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UTILIZING DARK SILICON TO
SAVE ENERGY WITH

COMPUTATIONAL SPRINTING
...................................................................................................................................................................................................................

COMPUTATIONAL SPRINTING ACTIVATES DARK SILICON TO IMPROVE RESPONSIVENESS BY

BRIEFLY BUT INTENSELY EXCEEDING A SYSTEM’S SUSTAINABLE POWER LIMIT. SPRINTING

CAN SAVE ENERGY AND IMPROVE RESPONSIVENESS BY ENABLING EXECUTION IN CHIP

CONFIGURATIONS THAT, ALTHOUGH THERMALLY UNSUSTAINABLE, IMPROVE ENERGY

EFFICIENCY. THIS ENERGY SAVINGS CAN IMPROVE THROUGHPUT EVEN FOR LONG-

RUNNING COMPUTATIONS. REPEATEDLY ALTERNATING BETWEEN SPRINT AND IDLE

MODES WHILE MAINTAINING SUSTAINABLE AVERAGE POWER CAN OUTPERFORM

STEADY-STATE COMPUTATION AT THE PLATFORM’S THERMAL LIMIT.

......Researchers predict increasingly
underutilized chip area (dark silicon) with
continued CMOS scaling for all designs,1,2

and the impact of dark silicon in mobile de-
vices is likely to be particularly acute. Because
of limited heat-venting capability, researchers
project that only 10 percent of transistors on
a mobile chip can remain active on a sus-
tained basis.3 To extract value from dark
silicon in such thermally constrained settings,
our earlier work proposed computational
sprinting, an approach to improve respon-
siveness for interactive applications by briefly
exceeding sustainable thermal limits through
activating otherwise idle cores and increas-
ing frequency4 (see the ‘‘Computational-
Sprinting Overview’’ sidebar).

Here, we further explore counterintuitive
findings regarding the energy implications

of sprinting. Our original simulation study
naively concluded that sprinting by activat-
ing reserve cores would be energy-neutral at
best, because it assumed that chip power
was solely due to active cores. In fact, real
chips incur significant background power
overheads (above the idle power) to activate
even a single core because of shared ‘‘uncore’’
components, such as caches and intercon-
nects. Sprinting activates dark silicon cores
to use these resources more efficiently, and
it also lets them idle sooner by completing
computation faster. Previous literature has
noted this race-to-idle effect.5-8 However,
under thermal constraints, ‘‘sprinting to
idle’’ reveals new ways to use dark silicon
to conserve energy. By leveraging sprinting
to perform a staccato sprint-and-rest execu-
tion, wherein the system alternates between
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sprinting and idling at a duty cycle that main-
tains a thermally sustainable average power,
sprinting can use dark silicon to actually im-
prove throughput over conventional steady-
state execution at a thermally sustainable pace.

This article develops a simple analytical
model to describe the conditions on speedup
and platform power under which sprint-to-

idle and sprint-and-rest can improve both
performance and energy efficiency. We pres-
ent results from a hardware testbed to empir-
ically validate the model and show that both
sprint-to-idle and sprint-and-rest do indeed
provide faster and more energy-efficient
modes of operation than simple slow-and-
steady sustainable execution.

...............................................................................................................................................................................................

Computational-Sprinting Overview
CMOS scaling trends project an inflection point where thermal con-

straints (especially in mobile devices that employ only passive cooling)

preclude sustained operation of all transistors on a chip—a phenomenon

called dark silicon. However, many mobile applications do not demand

sustained performance; rather, they comprise short bursts of computation

in response to sporadic user activity. Conventional processors, including

their heat sinks, are designed primarily for sustained performance. How-

ever, sustained performance isn’t the relevant metric for many interac-

tive, mobile applications. Rather, we pose the question: ‘‘What would

a system look like if designed to provide responsiveness during bursts

rather than with a singular focus on sustained performance?’’

Computational sprinting activates otherwise powered-down cores,

and boosts voltage and frequency for bursts of intense computation in

response to such intermittent usage. During sprinting, chip temperature

does not spike instantaneously, although the processor generates heat

faster than the system dissipates it. Instead, the system absorbs heat

by virtue of its inherent thermal capacitance, which causes temperature

to rise over an extended—albeit still short—time interval. When the

temperature reaches a threshold value, sprinting terminates (by deacti-

vating reserve cores and reducing frequency), and any remaining compu-

tation is completed at the sustainable baseline.

