows the
result of applying the analysis from the
previous section on traffic when using
the Origin’s inexact encoding scheme
to bound the storage at 32b per block
in the shared cache (approximately 6%
overhead for 64B blocks). When the
32b is enough for exact tracking (up
to 32 cores) or when the number of
sharers is smaller than the number of
limited pointers (far left of Figure 1b),
the sharers are encoded exactly, result-
ing in the same traffic-per-miss as the
exact encoding. When the number of
sharers is large (far right of Figure 1b),
the write invalidations must be sent to
all cores (independent of encoding), so
the inexact encoding incurs no traffic
penalty. However, when the number of
cores grows and the number of sharers
is in the middle of the range, the traffic
overheads spike. With 1,024 cores, the
spike reaches almost six times the traf-

fic of the exact encoding cases. Though
conventional wisdom might have pre-
dicted an even larger traffic spike for
1,024 cores, we next describe an alter-
native design that eliminates any such
spike in traffic.

Less conventional approach: On-
chip hierarchy for exact tracking. To
avoid a spike in traffic for some sharing
patterns, an alternative is to overcome
this scalability problem through an
on-chip hierarchy of inclusive caches.
Hierarchy is a natural design meth-
odology for scalable systems. With
many cores, the size of private caches
is limited, and the miss latency from
a private cache to the chipwide shared
cache is likely large. As such, many-
core systems,4,16 GPUs,15 and proposed
manycore architectures12 cluster some
number of cores/threads to share an
intermediate level of cache. For exam-
ple, Sun/Oracle’s T2 systems16 share a
small L1 cache between two pipelines,
each with four threads. NVIDIA’s Fermi
GPU15 clusters 32 execution pipelines
into a “shared multiprocessor.” In
AMD’s Bulldozer architecture,4 each
pair of cores has per-core private L0
caches and shares an L1 cache. Such

Figure 2. Hierarchical system model; additions for coherence are shaded.

state
tracking

bits tag block data state
tracking

bits tag block data

Cluster Cache Cluster Cache

Shared
last-level

cache

Cluster 1

Cluster of K cores Cluster of K cores

Cluster K

private
cache

private
cache

private
cache

private
cache

private
cache

private
cache

core corecore core corecore

Intra-cluster
interconnection network

Inter-cluster interconnection network

Intra-cluster
interconnection network

state
tracking

bits tag block data

84 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

contributed articles

systems fill the gap between a private
cache and a large, distributed shared
cache, allowing the cluster cache to de-
liver faster access to data shared within
the cluster. An additional benefit is
that coherence requests may be satis-
fied entirely within the cluster (such
as by a sibling node caching the block)
that can be significant if the software is
aware of the hierarchy.

The same techniques described
earlier—inclusion, integrating track-
ing state with caches, recall messages,
and explicit eviction notifications—are
straightforward to apply recursively to
provide coherence across a hierarchi-
cal system. Rather than just embed
tracking state at a single shared cache,
each intermediate shared cache also
tracks sharers—but just for the caches
included by it in the hierarchy. Con-
sider a chip (see Figure 2) in which
each core has its own private cache,
each cluster of cores has a cluster
cache, and the chip has a single shared
last-level cache. Each cluster cache is
shared among the cores in the cluster
and serves the same role for coherence
as the shared cache in nonhierarchi-
cal systems; that is, the cluster cache
tracks which private caches within
the cluster have the block. The shared
last-level cache tracks which cluster
caches are caching the block but not
which specific private cache(s) within
the cluster are caching it. For exam-
ple, a balanced 256-core system might
consist of 16 clusters of 16 cores each
with a 16KB first-level cache, a 512KB
second-level shared cluster cache, and
a 16MB third-level (last-level) cache
shared among all clusters.

Such a hierarchical organization
has some disadvantages—extra com-
plexity and layers of cache lookups—
but also two key benefits for coherence:
First, the hierarchy naturally provides
a simple form of fan-out invalidation
and acknowledgment combining. For
example, consider a block cached by all
cores; when a core issues a write miss
to this block, the cluster cache lacks
write permission for the block, so it for-
wards it to the shared last-level cache.
The shared last-level cache then sends
an invalidation message to each cluster
(not to each core), triggering the clus-
ter cache to perform an analogous in-
validation operation within the cluster.
The cluster then sends a single invali-

dation acknowledgment independent
of the number of cores in the cluster
that were caching the block. Compared
to a flat protocol, which must send ac-
knowledgments to every requestor,
the total cross-chip traffic is reduced,
and the protocol avoids the bottleneck
of sequentially injecting hundreds or
thousands of invalidation messages
and later sequentially processing the
same number of acknowledgments.

