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NOSQ: STORE-LOAD
COMMUNICATION WITHOUT

A STORE QUEUE
.....................................................................................................................................................................................................................................................

THE NOSQ MICROARCHITECTURE PERFORMS STORE-LOAD COMMUNICATION WITHOUT

A STORE QUEUE AND WITHOUT EXECUTING STORES IN THE

OUT-OF-ORDER ENGINE. IT USES SPECULATIVE MEMORY BYPASSING FOR ALL

IN-FLIGHT STORE-LOAD COMMUNICATION, ENABLED BY A 99.8 PERCENT

ACCURATE STORE-LOAD COMMUNICATION PREDICTOR. THE RESULT IS A SIMPLE, FAST

CORE DATA PATH CONTAINING NO DEDICATED STORE-LOAD FORWARDING STRUCTURES.

......Store queues are a painful fixture
of modern dynamically scheduled proces-
sors. Conventional dynamically scheduled
processors associatively search the store
queue to perform in-flight store-load for-
warding. A drawback of the conventional
design is associative search itself, a function
whose poor scalability constrains the store
queue’s scalability and, in turn, the entire
instruction window’s scalability.

Recent work improves store queue scal-
ability by redesigning store-load forwarding
to use mechanisms other than fully associa-
tive search. For instance, a previous design
by our group uses a traditional store queue
but replaces associative search with specula-
tive indexed access to a single entry.1

Building on our previous design as well as
other techniques (see the ‘‘Recent store-load
forwarding techniques’’ sidebar), NoSQ is
a new microarchitecture that eliminates the
store queue.2 NoSQ exploits two observa-
tions. First, store-load communication pat-
terns are predictable with high accuracy, so

search is unnecessary. Second, store input
data values already exist in the register file.
NoSQ uses speculative memory bypassing
(SMB) to convert in-window store-load
communication to register communica-
tion.3–6 SMB ‘‘short-circuits’’ the store-load
pair in a definition-store-load-use chain by
using the register map table to directly
connect the definition to the use. NoSQ is
not unique in its use of SMB. Prior designs
used SMB opportunistically as a lower-
latency complement to conventional store-
queue-based forwarding, but NoSQ is the
only microarchitecture that uses SMB for all
in-window store-load communication.

In a conventional microarchitecture,
stores execute in the out-of-order core to
write their addresses and values into the
store queue; without a store queue, there is
no reason to execute stores in the out-of-
order core. Instead, NoSQ repurposes the
register read ports and address generation
units formerly used to execute stores in the
out-of-order core to now execute stores in
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order just prior to commit. This extended
commit pipeline also calculates load ad-
dresses for verification, allowing NoSQ to

eliminate the load queue as well.

The feature that distinguishes NoSQ
from other proposed designs is a core data
path that contains no dedicated in-flight

store-load communication structure. As
a result, NoSQ’s data path can be simpler,

smaller, and faster than a conventional data
path. In addition to these implementation
advantages, NoSQ has a slightly better

instructions-per-cycle (IPC) rate than a con-
ventional design and consumes less data
cache bandwidth.

Microarchitecture overview
NoSQ uses SMB to replace the conven-

tional store-load forwarding path in an out-
of-order processor. Figure 1 shows pipeline
and structural diagrams of a processor with

store-queue-based forwarding and of NoSQ.
Conventional processors verify load specula-

tion—that is, detect store-load ordering
violations—by associatively searching an
age-ordered load queue. NoSQ performs

speculation of one kind or another on every
load and uses a more general verification
mechanism. Conceptually, NoSQ reexecutes

all loads in order prior to commit, flushing
the pipeline when the value read from the

data cache doesn’t match the value obtained
during out-of-order execution.7 To reduce
reexecution overhead, NoSQ uses a mecha-

nism called the store vulnerability window
(SVW) to filter 99 percent of would-be

reexecutions.8 To isolate the features specific
to NoSQ, we assume that the base design
uses SVW-filtered load reexecution to verify

load speculation.

Both structural diagrams in Figure 1 show
paths for a microarchitecture that executes
two loads and one store per cycle. Load 1

does not communicate with—that is, it does
not forward from—an older in-flight store

and gets its value from the data cache. Load 2
is a communicating load. The conventional
design (Figure 1a) dispatches both loads and

the store to the out-of-order execution
engine. The store writes its address and data

to the store queue, and both loads search the
store queue at execute. At commit, the

.....................................................................................................................................................................