Most materials, such as silicon and metals used in chips, possess

thermal capacitance because of their specific heat. For example, the pro-

cessor package used in this article contains a 20-g internal heat spreader

made of copper, which absorbs 188 J of energy to heat up by 25!C—

enough to allow a few seconds of sprinting at 50 W even when the plat-

form is cooling-constrained to only dissipate 10 W. Alternatively, a sec-

ond form of thermal capacitance results from the latent heat of phase

change in certain materials. For example, 1 g of wax could absorb

200 J to enable the same amount of sprinting, provided the heat spreads

quickly enough to melt all the material.

During sprints, the processor generates heat at a rate that far exceeds

the thermal (cooling) and electrical (power delivery and stability) capaci-

ties of a typical smartphone-like device. Earlier work, therefore, explored

various thermal, electrical, architectural, and software-runtime aspects to

effectively facilitate sprinting for short time durations, overcoming the

physical challenges inherent in our target environments.1

To further validate the feasibility of sprinting, we constructed a simple

testbed by constraining the cooling system around an off-the-shelf Intel

Sandy Bridge processor so that only one of its four cores, operating at a

minimum frequency (1.6 GHz), could be sustained (10 W operating

power).2 Activating all four cores and doubling frequency causes the

operating power to increase to 50 W, which is unsustainable.

Figure A compares these modes of operation for the Sobel workload.

Sprinting speeds up execution by 7" by enabling the task to complete

before the temperature reaches the maximum threshold.
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Figure A. Thermal response (a) and input power (b) for

sustained Parallel sprinting and Parallel+DVFS sprinting

operation for the Sobel workload. Sprinting speeds up

execution by 7".
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When does sprinting save energy?
The opportunity to save energy with

sprinting arises because of the power required
to keep a chip’s shared (that is, uncore) com-
ponents active to support the operation of
even a single core. Despite being classified as
overhead, this background power is funda-
mental to acceptable performance. For in-
stance, last-level caches and interconnects
reduce miss rate and penalty by staging and
moving data to the core. In the system we
use for evaluations, this uncore power is
twice the power of a single core at minimum
operating frequency (Table 1). System designs
embrace this overhead and seek to amortize it
by scaling up computation resources (for ex-
ample, adding more cores) to compute in a
more energy-efficient way per operation; a
similar argument was made for the cost of par-
allel-computing systems by Wood and Hill.9

Because of this background power, speeding
up computation can save energy by racing-
to-idle and reducing the time for which the
background components remain active.5-8

Although it is desirable to operate in these
energy-efficient modes, the thermal con-
straints that give rise to dark silicon can also
preclude such sustained operation. By inter-
mittently activating dark silicon, computa-
tional sprinting can reduce the energy per
operation via sprint-to-idle. To explain these
previously seen advantages,10 we present an
analytical model using the parameters in
Table 2. The model separates core (active),
uncore (background), and idle power based
on empirical data from a real system. The

model doesn’t explicitly include workload-
dependent variation in power consumption,
because our results show low variation across
the workloads used in the evaluation. For a
given frequency, the system we evaluate closely
fits a model with a fixed background power
and active power growing linearly in direct
proportion to the number of active cores (Ta-
ble 1). Both background power (Puncore(f ))
and active core power (Pcore(N ,f )) vary
with frequency. The model compares the en-
ergy of sprinting relative to a sustainable base-
line execution at minimum power with one
core at fmin (that is, at power Pcore(1,fmin))
while obtaining a speedup of S (N ,f ).

Using this model, we analyze the energy
impact of sprinting, considering three
questions:

# When does sprinting improve energy
efficiency per operation?

# When does sprinting result in a net en-
ergy savings when also considering the
implications of nonnegligible idle power?

# When is repeated sprint-and-rest more
energy-efficient than steady computa-
tion at sustainable power in thermally
constrained environments?

Sprinting to reduce energy per operation
The total energy a system consumes while

computing is as follows:

Energy during computation
¼ (core powerþ background power)
& computation time

Table 1. Testbed power profile.