The second benefit is that a hierar-
chical system that enforces inclusion
at each level reduces the storage cost
of coherence. Recall from the previous
section on traffic that using an exact
encoding of sharers allows for scalable
communication for coherence but
that we deferred the seeming problem
of the storage cost of exact encoding.
Now we show that by using hierarchy
we can also make the storage cost scale
gracefully. Consider first a two-level
system (three levels of cache) consist-
ing of K clusters of K cores each (K2 = C
total cores). Each cluster cache is in-
clusive with respect to all private cach-
es within the cluster, and the shared
last-level cache is inclusive with re-
spect to all cluster caches. Each cluster
cache block uses one bit for each of the
K private caches it includes, plus a few
bits of state. Likewise, each shared
last-level cache block consumes a bit
for each of the K cluster caches it in-
cludes, plus a few bits of state. Impor-
tantly, these storage costs grow as a
linear function of K and thus propor-
tional to √—C. Even if C increases great-
ly, √—C grows more slowly.

This storage cost at the cluster
caches and last-level cache could be re-
duced even further by extending the hi-
erarchy by one level. Consider a system
with K level-2 clusters, each consisting
of K level-1 clusters, with each level-1
cluster consisting of K cores. This sys-
tem has C = K3 cores and a storage cost
proportional to cube root of C.

In Figure 3, we plot coherence’s stor-
age overhead (coherence’s storage as
a fraction of the total cache storage)
in terms of the bits needed to provide
precise tracking of sharers, for conven-
tional flat (nonhierarchical) systems,
2-level systems, and 3-level systems. As
a very large example, a 1,024-core 2-lev-
el system might have 32 clusters of 32
cores, thus 32b per 64B cache block at
each level, which is just 6%. An extreme

4,096-core 3-level system would have 16
clusters, each with 16 subclusters of 16
cores, with storage overhead of only 3%.

Conclusion. Hierarchy combined
with inclusion enables efficient scaling
of the storage cost for exact encoding
of sharers.

Concern 3: Maintaining Inclusion
In the system model covered here,
we initially choose to require that the
shared cache maintain inclusion with
respect to the private caches. Main-
taining an inclusive shared cache
allows efficient tracking of blocks
in private caches by embedding the
tracking information in the tags of the
shared cache, and is why we use this
design point. Inclusion also simpli-
fied our earlier analysis of communi-
cation and storage.

Inclusion requires that if a block is
cached in any private cache, it must also
be cached in the shared cache. When
the shared cache evicts a block with
nonempty tracking bits, it is required
to send a recall message to each private
cache that is caching the block, adding
to system traffic. More insidiously, such
recalls can increase the cache miss rate
by forcing cores to evict hot blocks they
are actively using.11 To ensure scalabil-
ity, we seek a system that makes recall
messages vanishingly rare.

Recalls occur when the shared cache
is forced to evict a block with one or
more sharers. To reduce the number
of recalls, the shared cache always
chooses to evict nonshared blocks over
shared blocks. Because the capacity
of an inclusive shared cache often ex-
ceeds the aggregate capacity of the pri-
vate caches (for example, the ratio is 8
for the four-core Intel Core i7 with 8MB
shared cache and four 256KB second-
level private caches), it is highly likely
that a nonshared block will be available
to evict whenever an eviction occurs.

Unfortunately, the shared cache
sometimes lacks sufficient informa-
tion to differentiate between a block
possibly being cached and certainly
being cached by a core. That is, the
tracking bits in the shared cache are
updated when a block is requested, but
the shared cache in some systems does
not always know when a private cache
has evicted the block. In such systems,
clean blocks (those not written during
their lifetime in the cache) are evicted

contributed articles

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 85

silently from the private caches, intro-
ducing ambiguity at the shared cache
as to what is still being cached and what
has already been evicted. This lack of
information manifests as poor replace-
ment decisions at the shared cache.