Recent store-load forwarding techniques

Many recent proposals improve the scalability or reduce the complexity of store-load

forwarding. These proposals fall into three general classes of techniques. One class

maintains an age-ordered store queue structure but uses partitioning, filtering, hierarchy,

dependence speculation, and speculative forwarding through the primary data cache or other

structures to reduce the frequency of associative store queue search or the number of entries

examined per search.1–5 The second class avoids associative search altogether by replacing

the conventional age-ordered structure with a cachelike address-indexed structure.4,6–8

Techniques in the third class maintain the simplifying age-ordered structure but use

dependence speculation to replace associative search with speculative indexed access.9,10

NoSQ fundamentally differs from all these techniques: Rather than reducing the complexity

of forwarding by optimizing the store queue, NoSQ performs store-load communication without

a dedicated intermediary structure. By using speculative memory bypassing (SMB) for all in-

flight store-load communication and the store-vulnerability-window (SVW) mechanism for

verification, NoSQ eliminates both the store and the load queues.
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processor uses the store queue address and
data to commit stores to the data cache.

NoSQ uses a bypassing predictor—essen-
tially an enhanced version of store sets9 or

any other memory dependence predictor—
to explicitly distinguish bypassing loads from
nonbypassing loads and, for bypassing loads,
to identify the register that contains the value
the load will produce. Bypassing loads,

which in a traditional design forward from
older in-flight stores, skip out-of-order
execution altogether. SMB’s renaming ex-
tension links their consumers to the register
that contains the right value. Nonbypassing

loads are injected into the out-of-order core
as usual, but they simply read the data cache.
Because stores don’t actively participate in
forwarding, the processor does not dispatch
them to the out-of-order engine. As Figure 1

shows, NoSQ has a simpler out-of-order core

than the conventional design. Because NoSQ
lacks a store or load queue, its in-order
commit pipeline accesses the register file to

retrieve the base addresses and data values
of stores (for commit) and loads (for
verification).

NoSQ implementation
Bypassing prediction is more difficult

than conventional store-load dependence
prediction because bypassing connects a load
to a store without first checking that their
addresses match. NoSQ bypassing predic-

tion is even more difficult because NoSQ
uses bypassing for all in-window store-load
communication, not just for high-confi-
dence cases. NoSQ’s predictor must gener-
ate an accurate prediction for every load; it
doesn’t have the option of generating no

prediction when its confidence is low.

Figure 1. Pipeline and structural diagrams of a conventional design with store-queue-based forwarding (a) and of NoSQ (b).

Each diagram shows paths for two loads and one store. Load 1 does not communicate with an older in-flight store, and load

2 does communicate with an older store. Note that NoSQ doesn’t dispatch the communicating load to the out-of-order

engine. NoSQ also doesn’t dispatch any stores to the out-of-order engine. NoSQ has a simpler out-of-order core data path,

but also an elongated in-order commit pipeline. Agen: address generation unit; D-cache: data cache; LQ: load queue; mem

dep pred: memory dependence predictor; regfile: register file; ROB: reorder buffer; SMB: speculative memory bypassing;

SQ: store queue; SRQ: store register queue; SSBF: store sequence Bloom filter; SVW: store vulnerability window;
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NoSQ uses a distance-based bypassing
predictor, which represents a load’s de-
pendence on an older store as the distance
in dynamic stores between the two instruc-
tions.4,10 A distance-based representation is
general; schemes based on store program
counters (PCs) have difficulties representing
dependencies involving the not-most-recent
instance of a given store PC, as in the loop
body x[i] 5 A * x[i–2]. A distance
prediction can be converted to a dynamic
store instance directly. In contrast, convert-
ing a store PC to a dynamic store requires
a table that tracks the most recent instance
of every store PC. Finally, a distance-based
representation dovetails with the SVW
reexecution filtering mechanism, allowing
the SVW to act as both the verification
mechanism and the training mechanism for
the bypassing predictor.

SVW background
To determine when load reexecution is

unnecessary, SVW assigns monotonically
increasing store sequence numbers (SSNs)
to the dynamic stores.8 Two global coun-
ters, SSNcommit and SSNdispatch, track the
SSNs of the youngest committed and
dispatched stores, respectively. Because
SSNs are a fixed number of bits (for
example, 20), the processor handles SSN
wrap-around by draining its pipeline and
clearing all hardware structures that hold
SSNs.

The SVW mechanism uses a small,
tagged, set-associative table that tracks the
SSNs of the youngest stores to write to each
address. This table is called the store
sequence Bloom filter (SSBF). At commit,
stores write their SSNs to the SSBF; that is,
SSBF[store.address] 5 SSNcommit. When
a load executes, it records the SSN of the
youngest older store to which it is not
vulnerable, load.SSNnvul. If the load for-
wards from an older store, this is that store’s
SSN; otherwise, this is SSNcommit. In the
original SVW proposal, a load skips
reexecution if SSBF[load.address] #

load.SSNnvul. This outcome indicates that
any store that wrote to the load’s address
either committed before the load executed
or is older than the store that forwarded to
the load. SVW filtering detects possible

writes by other processors by creating an
SSBF pseudoentry whenever the cache is
forced to evict a block.