Frequency

f

Cores

N

Total

power

Ptotal(N,f )

Normalized

power

Ptotal(N,f )/

Ptotal(1,fmin)

Peak

speedup

S(N,f ) Mode Pcore(1,f ) Puncore(f )

1.6 GHz 1 '10 W 1" 1" Sustainable 3.3 W 6.6 W

1.6 GHz 2 '13 W 1.3" 2" ! 3.3 W 6.6 W

1.6 GHz 4 '20 W 2" 4" Parallel sprint 3.3 W 6.6 W

3.2 GHz 1 '20 W 2" 2" ! 10 W 10 W

3.2 GHz 2 '30 W 3" 4" ! 10 W 10 W

3.2 GHz 4 '50 W 5" 8" Parallel þ DVFS

sprint

10 W 10 W

.................................................................................................................................................................................
( DVFS: dynamic voltage and frequency scaling.
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To compare energy relative to the baseline
execution with a single core operating at fre-
quency fmin, we can express the core power
and computation time in terms of their base-
line counterparts:

Ecompute(N ,f )

¼ (Pcore(N ,f )þ Puncore(f ))tcompute(N ,f )

¼ (N & Pcore(1,f )þ Puncore(f ))

"
tcompute(1,fmin)

S (N ,f )

By setting N to 1 and f to fmin:

Ecompute(1,fmin)

¼ (Pcore(1,fmin)þ Puncore(fmin))

& tcompute(1,fmin)

Thus, the relative energy is

Relative energy

¼
Ecompute(N ,f )

Ecompute(1,fmin)

¼ N & Pcore(1,f )þ Puncore(f )

S (N ,f )(Pcore(1,fmin)þ Puncore(fmin))

(1)

For more energy-efficient computation
(relative energy< 1), the higher-power sprint
modes must deliver a minimum speedup:

S (N ,f ) >
N & Pcore(1,f )þ Puncore(f )

Pcore(1,fmin)þ Puncore(fmin)

For the particular case of sprinting by
activating additional cores without frequency
scaling (f ¼ fmin), expressing the minimum
required speedup in terms of the ratio of
background power to core power leads to
the following inferences:

S (N ,fmin) >
N þ Puncore(fmin)

Pcore(1,fmin)

1þ Puncore(fmin)

Pcore(1,fmin)

(2)

With no background power, we would
need ideal, linear speedup (S (N ,fmin) ¼ N )
for any additional cores to even be energy-
neutral with single-core operation. However,
nonzero background power reduces the mini-
mum speedup required: the increase in the
denominator is much larger than the
corresponding increase in the numerator.
Therefore, with higher background power,

Table 2. Parameters used in energy analysis.

Parameter Derivation Meaning

N Input Number of cores

f Input Operating frequency

fmin Input Minimum operating frequency

tcompute(N,f ) Input Computation time with N cores at frequency f

Pidle Input Idle power

Puncore(f ) Input Background power at frequency f

Pcore(1,f ) Input Core power with 1 core at frequency f

Pcore(N,f ) N & Pcore(1,f ) Core power with N cores at frequency f

Ptotal(N ,f ) Pcore(N ,f )þ Puncore(f ) Sprint (total) power with N cores at frequency f

Psustainable Assumed as Ptotal(1,fmin) Maximum thermally sustainable power

S(N ,f ) tcompute(N,f )=tcompute(1,fmin) Speedup at N cores and frequency f relative to

baseline at 1 core and fmin

tidle(N,f ) tcompute(N,f )) tcompute(N,f )
S(N,f ) Idle time after computing with N cores at frequency f

Ecompute(N,f ) Ptotal(N ,f ) & tcompute(N,f ) Energy required for active computation with N cores

at frequency f

Eidle(N,f ) Pidle & tidle(N ,f ) Energy spent idling after computing with N cores

at frequency f

Etotal(N ,f ) Ecompute(N ,f )þ Eidle(N ,f ) Total energy across time required for computation

with N cores at frequency f

rsprint(N ,f ) Upper bound:

Psustainable ) Pidle=Ptotal(N,f )) Pidle

Fraction of total time spent in sprint mode

.............................................................
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even sublinear speedup can be more energy-
efficient than operating in the lowest-power
mode. For example, in our evaluation system,
in which Puncore(fmin) is 6.6 W and Pcore(1,fmin)
is 3.3 W, a speedup exceeding 2" with four
cores is sufficient for saving energy.

Implications of idle power
The above analysis considered the energy

spent only while the system was active. How-
ever, after completing a task sooner by
sprinting, the system returns to its idle
state, which typically incurs nonzero idle
power. A more conservative model should
consider this idle energy and compare total
system energy over the same time period as
the slower baseline execution.

Etotal(N ,f )

¼ Ecompute(N ,f )þ Eidle(N ,f )

Eidle(N ,f )

¼ Pidle tcompute(1,fmin)

!