To remedy this lack of information,
a system can instead require the pri-
vate caches to send explicit notification
messages whenever a block is evicted,
even when evicting clean blocks. For
example, AMD’s HT-Assist protocol
uses explicit eviction notifications on
clean-exclusive block replacements to
improve sharer state encoding.6 If such
eviction notifications occur on every
cache eviction, the protocol enables
the shared cache to maintain precise
up-to-date tracking of private caches
that hold each block, transforming the
tracking information from conserva-
tive to exact. When an eviction deci-
sion does occur, the shared cache thus
knows which blocks are no longer be-
ing cached and likely have a choice to
evict a nonshared block to avoid a re-
call. However, this precision comes at a
cost in the form of increased traffic for
evictions of clean blocks, the overhead
of which was already included in the
traffic analysis.

Explicit eviction notifications can
potentially eliminate all recalls, but
only if the associativity, or number of
places in which a specific block may
be cached, of the shared cache ex-
ceeds the aggregate associativity of
the private caches. With sufficient as-
sociativity, whenever the shared cache
looks for a nonshared block to evict, if
it has exact sharing information, it is
guaranteed to find a nonshared block
and thus avoid a recall. Without this
worst-case associativity, a pathological
cluster of misses could lead to a situa-
tion in which all blocks in a set of the
shared cache are truly shared. Unfortu-
nately, even with a modest number of
cores, the required associativity is pro-
hibitive, as reported by Ferdman et al.7
For example, eight cores with eight-way
set-associative private caches require a
64-way set-associative shared cache,
and the required associativity doubles
for each doubling of the number of
cores.

Rather than eliminate all recalls,
we focus on a system in which recalls
are possible but rare. To estimate the
effect of limited shared cache associa-

tivity on recall rate, we performed a
simulation modeling recalls due to en-
forcing inclusion in such a system. We
pessimistically configured the private
caches to be fully associative. To factor
out the effect of any particular bench-
mark, we generated a miss-address
stream to random sets of the shared
cache that prior work found accurately
approximates conflict rates.9 We also
pessimistically assumed no data shar-
ing among the cores that would reduce
the inclusive capacity pressure on the
shared cache.

Fortunately, recalls can be made
rare in the expected design space.

Figure 4 shows the recall rate, or per-
centage of misses that cause a recall,
for shared caches of various sizes (as
a ratio of aggregate per-core capacity)
for several shared cache associativi-
ties. When the capacity of the shared
cache is less than the aggregate per-
core capacity (ratio < 1.0), almost every
request causes a recall, because the
private caches are constantly contend-
ing for an unrealistically underprovi-
sioned shared cache. As the size of the
shared cache increases, the recall rate
drops quickly. When the capacity ratio
reaches four times, even an eight-way
set-associative shared cache keeps

Figure 3. Storage overhead in shared caches.

0%
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

St
or

ag
e

O
ve

rh
ea

d
(p

er
ce

nt
)

Cores

Single-Level Two-Level Three-Level

Figure 4. Likelihood a shared cache miss triggers a recall.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

P
er

ce
nt

ag
e

of
 m

is
se

s
ca

us
in

g
re

ca
ll

s

Ratio of aggregate private cache capacity to shared cache capacity

1-way 2-way 4-way 8-way

Associativity of Shared Cache

Expected
Design
Space

86 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

contributed articles

the recall rate below 0.1%. For com-
parison, the Intel Core i7 has a 16-way
set-associative cache with eight times
capacity ratio. Based on this analysis,
we conclude that the traffic overhead
of enforcing inclusion is negligible for
systems with explicit eviction notifi-
cations and reasonable shared cache
sizes and associativities.

Conclusion. Chip architects can de-

sign a system with an inclusive shared
cache with negligible recall rate, and
thus can efficiently embed the tracking
state in the shared cache.

Concern 4: Latency
In a non-coherent system, a miss in a
private cache sends a request to the
shared cache. As discussed earlier, to
provide sufficient bandwidth, shared

caches are typically interleaved by ad-
dresses with banks physically distrib-
uted across the chip (see the sidebar
figure), so the expected best-case la-
tency of a miss that hits in the shared
cache is the access latency of the cache
bank plus the round-trip traversal of
the on-chip interconnect to reach the
appropriate bank of the shared cache.
Requests that miss in the shared cache

Incoherence. To illustrate the problem
of incoherence, consider the multiple
cores and corresponding private
caches in the upper-right of the figure
here. If core 1 writes the block labeled
B by updating its private cache only,
subsequent reads by core 2 would
see the old value indefinitely. This
incoherence can lead to incorrect
behavior; for example, if the block
holds a synchronization variable
for implementing mutual exclusion
using a lock, such incoherent
behavior could allow multiple cores
into a critical section or prevent cores
waiting for the release of the lock
from making forward progress.