Distance-based prediction
SVW serves as a convenient basis for

store distance-based dependence prediction
because simple arithmetic can convert
distances to SSNs—that is, to dynamic
store instances—and vice versa.

For each dynamic load, NoSQ’s bypass-
ing predictor generates a predicted distance,
load.distancebypass, to the bypassing store (if
any). At rename, the processor converts this
distance to a dynamic store instance by
subtracting it from the current global
SSNrename counter: load.SSNbypass 5 SSNre-

name – load.distancebypass. Loads that miss in
the predictor or whose predicted bypassing
store has already committed (as determined
by comparing load.SSNbypass to SSNcommit)
are considered nonbypassing and are dis-
patched to the out-of-order engine as usual.
Loads that hit in the predictor and whose
load.SSNbypass . SSNcommit are considered
bypassing and are not dispatched to the out-
of-order engine. Instead, the processor sets
their output register mapping to the
physical register corresponding to the pre-
dicted bypassing store’s data input. The
processor retrieves this register from the
store register queue using the low-order bits
of load.SSNbypass. The store register queue
parallels a traditional store queue in struc-
ture, but it is part of the bypassing
predictor, not of the out-of-order data path.
It contains only physical register numbers
(not addresses or values), and it is accessed
only at rename, not at execute.

Training and verification with SVW
At commit, the processor uses the SSBF

both to filter reexecutions for bypassing
loads and to train the predictor. A bypassing
load can skip reexecution if load.SSNbypass

55 SSBF[load.address], indicating that the
last store to write to the load’s address is the
store from which the load speculatively
bypassed. Unlike the inequality test used for
nonbypassing loads, this equality test re-
quires tagging the SSBF, because equality
tests are not safe in the presence of aliasing.
If the value obtained from reexecution

........................................................................
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doesn’t match the original value, the pro-
cessor squashes the pipeline and trains the
predictor with the distance to the store from
which the load should have bypassed. This
distance is computed as load.distancebypass

5 SSNcommit – SSBF[load.address].

Predictor structure
To capture path-dependent bypassing

patterns, NoSQ’s bypassing predictor is
explicitly path sensitive. Like history-based
branch predictors, it uses a hybrid design to
reduce both storage requirements and
training times, exploiting the fact that many
loads have path-independent bypassing
patterns.

NoSQ’s predictor consists of two set-
associative tables. One is indexed by the
load’s PC and generates path-insensitive
predictions; the other is indexed by a com-
bination of the load’s PC and path
history—one bit for each conditional
branch and two PC bits for each procedure
call—and generates path-sensitive predic-
tions. Each predictor entry contains a tag
and a distance field. To generate a pre-
diction, the processor reads both tables and
uses the path-sensitive prediction if one is
available. Both tables are updated at commit
when a bypassing misprediction is detected.
A bypassing misprediction occurs when
a nonbypassing load should have bypassed,
a bypassing load should have accessed the
cache instead, or a bypassing load bypassed
from the wrong dynamic store.

Delay
Bypassing cannot handle all store-load

communication. Although NoSQ can sup-
port some partial-word bypassing—which
we described in our conference paper2—it
cannot perform partial store (that is,
narrow-store, wide-load) communication
because it cannot combine values from
multiple registers. Other communication
patterns can pathologically elude the pre-
dictor—for example, path-independent but
data-dependent patterns or path-dependent
patterns whose differentiating signature is
longer than the predictor’s history. In these
cases, to avoid bypassing mispredictions—
which cause costly pipeline squashes—
NoSQ effectively converts a would-be

bypassing load to a nonbypassing load by
dispatching it to the out-of-order engine
and delaying its execution until the un-
certain store commits. At that time, the load
retrieves its value from the data cache.

NoSQ implements delay by attaching
a short confidence counter to each predictor
entry. A prediction with subthreshold
confidence causes the load to wait for the
corresponding store to commit rather than
bypassing from that store. The processor
updates the confidence at commit. To allow
a low-confidence load to become a high-
confidence load, all loads—even loads
delayed because of low confidence—update
the confidence counters. They increment
the counters for correct predictions and
decrement them for incorrect predictions.

Extended commit pipeline
In a traditional microarchitecture, the

store queue buffers store addresses and data
values for in-order commit. In a microarch-
itecture with in-order load reexecution, the
load queue buffers load addresses and data
values for in-order verification. NoSQ
simplifies the out-of-order core by elimi-
nating the store and load queues. NoSQ
must therefore extend the in-order back-end
commit pipeline to obtain store and load
addresses and data values elsewhere.

NoSQ extends the commit pipeline to

N obtain physical register names, access
sizes, and immediate offsets of mem-
ory operations from an augmented
reorder buffer;

N read base addresses and data values of
stores and loads from the register file;
and

N use these values to calculate effective
addresses for these instructions.