)
tcompute(1,fmin)

S (N ,f )

"

Etotal(1,fmin) ¼ Ecompute(1,fmin)

Thus, the relative energy is

Relative energy

¼ Etotal(N ,f )

Etotal(1,fmin)

¼
N & Pcore(1,f )þ Puncore(f )þ Pidle(S (N ,f )) 1)

S (N ,f )(Pcore(1,fmin)þ Puncore(fmin))

(3)

The minimum speedup required for core-
only sprinting to be energy-efficient is therefore:

S (N ,fmin) >
N þ Puncore(fmin)) Pidle

Pcore(1,fmin)

1þ Puncore(fmin)) Pidle

Pcore(1,fmin)

(4)

Equation 4 is similar to the previous re-
quirement on speedup (Equation 2), except
that the background power is now offset by
Pidle; if the idle power is zero, the two equa-
tions are identical. We typically expect idle
power to be lower than background power
in most reasonably engineered systems. In a
sprint-enabled system, when sufficient speedup

is obtained, it can be possible to use dark sili-
con to sprint-to-idle to save energy. The op-
portunity for saving energy grows with the
difference between background and idle
power. For example, in our evaluation
system—where Pidle is 5 W, Puncore(fmin) is
6.6 W, and Pcore(1,fmin) is 3.3 W, as stated
previously—speedup exceeding 3" with four
cores is sufficient for saving energy.

Sprint-and-rest
Long-running computations are conven-

tionally executed at a steady, sustainable operat-
ing mode that consumes less power than the
rate at which the system can dissipate heat
(allowing the chip to operate indefinitely).
However, in a sprint-enabled system, we can
also consider an operating regime that alter-
nates between sprint and rest periods. Provided
that the sprint periods are short enough to re-
main within temperature bounds, and that the
rest periods are long enough to dissipate the
accumulated heat, such a sprint-and-rest oper-
ation mode is also sustainable indefinitely.

More directly, sprint-and-rest operation is
sustainable as long as the average—but not nec-
essarilyinstantaneous—powerdissipationovera
sprint-and-rest cycle is atorbelowtheplatform’s
sustainable power dissipation. If the system’s
thermal power limit is Psustainable when operating
with 1 core at fmin, then any increase of cores or
frequency is therefore unsustainable and must
only be engaged for a fraction of time,
rsprint(N ,f ), after which the system must idle:

Psprint-and-rest * Psustainable

Ptotal(N ,f )rsprint(N ,f )

þ Pidle(1 ) rsprint(N ,f ))

* Psustainable

Therefore,

rsprint(N ,f ) * Psustainable ) Pidle

Ptotal(N ,f ) ) Pidle

(5)

Because active computation occurs only
in the sprint phase, the effective speedup of
sprint-and-rest operation over steady baseline
operation at Psustainable is

Ssprint-and-rest(N ,f )

¼ S (N ,f )rsprint(N ,f )

* S (N ,f )
Psustainable ) Pidle

Ptotal(N ,f )) Pidle

.............................................................
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The energy of executing in sprint-and-rest
mode is

Esprint-and-rest(N ,f )¼
P

sprint-and-rest
(N ,f )

S
sprint-and-rest

(N ,f )
:

Therefore, when the sprint-and-rest power
is exactly sustainable (Psprint-and-rest(N ,f )
¼ Psustainable), the relative energy becomes

Relative energy

¼
Esprint-and-rest(N ,f )

Ecompute(1,fmin)

¼ 1

S (N ,f )
& Ptotal(N ,f )) Pidle

Psustainable ) Pidle

(6)

We next evaluate these inferences
experimentally.

Methodology: Sprinting testbed design and
characterization

To sprint, a chip must offer an operating
point where its peak power greatly exceeds
the sustainable power dissipation of its cool-
ing system. Existing mobile chips have been
designed with peak power envelopes easily
dissipated via passive cooling, and thus are
inadequate for our study. Instead, we study
a sprinting testbed system as a proxy for
the thermal characteristics of a future
sprint-enabled device. This system uses an
Intel Core i7 2600 quad-core Sandy Bridge
chip.10 The chip can operate with one to
four cores over a frequency range from
1.6 GHz to 3.2 GHz. Table 1 shows this
chip’s power and peak performance for the
relevant subset of these modes. The power
is measured using energy counters that reflect
package-level energy consumption.11 Table 1
shows that, for each frequency, the total
power is well approximated as a fixed back-
ground power and a per-core power multi-
plied by the number of active cores.