The coherence invariant. The
mainstream solution to preventing

incoherence is a hardware cache-
coherence protocol. Though there
are many possible coherence
protocols, all maintain coherence by
ensuring the single-writer, multiple-
reader invariant; that is, for a given
block at any given moment in time,
there is either:

 ! Only a single core with write (and
read) permission to the block (in
state M for modified); or

 ! Zero or more cores with read
permission to the block (in state S for
shared).

Enforcing coherence. The figure
here outlines core 0 caching block A
with read/write permission (state M)
and cores 1 and 2 caching block B
with read-only permission (state S).

A write to block B by core 1 (which
in our example led to incoherence)
is not allowed to update its read-
only copy of the block. Instead,
core 1 must first obtain write
permission to the block. Obtaining
write permission without violating
the single-writer, multiple-reader
invariant requires invalidating any
copies of the block in other caches
(core 2 in this case, as encoded
by the tracking bits in the shared
cache). Such actions are handled in
hardware by cache-coherence logic
integrated into the cache controllers.
The section on cache coherence
today presents a protocol (and
describes the rest of the diagram); for
more, see Sorin et al.18

The Problem of Incoherence

System model; additions for coherence are shaded.

~2 bits

~2 bits~1 bit
per core

~64 bits

~64 bits

~512 bits

~512 bits

Block in private cache

Block in shared cache

Shared cache
(banked by block address)

State — Meaning
M (Modified) — Read/write permission
S (Shared) — Read-only permission
I (Invalid) — No permissions

Interconnection network

state tag block data

tracking
bits state tag block data

private cache

Bank O

private cache

Bank 1

private cache

Bank 2

private cache

Bank 3

A:
B:

A:

B: B:

B:

Core
0

Core
1

Core
2

Core
3

M, …
S, …

{1000} M …

S, … I

{0110} S …

contributed articles

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 87

are in turn routed to the next level of
the memory hierarchy (such as off-
chip memory).

In a coherent system with private
caches and a shared cache, four cases
are worth consideration with regard to
miss latency: a hit in the private cache;
a direct miss in which the shared
cache can fully satisfy the request, that
is, to a block not cached in other pri-
vate caches; an indirect miss, in which
the shared cache must contact one or
more other caches; and a miss in the
shared cache, incurring a long-latency
access to off-chip memory. Coherence
adds no latency to perhaps the two
most performance-critical cases: pri-
vate cache hits (the first case) and off-
chip misses (the fourth case). Coher-
ence also adds no appreciable latency
to direct misses because the coher-
ence state bits in the tags of the shared
cache can be extended to unambigu-
ously distinguish between direct and
indirect misses.

However, indirect misses do incur
the extra latency of sending a mes-
sage on the on-chip interconnection
network to the specified private cores.
Such messages are sent in parallel, and
responses are typically sent directly to
the original requester, resulting in a
“three-hop protocol.” Thus, the criti-
cal path latency of direct and indirect
misses can be approximated by the fol-
lowing formulas:

Non-coherent
 tnoncoherent = tinterconnect + tcache + tinterconnect
Coherent
 tdirect = tinterconnect + tcache + tinterconnect

 tindirect = tinterconnect + tcache + tinterconnect + tcache
+ tinterconnect

The indirect miss latency for coher-
ence is from 1.5 to two times larger
than the latency of a non-coherent
miss; the exact ratio depends on the
relative latencies of cache lookup (tcache)
and interconnect traversal (tinterconnect).
This ratio is considered acceptable in
today’s multicore systems, in part be-
cause indirect misses are generally in
the minority for well-tuned software.
The ratio also indicates scalability, as
the ratio is independent of the num-
ber of cores. Even if the absolute inter-
connect latency increases with more
cores, such increases will generally
increase the latency of all misses (even

in a non-coherent system) roughly pro-
portionally, keeping the ratio largely
unchanged. Moreover, if latency is still
deemed too great, for either coherent
or non-coherent systems, these sys-
tems can use prefetching to hide the
latency of anticipated accesses.