Because stores and bypassing loads skip the
out-of-order engine, the commit pipeline
now uses the register file ports and address
generation units previously used to execute
these instructions in the out-of-order core.
A small amount of additional register read
bandwidth is required for regenerating
addresses to verify nonbypassing loads.

NoSQ’s commit pipeline needs the
addresses of all loads for SVW reexecution
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filtering. However, the pipeline needs
originally executed data values and new
data values from the data cache only for

loads that actually reexecute—in practice
less than 1 percent of all loads. In NoSQ,
load reexecution shares the data cache port
and the register file data register read port
with store commit.

Extending the commit pipeline might
increase pressure on core structures such as
the reorder buffer, load and store queues,
and register file. However, this issue is not
a significant concern for NoSQ because the
reorder buffer is not latency-critical, and
NoSQ has no store and load queues.

Moreover, SMB reduces register file pres-
sure by allowing the definition and the load
in a definition-store-load-use chain to share
a single physical register.

Evaluation
We evaluated NoSQ with a detailed

timing simulation of an aggressive current-
generation processor (four-way issue, 128-
instruction window, 11-stage combined
front-end and out-of-order core pipelines)
on the SPEC2000 and Mediabench pro-
grams. The processor’s baseline configura-
tion has a 24-entry store queue, a 48-entry
load queue, a 40-entry issue queue, a 2,048-

entry store sets load-scheduling predictor,
and a six-stage in-order commit pipeline.
The NoSQ configuration has no store and

load queues, a 2,048-entry bypassing pre-
dictor (10 Kbytes total storage), and an
eight-stage commit pipeline.

Figure 2 shows execution times for three
NoSQ configurations on selected bench-
marks relative to a baseline with an
associative store queue and perfect load
scheduling. The baseline’s IPC appears
above each benchmark name. The first

bar shows NoSQ with no support for
delay. In this configuration, NoSQ doesn’t
use an explicit load scheduler in the out-of-
order core. Overall, NoSQ slightly outper-
forms the conventional design (by 1
percent on average). This improvement is
largely due to SMB’s latency-reducing
effects and to the issue queue capacity

amplification caused by not dispatching
stores and bypassed loads. Because of
bypassing mispredictions, a few programs
experience slowdowns relative to the con-
ventional design (as much as 7 percent for
gs.decode and sixtrack).

Adding delay to NoSQ (second bar) adds
a simplified load scheduler to eliminate
excessive flushing for benchmarks that suffer

from excess bypassing mispredictions. Delay

Figure 2. Execution time of three NoSQ configurations relative to a baseline with conventional store-queue-based store-load

forwarding. NoSQ without delay has no memory scheduler; with this implementation, several programs suffer from

bypassing misspeculation. NoSQ adds delay to avoid misspeculation-induced flushing. Both realistic NoSQ implementations

achieve a significant fraction of the performance of an ideal implementation of NoSQ that uses an oracular SMB predictor.

M.gmean: geometric mean for the MediaBench benchmarks; I.gmean: geometric mean for SPECint; F.gmean: geometric

mean for SPECfp.
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improves average performance and re-
duces the number of benchmarks with
more than a 1 percent slowdown to only
one (SPECfp’s mesa, not shown in the
graph). With delay, NoSQ achieves bypass-
ing prediction accuracies of greater than
99.8 percent on every program. To achieve
this accuracy, NoSQ delays an average 2
percent of the dynamic loads.

The third bar shows NoSQ with an
oracular bypassing predictor; realistic NoSQ
with delay achieves half the performance
benefit. However, the performance benefits
of even an ideal NoSQ are small;11 our
experiments show only a 4 percent speedup
over the baseline for ideal NoSQ. Again,
NoSQ doesn’t use SMB for performance
but rather to eliminate the store queue.

In addition to having a slightly better IPC
on average than a traditional design, NoSQ
performs fewer data cache reads because
bypassing loads filtered by SVW avoid acces-
sing the cache even once. As a result, NoSQ
reduces data cache reads by 10 percent on
average (roughly matching the bypassing rate).

The many recent proposals for simple
and more scalable designs reinforce the

notion that designing fast, high-bandwidth
load and store queues represents a challenge
for today’s processors and a potential barrier
for future large-window processors. NoSQ
addresses this challenge by providing a sim-
pler, more scalable microarchitecture.

NoSQ is also a good fit for multi-
threaded, partitioned, or distributed micro-
architectures. Traditionally, these micro-
architectures must replicate, partition, or
distribute the load and store queues. NoSQ
makes these complex actions unnecessary by
replacing these queues with the bypassing
predictor and the SSBF, structures that are
easier to distribute or share. MICRO
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