We reduce the chip’s heat-venting capac-
ity by removing its heat sink and tuning its
fan to dissipate 10 W, so that the tempera-
ture settles at the maximum recommended
operating temperature of 75!C when run-
ning with a single core at 1.6 GHz; all
other modes are not thermally sustainable
and hence are sprint modes. The chip idles
at '5 W, causing its initial temperature to
settle at 50!C. The chip’s internal heat

spreader ('20 g of copper) can store up to
188 J of heat for a 25!C temperature in-
crease, allowing several seconds of sprinting
with the four-core, 1.6-GHz (Parallel)
and four-core, 3.2-GHz (Parallel+
DVFS) modes.

We evaluate the performance and energy
impact of sprinting on our test platform
using a suite of vision kernels. The kernels’
inputs are sized such that each completes
within a single sprint without exhausting
thermal capacitance; other work investigates
cases when thermal capacitance is exhausted
midsprint.10

Performance and energy impact of
sprinting

We first measure the speedup provided by
sprinting. We then predict available energy
savings from sprinting-to-idle according to
the model and compare those predictions
to empirical energy measurements.

Speedup
When sprinting is employed with four

cores at 1.6 GHz, the maximum potential
speedup over the single-core baseline is 4";
with Parallel+DVFS sprinting, maximum
speedup is 8" (4" cores, 2" frequency).
Figure 1a shows the achieved speedups for
our vision kernels: Parallel+DVFS enables
6.3" speedup on average, whereas Para-
llel sprinting achieves 3.5" speedup on
average. These speedups imply that sprinting
allows this system to complete in just a few
seconds what would have taken more than
15 seconds if constrained to operate only in
sustainable (nonsprinting) mode.

Energy efficiency of sprinting
We can predict the energy impact of

sprinting from the measured speedups and
the models developed earlier. Relative to
the sustainable baseline (Pcore(1,fmin)), Equa-
tion 1 with S (N ,f ) ¼ 6:3" predicts the
active energy to be 0.79" the baseline for
Parallel+DVFS, and 0.57" for Para-

llel+DVFS sprinting, with S (N ,f ) ¼
3:5" (substantial energy savings). The
lower component (darker) of Figure 1b
shows the experimentally observed energy
for the duration of the sprint. The measured
energy (0.77" and 0.60") for both sprinting

.............................................................
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modes closely matches the model prediction
and confirms that sprinting enables lower en-
ergy per operation.

Energy efficiency of sprint-to-idle
After a computation completes during a

sprint, however, the system continues to con-
sume some energy while idle. The model
accounts for this idle energy in Equation 3.
Relative to sustained operation, the predicted
total energy is 1.20" the baseline for Par-
allel+DVFS sprinting (a net energy loss),

whereas Parallel sprinting consumes
0.93" the baseline energy (continuing to
provide a net energy savings). We account
for the additional idle energy in the upper,
lighter component of each bar in Fig-
ure 1b. Again, the measured energy confirms
the model (21 percent energy overhead with
Parallel+DVFS sprinting, and 6 percent
energy savings with Parallel sprinting).

Sprint-and-rest for long running computations
We experiment with sprint-and-rest in

our system with both the Parallel and
Parallel+DVFS modes of sprinting.
From Equation 5, for the Parallel

sprint drawing 20 W, the fraction of time
spent in sprint mode cannot exceed 1=3:1
(rsprint(N ,f ) ¼ 1 : 3:1) to provide a sustain-
able average power. To avoid overheating
during an individual sprint, sprint duration
for Parallel sprinting cannot exceed 20
seconds. Thus, we selected a sprint duration
of 5 seconds and a rest duration of 10.5 sec-
onds (rsprint(N ,f ) ¼ 1 : 3:1). Similarly, for
Parallel+DVFS sprinting at 50 W, we
selected the sprint duration as 1.5 seconds
(less than the 3 seconds maximum sprint
duration), and a rest duration of 12.3 sec-
onds (rsprint(N ,f ) ¼ 1 : 9:1). Substituting
these values in Equation 6, we would expect
Parallel sprinting to be 23 percent more
energy-efficient, and Parallel+DVFS

sprinting to be 22 percent less energy-
efficient, compared to sustained execution
at a constant 10 W of power.

Figure 2a shows the power traces for the
Sobel workload executed on the testbed for
more than 8 minutes with sustained and
sprint-and-rest modes (for both Parallel

and Parallel+DVFS sprinting) under the
previously discussed duty cycles. Figure 2b
compares the resulting cumulative work
done when operating in these modes. The
Parallel+DVFS sprint-and-rest mode
underperforms sustained execution at the
sustainable thermal limit by 21 percent.
However, the Parallel mode of sprint-
and-rest performs 20 percent more work
over sustained operation on average.