Similar reasoning can be applied re-
cursively to calculate the latency ratio
for a system with more layers of hier-
archy. Though the effect of hierarchy
may hurt absolute latency (such as due
to additional layers of lookup), we see
no reason why hierarchy should signifi-
cantly affect the ratio of the latencies of
direct to indirect misses. Furthermore,
the cluster caches introduced by hier-
archy may help mitigate the growing
cross-chip latency by providing a closer
mid-size cache that allows faster shar-
ing within a cluster and reducing the
number of longer-latency accesses to
the chipwide distributed shared last-
level cache. Modeling the full effect of
hierarchy on latency (and traffic) is be-
yond the reach of the simple models we
use here.

Conclusion. Though misses to ac-
tively shared blocks have greater la-
tency than other misses, the latency ra-
tio is tolerated, and the ratio need not
grow as the number of cores increases.

Concern 5: Energy
Though a detailed energy analysis is
perhaps not as straightforward as the
analyses we have reported here, we can
use these analyses to support the con-
clusion that the energy cost of coher-
ence is also not a barrier to scalabil-
ity. Energy overheads generally come
from both doing more work (dynamic/
switching energy) and from additional
transistors (static/leakage energy).

For dynamic energy, the primary
concerns are extra messages and ad-
ditional cache lookups. However, we
have shown that interconnect traffic
and message count per-miss do not
increase with the number of cores, in-
dicating the protocol state transitions
and number of extra cache lookups are
likewise bounded and scalable.

For static energy, the primary con-
cerns are the extra tracking state we
have also shown scales gracefully and
leakage due to any extra logic for pro-
tocol processing. Protocol process-
ing logic is added per core and/or per
cache bank and thus should also add

at most a fixed per-core, thus scalable,
leakage energy overhead.

Furthermore, many energy-inten-
sive parts of the system—the cores
themselves, the cache data arrays, off-
chip DRAM, and storage—are largely
unaffected by coherence, so energy
overheads incurred by coherence are
relatively smaller when weighed against
the context of the overall system.

Conclusion. Based on these traffic
and storage scalability analyses, we
find no reason the energy overheads
of coherence must increase with the
number of cores.

Non-Inclusive Shared Caches
So far we have assumed an inclusive
shared cache, like that of Intel’s Core
i7, but this choice is not universal.
Rather than require a private cache
block to be present in the shared cache
(inclusion), a system can forbid it from
being present (exclusion) or allow but
not require it to be present (neither in-
clusion nor exclusion). Not enforcing
inclusion reduces redundant caching
(less important for the Core i7 whose
shared cache size is eight times the
sum of its private cache sizes) but has
implications for coherence.

A non-inclusive system can retain
the coherence benefits of an inclusive
shared cache by morphing it into two
structures: a new noninclusive shared
cache that holds tags and data, but not
tracking state, and is free to be of any
size and associativity; and a “directory”
that holds tags and per-core tracking
state, but not data blocks, and uses
inclusion to operate like a dataless ver-
sion of the previous inclusive shared
cache; this design roughly resembles
some systems from AMD.6

To the first order, the communi-
cation between the directory and its
private caches is the same as with the
original inclusive shared cache, provid-
ed the directory continues to be large
enough to keep recalls rare. Moreover,
designers now have more freedom in
setting the new non-inclusive shared
cache configuration to trade off cost
and memory traffic. Though the direc-
tory-tracking state is the same as with
an inclusive shared cache (total direc-
tory size is proportional to the sum of
private cache sizes), the storage effect
is more significant because the directo-
ry must also include tags (there for free

88 COMMUNICATIONS OF THE ACM | JULY 2012 | VOL. 55 | NO. 7

contributed articles

in the original inclusive shared cache),
and the relative overhead becomes
larger if the hardware designer opts for
a smaller shared cache.

To be concrete, let S1 be the sum
of private cache sizes, S2 the shared
cache size, D the directory entry size
relative to the size of a private cache
block and tag, and R, the ratio of the
number of directory entries to the to-
tal number of private cache blocks. R
should be greater than 1 to keep recalls
rare, as discussed earlier in the section
on maintaining inclusion. Directory
storage adds R×S1×D to cache storage
S1+S2 for a relative overhead of (R×D)/
(1+S2/S1). Assume that R=2 and D=64b/
(48b+512b). If S2/S1 is 8, as in Core i7,
then directory storage overhead is only
2.5%. Shrinking S2/S1 to 4, 2, and 1 in-
creases relative overhead to 4.6%, 7.6%,
and 11%, respectively.

The use of hierarchy adds another
level of directory and an L3 cache. With-
out inclusion, the new directory level
must point to an L2 bank if a block is
either in the L2 bank or in its co-locat-
ed directory. For cache size ratio Z = S3/
S2 = S2/S1 = 8, the storage overhead for
reaching 256 cores is 3.1%. Shrinking Z
to 4, 2, or 1 at most doubles the relative
overhead to 6.5%, 13%, or 23%, respec-
tively. Furthermore, such storage over-
heads translate into relatively lower
overheads in terms of overall chip area,
as caches are only part of the chip area.
Overall, we find that directory storage
is still reasonable when the cache size
ratio Z > 1.

Caveats and Criticisms
We have described a coherence proto-
col based on known ideas to show the
costs of on-chip coherence grow slowly
with core count. Our design uses a hier-
archy of inclusive caches with embed-
ded coherence state whose tracking in-
formation is kept precise with explicit
cache-replacement messages. Using
amortized analysis, we have shown that
for every cache miss request and data
response, the interconnection network
traffic per miss is independent of the
number of cores and thus scales. Em-
bedding coherence state in an inclu-
sive cache hierarchy keeps coherence’s
storage costs small; for example, 512
cores can be supported with 5% extra
cache area with two cache levels or 2%
with three levels. Coherence adds neg-

ligible latency to cache hits, off-chip
accesses, and misses to blocks not ac-
tively shared; miss latency for actively
shared blocks is higher, but the ratio
of the latencies for these misses is tol-
erable today and independent of the
number of cores. Energy overheads of
coherence are correlated with traffic
and storage, so we find no reason for
energy overheads to limit the scalabil-
ity of coherence. Extensions to a non-
inclusive shared cache show larger but
manageable storage costs when shared
cache size is larger than the sum of pri-
vate cache size. With coherence’s costs
shown to scale, we expect on-chip co-
herence is here to stay due to the pro-
grammability and compatibility ben-
efits it delivers.

Nevertheless, this work has limita-
tions and potential criticisms. First, we
did not include detailed architectural
simulations with specific benchmarks
or consider difficult-to-model queuing
effects due to cache and interconnect
contention. Instead, we showed that
coherence’s per-miss traffic is inde-
pendent of the miss pattern and num-
ber of cores. Though less precise than
detailed simulation, our results are
more robust, as they are not limited to
the specific benchmarks studied. Fur-
thermore, we described our protocol
as an existence proof of a scalable co-
herence protocol but do not claim it is
the best. To this more modest end, less
precision is required.

Second, we did not compare our
protocol against multicore chips with-
out caches or without a shared address
space. Though these approaches have
been successful in high-performance
computing, they are not common in
mainstream multicore systems. Given
that coherence’s costs can be kept low
and that some operating systems use
hardware coherence to scale to many
cores,2,3 we find no compelling reason
to abandon coherence. We thus an-
ticipate alternatives to cache-coherent
shared memory will continue to ex-
ist and thrive in certain domains but
that on-chip coherence will continue
to dominate in mainstream multicore
chips. Furthermore, coherent systems
can support legacy algorithms from
these other domains, as any program
that works for scratchpad systems
(such as the Cell processor) or message
passing systems (such as an MPI clus-

Forcing software
to use software-
managed coherence
or explicit message
passing does not
remove complexity
but rather shifts
complexity from
hardware to
software.

contributed articles

JULY 2012 | VOL. 55 | NO. 7 | COMMUNICATIONS OF THE ACM 89

ter) maps easily to a shared memory
system with caches.

Third, we are aware of the complexi-
ty challenge posed by coherence and do
not underestimate the importance of
managing complexity but also that the
chip-design industry has a long history
of managing complexity. Many com-
panies have sold many systems with
hardware cache coherence. Designing
and validating the coherence protocols
in them is not easy, but industry con-
tinues to overcome these challenges.
Moreover, the complexity of coherence
protocols does not necessarily scale up
with increasing numbers of cores. Add-
ing more cores to an existing multicore
design has little effect on the conceptu-
al complexity of a coherence protocol,
though it may increase the amount of
time necessary to validate the protocol.