T he above results provide ample moti-
vation for chip designers to further

optimize idle power; although the chip used

0

2

4

6

8
N

or
m

al
iz

ed
 s

pe
ed

up

sobel disparity segment kmeans feature texture

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 e
ne

rg
y

Idle
Sprint

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

sobel disparity segment kmeans feature texture

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

pa
ra

lle
l+

DV
FS

pa
ra

lle
l-o

nl
y

(a)

(b)

Figure 1. Speedup (S (N,f )) (a) and energy breakdown (Ecompute(N ,f );Eidle(N,f ))

normalized to the one-core 1.6-GHz sustainable baseline (Ecompute(1,fmin)) (b)

for four cores at 3.2 GHz and 1.6 GHz. Sprinting with parallelism and DVFS

results in an average speedup of 6.3" (a) using 23 percent less energy to

perform the computation (dark component in part b). However, idle energy

after sprinting (light component in part b) causes a total energy loss of

20 percent. Sprinting with parallelism alone results in lower average speedup

(3"), but saves energy (6 percent), even considering idle energy.
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for the evaluation already achieves 10-to-1
ratios between peak and idle power, the
analytical as well as empirical results indicate
that energy efficiency gains of sprinting would
increase if idle power is further reduced. Thus,
by keeping dark silicon as dark as possible
when idle, and operating dark silicon beyond
sustainable power when active, computational
sprinting has the potential to continue
harnessing Moore’s law to deliver intense
performance when necessary, and even save
energy in the process. MICR O

....................................................................
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Figure 2. Comparison of power (a) and cumulative work (b) done with sprint-and-rest and

sustained computation. Although operating with the same average power, repeated sprint-
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forms sustained computation for the same average power.

.............................................................

SEPTEMBER/OCTOBER 2013 27



His research interests include parallel-
computer architectures and programming
models. Raghavan has a BEng in electronics
and communications engineering from R.V.
College of Engineering, India.

Laurel Emurian is a PhD candidate in the
Department of Computer and Information
Science at the University of Pennsylvania.
Her research interests include energy-efficient
systems and mobile architecture. Emurian has
an MSE in computer and information
science from the University of Pennsylvania.

Lei Shao is a PhD candidate in the Depart-
ment of Mechanical Engineering at the
University of Michigan. His research interests
include microscale heat transfer and energy
conversion. Shao has an MS in mechanical
engineering from the University of Michigan.

Marios Papaefthymiou is a professor in the
Department of Electrical Engineering and
Computer Science and Chair of Computer
Science and Engineering at the University of
Michigan. He is also a cofounder and chief
scientist of Cyclos Semiconductor, a start-up
company specializing in energy-efficient
chips for power-critical applications. Pa-
paefthymiou has a PhD in electrical engi-
neering and computer science from the
Massachusetts Institute of Technology.

Kevin P. Pipe is an associate professor in the
Department of Mechanical Engineering and
holds joint appointments with the Applied
Physics Program and Electrical Engineering
and Computer Science Department at the
University of Michigan. His research inter-
ests include microscale heat transfer, opto-
electronic devices, thermoelectric energy

conversion, scanning-probe techniques,
photovoltaic energy conversion, and organic
and hybrid organic and inorganic devices.
Pipe has a PhD in electrical engineering from
the Massachusetts Institute of Technology.

Thomas F. Wenisch is the Morris Wellman
Faculty Development Assistant Professor of
Electrical Engineering and Computer Science
at the University of Michigan and a member
of the Advanced Computer Architecture Lab.
His research focuses on computer architecture
with emphasis on multiprocessor and multi-
core systems, multicore programmability,
smartphone architecture, datacenter architec-
ture, and performance evaluation methodol-
ogy. Wenisch has a PhD in electrical and
computer engineering from Carnegie Mellon
University.

Milo M. K. Martin is an associate professor
in the Department of Computer and
Information Science at the University of
Pennsylvania. He coleads Penn’s Computer
Architecture and Compilers Group. His
research interests include multiprocessor
and multicore computer architecture, com-
piler and hardware support for security, and
programming models for next-generation
architectures. Martin has a PhD in computer
science from the University of Wisconsin-
Madison.

Direct questions and comments about
this article to Arun Raghavan, LVN 302,
3330 Walnut St., Philadelphia, PA 19104;
arraghav@cis.upenn.edu.

.............................................................

28 IEEE MICRO

...............................................................................................................................................................................................
DARK SILICON