However, even the validation effort
may not pose a scalability problem;
research shows it is possible to de-
sign hierarchical coherence protocols
that can be formally verified with an
amount of effort that is independent
of the number of cores.19 Furthermore,
the complexity of the alternative to
hardware coherence—software imple-
mented coherence—is non-zero. As
when assessing hardware coherence’s
overheads—storage, traffic, latency,
and energy—chip architects must be
careful not to implicitly assume the
alternative to coherence is free. Forc-
ing software to use software-managed
coherence or explicit message passing
does not remove the complexity but
rather shifts the complexity from hard-
ware to software.

Fourth, we assumed a single-chip
(socket) system and did not explicitly
address chip-to-chip coherence in to-
day’s multisocket servers. The same
sort of tagged tracking structures can
be applied to small-scale multisocket
systems,6 essentially adding one more
level to the coherence hierarchy. More-
over, providing coherence across mul-
tisocket systems may become less im-
portant, because single-chip solutions
solve more needs, and “scale out” so-
lutions are required in any case (such
as for data centers), but that is an argu-
ment for another article.

Finally, even if coherence itself
scales, we did not address other is-
sues that might prevent practical
multicore scaling, such as die-area

limitations, scalability of the on-chip
interconnect, and critical problems
of software non-scalability. Despite
advances in scaling operating systems
and applications, many applications
do not (yet) effectively scale to many
cores. This article does not improve
that situation. Nevertheless, we have
shown that on-chip hardware coher-
ence can be made to scale gracefully,
freeing application and system soft-
ware developers from having to re-
implement coherence (such as know-
ing when to flush and refetch data) or
orchestrating explicit communication
via message passing.

Conclusion. On-chip coherence can
be made to scale gracefully, enabling
programmers to concentrate on what
matters for parallel speedups—find-
ing work to do in parallel without undo
communication and synchronization.

Acknowledgments
We thank James Balfour, Colin
Blundell, Derek Hower, Steve Keckler,
Alvy Lebeck, Steve Lumetta, Steve Re-
inhardt, Mike Swift, and David Wood.
This material is based on work sup-
ported by the National Science Foun-
dation (CNS-0720565, CNS-0916725,
CNS-1117280, CCF-0644197, CCF-
0905464, CCF-0811290, and CCF-
1017650); Sandia/Department of Ener-
gy (MSN123960/DOE890426); and the
Semiconductor Research Corporation
(2009-HJ-1881). Any opinions, find-
ings, and conclusions or recommen-
dations expressed here are those of
the authors and do not necessarily re-
flect the views of the National Science
Foundation, Sandia/DOE, or SRC. The
authors have also received research
funding from AMD, Intel, and NVIDIA.
Hill has a significant financial interest
in AMD.

References
1. Agarwal, A., Simoni, R., Horowitz, M., and Hennessy,

J. An evaluation of directory schemes for cache
coherence. In Proceedings of the 15th Annual
International Symposium on Computer Architecture
(Honolulu, May). IEEE Computer Society Press, Los
Alamitos, CA, 1988, 280–298.

2. Boyd-Wickizer, S. Clements, A.T., Mao, Y., Pesterev,
A., Kaashoek, M.F., Morris, R., and Zeldovich, N.
An analysis of Linux scalability to many cores. In
Proceedings of the Ninth USENIX Symposium on
Operating Systems Design and Implementation
(Vancouver, Oct. 4–6). USENIX Association, Berkeley,
CA, 2010, 1–8.

3. Bryant, R. Scaling Linux to the extreme. In
Proceedings of the Linux Symposium (Boston, June
27–July 2, 2004), 133–148.

4. Butler, M., Barnes, L., Sarma, D.D., and Gelinas, B.
Bulldozer: An approach to multithreaded compute

performance. IEEE Micro 31, 2 (Mar./Apr. 2011), 6–15.
5. Choi, B., Komuravelli, R., Sung, H., Smolinski, R.,

Honarmand, N., Adve, S.V., Adve, V.S., Carter, N.P., and
Chou, C.-T. DeNovo: Rethinking the memory hierarchy
for disciplined parallelism. In Proceedings of the 20th
International Conference on Parallel Architectures
and Compilation Techniques (Galveston Island, TX,
Oct. 10–14). IEEE Computer Society, Washington,
D.C., 2011, 155–166.

6. Conway, P., Kalyanasundharam, N., Donley, G., Lepak,
K., and Hughes, B. Cache hierarchy and memory
subsystem of the AMD Opteron processor. IEEE Micro
30, 2 (Mar./Apr. 2010), 16–29.

7. Ferdman, M., Lotfi-Kamran, P., Balet, K., and Falsafi,
B. Cuckoo directory: Efficient and scalable CMP
coherence. In Proceedings of the 17th Symposium
on High-Performance Computer Architecture (San
Antonio, TX, Feb. 12–16). IEEE Computer Society,
Washington, D.C., 2011, 169–180.

8. Hill, M.D., Larus, J.R., Reinhardt, S.K., and Wood, D.A.
Cooperative shared memory: Software and hardware
for scalable multiprocessors. ACM Transactions on
Computer Systems 11, 4 (Nov. 1993), 300–318.

9. Hill, M.D. and Smith, A.J. Evaluating associativity in
CPU caches. IEEE Transactions on Computers 38, 12
(Dec. 1989), 1612–1630.

10. Howard, J. et al. A 48-core IA-32 message-passing
processor with DVFS in 45nm CMOS. In Proceedings
of the International Solid-State Circuits Conference
(San Francisco, Feb. 7–11, 2010), 108–109.

11. Jaleel, A., Borch, E., Bhandaru, M., Steely Jr., S.C., and
Emer, J. Achieving noninclusive cache performance
with inclusive caches: Temporal locality-aware
cache management policies. In Proceedings of the
43rd Annual IEEE/ACM International Symposium on
Microarchitecture (Atlanta, Dec. 4–8). IEEE Computer
Society, Washington, D.C., 2010, 151–162.

12. Kelm, J.H., Johnson, D.R., Johnson, M.R., Crago, N.C.,
Tuohy, W., Mahesri, A., Lumetta, S.S., Frank, M.I.,
and Patel, S.J. Rigel: An architecture and scalable
programming interface for a 1,000-core accelerator.
In Proceedings of the 36th Annual International
Symposium on Computer Architecture (Austin, TX,
June 20–24). ACM Press, New York, 2009, 140–151.

13. Kelm, J.H., Johnson, D.R., Tuohy, W., Lumetta, S.S.,
and Patel, S.J. Cohesion: An adaptive hybrid memory
model for accelerators. IEEE Micro 31, 1 (Jan./Feb.
2011), 42–55.

14. Laudon, J. and Lenoski, D. The SGI Origin: A ccNUMA
highly scalable server. In Proceedings of the 24th
Annual International Symposium on Computer
Architecture (Denver, June 2–4). ACM Press, New
York, 1997, 241–251.

15. Nickolls, J. and Dally, W.J. The GPU computing era.
IEEE Micro 30, 2 (Mar./Apr. 2010), 56–69.

16. Shah, M., Barren, J., Brooks, J., Golla, R., Grohoski,
G., Gura, N., Hetherington, R., Jordan, P., Luttrell, M.,
Olson, C., Sana, B., Sheahan, D., Spracklen, L., and
Wynn, W. UltraSPARC T2: A highly treaded, power-
efficient SPARC SOC. In Proceedings of the IEEE
Asian Solid-State Circuits Conference (Jeju, Korea,
Nov. 12–14, 2007), 22–25.

17. Singhal, R. Inside Intel next-generation Nehalem
microarchitecture. Hot Chips 20 (Stanford, CA, Aug.
24–26, 2008).

18. Sorin, D.J., Hill, M.D., and Wood, D.A. A Primer on
Memory Consistency and Cache Coherence. Morgan &
Claypool Publishers, 2011.

19. Zhang, M., Lebeck, A.R., and Sorin, D.J. Fractal
coherence: Scalably verifiable cache coherence.
In Proceedings of the 43rd Annual IEEE/ACM
International Symposium on Microarchitecture
(Atlanta, Dec. 4–8). IEEE Computer Society,
Washington, D.C., 2010, 471–482.

Milo M.K. Martin (milom@cis.upenn.edu) is an
associate professor in the Computer and Information
Science Department of the University of Pennsylvania,
Philadelphia, PA.

Mark D. Hill (markhill@cs.wisc.edu) is a professor in both
the Computer Sciences Department and the Electrical and
Computer Engineering Department of the University of
Wisconsin-Madison.

Daniel J. Sorin (sorin@ee.duke.edu) is an associate
professor in the Electrical and Computer Engineering
and Computer Science Departments of Duke University,
Durham, NC.

© 2012 ACM 0001-0782/12/07 $15.00

